Abstract
This paper aims to review recent advances on synthesis, crystal structures, thermal, spectroscopic, phase transitions, optical, dielectric, and catalysis properties of hydrate and anhydrous alkylenediammonium halogenometallates materials (Metal: Bi, Sb, Halogen: Cl, Br, I). These hybrid materials present rich structural diversities based on octahedra forming infinite zero dimensional, 1-dimensional chains, 2-dimensional layers, discrete bioctahedra, and discrete tetramer units. The effect, contribution and importance of hydrogen bonding N–H … X (X: Cl, Br, I) are reviewed in terms of solid state relationship. Particularly, a comparative study is made on hydrate and anyhdrous aliphatic chlorobismuthates with alkylenediammonium +NH3(CH2) n NH3+ based on structural data and V/Z variation with (CH2) n chains (n = 2–8, 12), and variation of BiCl63− Raman frequencies modes versus (CH2) n chains (n = 3–8). Hydrate salts with (n = 3, 12) consist of isolated BiCl63− anions and two water molecules, against others ones with isolated anionic chains [BiCl52−] n or Bi2Cl104− dimers, formed by distorted octahedra BiCl63− sharing corners, vices or edges. The reviewed optical and electronic band gaps suggested interesting compounds with band gaps (1.85–2.4 eV), as suitable materials in optoelectronic properties, photoactive layer in solution-processed photovoltaics, and bio-imaging or photovoltaic applications. It was concluded that iodobismuthate salts have generally the lowest bands gap, compared to that of bromo and chlorobismuthate slats. Catalysis proprieties are reviewed n fast (RhB) degradation under dark conditions for (C4N2H7)4Bi2Cl10, (C5H9N2)BiI4, and {(H-BPA)4·[(BiI6)I13]·2I3} n , and in organic salts synthesis under solvent-free conditions. Herein NH3(CH2) n NH3BiCl5 (n = 5–7) salts were used as highly efficient catalysts, which is a novel tendency in chlorobismuthate researchs in the green chemistry field.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adonin, S. A.; Rakhmanova, M. I.; Samsonenko, D. G.; Sokolov, M. N.; Fedin, V. P. Hybrid salts of binuclear Bi(III) halide complexes with 1, 2-bis(pyridinium)ethane cation: synthesis, structure and luminescent behavior. J. Inorganica Chimica Acta 2016a, 450, 232–235; https://doi.org/10.1016/j.ica.2016.06.010.Search in Google Scholar
Adonin, S. A.; Sokolova, M. N.; Fedin, V. P. Polynuclear halide complexes of Bi(III): from structural diversity to the new properties. J. Coord. Chem. Rev. 2016b, 312, 1–21; https://doi.org/10.1016/j.ccr.2015.10.010.Search in Google Scholar
Adonin, S. A.; Sokolov, M. N.; Fedin, V. P. Bismuth(III) halide complexes: new structural types and new application areas. Russ. J. Inorg. Chem. 2017, 62(14), 1789–1796; https://doi.org/10.1134/s0036023617140029.Search in Google Scholar
Ahmad, K.; Ansari, S. N.; Natarajan, K.; Mobin, S. M. Design and synthesis of 1D-polymeric chain based [(CH3NH3)3Bi2Cl9]n perovskite: a new light absorber material for lead free perovskite solar cells. J. ACS Appl. Energy Mater. 2018, 1, 2405–2409; https://doi.org/10.1021/acsaem.8b00437.Search in Google Scholar
AlFarhan, K. A.; AlWassil, A. I. Crystal structure of tetrakisdiphenylammonium hexadecachlorotetrabismuthate (III). J. Chem. Crystallogr. 1995, 25, 841–844; https://doi.org/10.1007/bf01671080.Search in Google Scholar
Aurivillius, B.; Stalhandske, C. The crystal structure of a tetranuclear Bismuth(III) complex (C5H5N)6Bi4Br18. J. Acta Chem. Scand. A 1978, 32, 715–719; https://doi.org/10.3891/acta.chem.scand.32a-0715.Search in Google Scholar
Abdel-Aal, S. K.; Abdel-Rahman, A. S.; Gamal, W. M.; Abdel-Kader, M.; Ayoub, H. S.; El-Sherif, A. F.; Kandeel, M. F.; Bozhko, S.; Yakimov, E. E.; Yakimov, E. B. Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic–inorganic hybrid perovskite of [NH3CH2CH(NH3)CH2]BiCl5. J. Acta Cryst. 2019, B75, 1–7.10.1107/S2052520619011314Search in Google Scholar PubMed
Attia, S.; Chaari, N.; Chaabouni, S. Synthesis, crystal structure, and dielectric properties of (3-aminopropyl-imidazolium) pentachlorobismuthate (III) [C6H13N3]BiCl5. J. Cluster Sci. 2015, 26(4), 1343–1359; https://doi.org/10.1007/s10876-014-0818-x.Search in Google Scholar
Adonin, S. A.; Gorokh, I. D.; Novikov, A. S.; Usoltsev, A. N.; Sokolov, M. N.; Fedin, V. P. Tetranuclear anionic bromobismuthate [Bi4Br18]6−: new structural type in halometalate collection. J. Inorg. Chem. Commun. 2019, 103, 72–74; https://doi.org/10.1016/j.inoche.2019.03.014.Search in Google Scholar
Ben Ali, S.; Ferretti, V.; Del Bianco, L.; Spizzo, F.; Belhouchet, M. Structural, vibrational, optical properties and theoretical studies of a new organic-inorganic material: tris-acetoguanaminium hexachlorobismuthate monohydrate. J. Mol. Struct. 2020, 1199, 126986; https://doi.org/10.1016/j.molstruc.2019.126986.Search in Google Scholar
Benzekri, Z.; Sibous, S.; Serrar, H.; Ouasri, A.; Boukhris, S.; Rhandour, A.; Souizi, A. NH3(CH2)5NH3BiCl5: an efficient and recyclable catalyst for the synthesis of benzoxazole, benzimidazole and benzothiazole heterocycles. J. Iran. Chem. Soc. 2018, 15, 2781–2787; doi: https://doi.org/10.1007/s13738-018-1465-1.Search in Google Scholar
Bi, W. H.; Mercier, N. Reversible dynamic isomerism change in the solid state, from Bi4I16 clusters to BiI4 1D chains in l-cystine based hybrids: templating effect of cations in iodobismuthate network formation. J. Chem. Commun. 2008, 5743–5745; https://doi.org/10.1039/b812588k.Search in Google Scholar PubMed
Buikin, P. A.; Rudenko, A. Y.; Ilyukhin, A. B.; Simonenko, N. P.; Yorov, K. E.; Kotov, V. Y. Bromobismuthates of 1, 1’-(1, N-Alkanediyl) bis (picolines): synthesis, thermal stability, crystal structures, and optical properties. Russ. J. Coord. Chem. 2020, 46, 111–118; https://doi.org/10.1134/s1070328420020049.Search in Google Scholar
Bator, G.; Zeegers-Huyskens, T.; Jakubas, R.; Zaleski, J. Structure and phase transitions in guanidinium halogenobismuthates (III). J. Mol. Struct. 2001, 570, 61–74; https://doi.org/10.1016/s0022-2860(01)00490-2.Search in Google Scholar
Bator, G.; Jakubas, R.; Sobczyk, L. Molecular-ionic halogenoantimonates and bismuthates - a rich family of crystals showing attractive properties. J. Crystal Engineering 1999, 538, 459–468.10.1007/978-94-011-4505-3_26Search in Google Scholar
Bigoli, F.; Lanfranchi, M.; Pellinghelli, M. A. The structures of bis (1H+, 5H+-S-methylisothiocarbonohydrazidium) di-μ-chloro-octachlorodibismuthate (III) tetrahydrate and tris (1H+-S-methylisothiocarbonohydrazidium) esachlorobismuthate (III). J. Inorg. Chim. Acta 1984, 90(3), 215–220; https://doi.org/10.1016/s0020-1693(00)80749-5.Search in Google Scholar
Benzekri, Z.; Serrar, H.; Sibous, S.; Boukhris, S.; Ouasri, A.; Rhandour, A.; Souizi, A. Hybrid crystal NH3(CH2)4NH3SiF6 as an efficient catalyst for the synthesis of benzoxazoles, benzimidazoles and benzothiazoles under solvent-free conditions. J. Green Chem. Lett. Rev. E 2016, 9(4), 223–228; https://doi.org/10.1080/17518253.2016.1242662.Search in Google Scholar
Benzekri, Z.; Serrar, H.; Boukhris, S.; Ouasri, A.; Hassikou, A.; Rhandour, A.; Souizi, A. NH3(CH2)6NH3SiF6 catalyzed highly efficient synthesis of benzimidazoles, benzoxazoles, benzothiazoles, quinoxalines and pyrimidin-2-ones/thiones. French-Ukrainian J. Chem. 2017, 5(01), 60–71; https://doi.org/10.17721/fujcv5i1p60-71.Search in Google Scholar
Benetollo, F.; Bombieri, G.; Pra, A. D.; Alonzo, G.; Bertazzi, N. The influence of aromatic cations on the geometries of the Bi(III) halide polyhedra. Synthesis and crystal structures of quinolinium, isoquinolinium and 8-hydroxyquinolinium polychlorobismuthate(III) derivatives. J. Inorg. Chim. Acta 2001, 319(1–2), 49–56; https://doi.org/10.1016/s0020-1693(01)00436-4.Search in Google Scholar
Benzekri, Z.; Sibous, S.; Serrar, H.; Ouasri, A.; Boukhris, S.; Ghailane, R.; Rhandour, A.; Souizi, A. NH3(CH2)5NH3BiCl5 as a new hybrid and efficient catalyst for the synthesis of 1-(benzothiazolylamino) methyl-2-naphtol derivatives under solvent-free conditions. J. Mol. Struct. 2020, 1202, 127308; https://doi.org/10.1016/j.molstruc.2019.127308.Search in Google Scholar
CiŻman, A.; Poprawski, R.; Sieradzki, A. Ferroelectric phase transition in (CH3NH3)5Bi2Cl11 and (CH3NH3)5Bi2Br11 crystals. J. Phase Transit. 2007, 80(1–2), 171–176; https://doi.org/10.1080/01411590601091011.Search in Google Scholar
Chaabouni, S.; Kamoun, S.; Jaud, J. Crystal structure of NH3(CH2)2NH3BiCl5.2H2O. J. Chem. Crystallogr. 1998, 28(3), 209–210; https://doi.org/10.1023/a:1022474327917.10.1023/A:1022474327917Search in Google Scholar
Chu, K-B.; Xie, J-L.; Chen, W-J.; Lu, W-X.; Song, J-L.; Zhang, C. A novel bismuth-based hybrid material with highly activity for fast removal of rhodamine B under dark conditions. J. Polyhedron 2018, 151(1), 146–151; https://doi.org/10.1016/j.poly.2018.05.008.Search in Google Scholar
Dennington, A. J.; Weller, M. T.; Synthesis Structure and optoelectronic properties of hybrid iodobismuthate & iodoantimonate semiconducting materials. J. Dalton Trans. 2018, 47, 3469–3484; https://doi.org/10.1039/c7dt04280a.Search in Google Scholar PubMed
Dennington, A. J.; Weller, M. T. Synthesis and structure of pseudo-three dimensional hybrid iodobismuthate semiconductors. J. Dalton Trans. 2016, 45(44), 17974–17979; https://doi.org/10.1039/c6dt03602c.Search in Google Scholar PubMed
Du Bois, A.; Abriel, W. On the stereochemistry of the lone-pair electrons in AX6 E-systems, VIII statically distorted anion in [H3N(CH2)3NH3]3(BiX6)2(H20)2 with X=Cl. Br. Z. Naturforsch. 1988, 43b, 1003–1009; https://doi.org/10.1515/znb-1988-0815.Search in Google Scholar
Du Bois, A.; Abriel, W. Preparation and crystal Structure of [H3N(CH2)3NH3]SbCl5. Z. Naturforsch. 1989, 44b, 1151–1154; https://doi.org/10.1515/znb-1989-0925.Search in Google Scholar
El-Adel, L.; Ouasri, A.; Zouihri, H.; Rhandour, A. Crystal structure, DSC, TGA, Hirshfeld and Infrared study at ambient temperature of phenylammonium hexachlorobismuthate trihydrate [C6H5NH3]3BiCl6.3H2O. J. Mol. Struct. 2019, 1188, 110–120; https://doi.org/10.1016/j.molstruc.2019.03.090.Search in Google Scholar
El Adel, L.; Ouasri, A.; Rhandour, A.; Saadi, M.; El Ammari, L.; Hajji, L. Crystal structure, DSC, TGA and electrical studies of Bis (1, 12-dodecamethylenediammonium hexachlorobismuthate chloride dihydrate (C12H30N2)2BiCl6.Cl.2H2O. J. Mol. Struct. 2020, 1207, 127806; https://doi.org/10.1016/j.molstruc.2020.127806.Search in Google Scholar
El-Adel, L.; Ouasri, A.; Rhandour, A.; Hajji, L. Raman-Infrared spectroscopy, thermal behavior, dielectric, and UV-fluorescence studies of (C6H5NH3]3BiCl6.3H2O. J. Solid State Commun. 2021, 340, 114541; https://doi.org/10.1016/j.ssc.2021.114541.Search in Google Scholar
Essid, M.; Aloui, Z.; Rzaigui, M.; Marouani, H. Synthesis, crystal structure and IR spectroscopy of a new 2-methylpiperazine-1, 4-diium pentachlorobismuthate (III) monohydrate: [C5H14N2]BiCl5.H2O. J. Adv. Chem. 2014, 10(4), 2592–2600.Search in Google Scholar
Essid, M.; Aloui, Z.; Ferretti, V.; Abid, S.; Lefebvre, F.; Rzaigui, M.; Ben Nasr, C. Crystal structure, Hirshfeld surface and spectroscopic studies of the noncentrosymmetric Bi(III) halide complex: [C8H12N]3BiCl6. J. Inorg. Chim. Acta. 2017, 457, 122–129; https://doi.org/10.1016/j.ica.2016.12.012.Search in Google Scholar
Essalhi, R.; Abdelbaky, M. S. M.; Elleuch, S.; Zouari, F.; García-Granda, S. Crystal structure, Hirshfield surface analysis, thermal and DFT investigation accomplished with photoluminescence study of bis (N, N-diethylethylendiammonium) decabromodiantimoinate (III). J. Mol. Struct. 2020, 1221, 128828; https://doi.org/10.1016/j.molstruc.2020.128828.Search in Google Scholar
Fabian, D. M.; Ardo, S. Hybrid organic–inorganic solar cells based on bismuth iodide and 1, 6-hexanediammonium dication. J. Mater. Chem. A 2016, 6837–6841; https://doi.org/10.1039/c6ta00517a.Search in Google Scholar
Ferjani, H.; Boughzala, H. New quasi-one-dimensional organic-inorganic hybrid material: 1,3-Bis(4-piperidinium) propane pentachlorobismuthate(III) synthesis, crystal structure, and spectroscopic studies. J. Mater. 2014, 2014, 253602; doi: https://doi.org/10.1155/2014/253602.Search in Google Scholar
Ferjani, H.; Chebbi, H.; Fettouhi, M. One-Dimensional Organic-Inorganic Material (C6H9N2)2BiCl5: from synthesis to structural, spectroscopic, and electronic characterizations. Int. J. Mol. Sci. 2021, 22, 2030; https://doi.org/10.3390/ijms22042030.Search in Google Scholar PubMed PubMed Central
Goforth, A. M.; Peterson, L. Jr.; Smith, M. D.; zur Loye, H.-C. Syntheses and crystal structures of several novel alkylammonium iodobismuthate materials containing the 1, 3-bis-(4-piperidinium) propane cation. J. Solid State Chem. 2005, 178, 3529–3540; https://doi.org/10.1016/j.jssc.2005.09.010.Search in Google Scholar
Ghali, M.; Aloui, Z.; Hassini, I.; Akriche, S.; Rzaigui, M. Synthesis, crystal structure, Hirshfeld surface analysis, optical and antioxidant properties of the binuclear complex [C5H14N2]2Bi2Br10.4H2O. J. Mol. Struct. 2020, 1226, 129252; https://doi.org/10.1016/j.molstruc.2020.129252.Search in Google Scholar
Gargouri, A.; Chaaboun, S.; Bensalah, A. Structure cristalline, calorimétrie différentielle en balayage et études diélectriques dans NH3(CH2)5NH3BiCl5. J. Annales de Chimie 2005, 30(1), 55–65.Search in Google Scholar
Goforth, A. M.; Smith, M. D.; Peterson, L.Jr.; zur Loye, H. -C. Preparation and characterization of novel inorganic-organic hybrid materials containing rare, mixed-halide anions of bismuth(III). J. Inorg. Chem. 2004, 43, 7042–7049; https://doi.org/10.1021/ic049212d.Search in Google Scholar PubMed
Garcia, M. D.; Marti-Rujas, J.; Metrangolo, P.; Peinador, C.; Pilati, T.; Resnati, G.; Terraneo, G.; Ursini, M. Dimensional caging of polyiodides: cation-templated synthesis using bipyridinium salts. J. CrystEngComm 2011, 13, 4411–4416; https://doi.org/10.1039/c0ce00860e.Search in Google Scholar
Hajji, R.; Oueslati, A.; Errien, N.; Hlel, F. Synthesis, crystal structure, thermal and dielectric properties of bis(2, 4-diammonium toluene) decachlorodibismuthate(III) tetrahydrate [C7H12N2]2Bi2Cl10.4H2O. J. Polyhedron 2014, 79(5), 97–103; https://doi.org/10.1016/j.poly.2014.04.062.Search in Google Scholar
Hamdi, M.; Karoui, S.; Oueslati, A.; Kamoun, S.; Hlel, F. Synthesis, crystal structure and dielectric properties of the new organic-inorganic hybrid compound [C6H10N2]7[Bi2Cl11]2.4[Cl]. J. Mol. Struct. 2018, 1154, 516–523; https://doi.org/10.1016/j.molstruc.2017.10.063.Search in Google Scholar
Hu, Y. Q.; Hui, H. Y.; Lin, W. Q.; Wen, H. Q.; Yang, D. S.; Feng, G. D. Crystal and band-gap engineering of one-dimensional antimony/bismuth-based organic–inorganic hybrids. J. Inorg. Chem. 2019, 58, 16346–16353; https://doi.org/10.1021/acs.inorgchem.9b01439.Search in Google Scholar PubMed
Jakubas, R.; Gagor, A.; Winiarski, M. J.; Ptak, M.; Piecha-Bisiorek, A.; Cizman, A. Ferroelectricity in ethylammonium bismuth-Based organic-inorganic hybrid: (C2H5NH3)2[BiBr5]. J. Inorg. Chem. 2020, 59, 3417–3427; https://doi.org/10.1021/acs.inorgchem.9b03193.Search in Google Scholar PubMed
Józków, J.; Jakubas, R.; Bator, G.; Pietraszko, A. Ferroelectric properties of (C5H5NH)5Bi2Br11. J. Chem. Phys. 2001, 114, 7239–7246; https://doi.org/10.1063/1.1349897.Search in Google Scholar
Jeghnou, H.; Ouasri, A.; Rhandour, A.; Dhamelincourt, M. C.; Dhamelincourt, P.; Mazzah, A.; Roussel, P. Structural phase transition in NH3(CH2)5NH3BiCl5: thermal and vibrational studies. J. Raman Spectrosc. 2005, 36, 1023–1028; https://doi.org/10.1002/jrs.1400.Search in Google Scholar
James, Z.; Cai, Y.; Vaqueiro, P. Crystal structure of (C9H17N2)3[Bi2I9]. J. Acta Cryst 2021, 77, 899–902.10.1107/S2056989021007799Search in Google Scholar PubMed PubMed Central
Jakubas, R.; Piecha, A.; Pietraszko, A.; Bator, G. Structure and ferroelectric properties of (C3N2H5)5Bi2Cl11. J. Phys. Rev. 2005, B72(10), 104107.Search in Google Scholar
Jiang, J.; Zhang, L. Z.; Li, H.; He, W. W.; Yin, J. J. Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. J. Nanoscale 2013, 5, 10573–10581; https://doi.org/10.1039/c3nr03597b.Search in Google Scholar PubMed
Kahouli, K.; Kahouli, A.; Khirouni, K.; Chaabouni, S. Crystal structure, thermal studies, vibrational properties, atomic Hirshfeld surface, and electrical and dielectric studies of [C9H14N]3BiCl6 single crystal. J. Mol. Struct. 2020, 1199, 126944–126955; https://doi.org/10.1016/j.molstruc.2019.126944.Search in Google Scholar
Kotov, V. Yu.; Buikin, P. A.; Ilyukhin, A. B.; Korlyukov, A. A.; Dorovatovskii, P. V. Synthesis and first-principles study of structural, electronic and optical properties of tetragonal hybrid halobismuthates [Py2(XK)]2Bi2Br10-xIx. New J. Chem. 2021, 45, 18349–18357; doi: https://doi.org/10.1039/d1nj02390j.Search in Google Scholar
Krautscheid, H. Synthese und Kristallstrukturen von (Ph4P)4[Bi8I28], (nBu4N)[Bi2I7] und (Et3PhN)2[Bi3I11]-iodobismutate mit isolierten bzw. Polymeren Anionen. Z. Anorg. Allg. Chem. 1995, 621, 2049; https://doi.org/10.1002/zaac.19956211212.Search in Google Scholar
Lambarki, F.; Ouasri, A.; Zouihri, H.; Rhandour, A. Crystal structure, Hirshfeld and vibrational study at ambient temperature of propylammonium pentachlorobismuthate [n-C3H7NH3]2BiCl5 (III). J. Mol. Struct. 2017, 1142, 275–284; https://doi.org/10.1016/j.molstruc.2017.04.031.Search in Google Scholar
Latanowicz, L.; Medycki, W.; Jakubas, R. Complex molecular dynamics of (CH3NH3)5Bi2Br11 (MAPBB) protons from NMR relaxation and second moment of NMR spectrum. J. Magn. Reson. 2011, 211(2), 207–216; https://doi.org/10.1016/j.jmr.2011.05.016.Search in Google Scholar PubMed
Li, J. Y.; Zhao, C. X.; Lan, F. J.; Chen, F.; Teng, C. L.; Yan, Q. Y.; Tang, J. T. An efficient CeGeO4 catalyst for degradation of organic dyes without light irradiation at room temperature. J. Catal. Commun. 2016, 77(5), 26–31; https://doi.org/10.1016/j.catcom.2016.01.011.Search in Google Scholar
Moskwa, M.; Bator, G.; Rok, M.; Medycki, W.; Miniewicz, A.; Jakubas, R. Investigations of organic-inorganic hybrids based on homopiperidinium cation with haloantimonates(III) and halobismuthates (III). Crystal structures, reversible phase transitions, semiconducting and molecular dynamic properties. J. Dalton Trans. 2018, 47, 13507–13522; doi: https://doi.org/10.1039/c8dt03121e.Search in Google Scholar PubMed
Mahjoor, P.; Latturner, S. E. Synthesis and Structural characterization of [bpyr]4[V4O4Cl12] and [bpyr]4[Bi4Cl16] grown in ionic liquid [bpyr] [AlCl4] (bpyr = 1-Butylpyridinium). J. Cryst. Growth Des. 2009, 9, 1385–1389; https://doi.org/10.1021/cg800625w.Search in Google Scholar
Mousdis, G. A.; Papavassiliou, G. C.; Terzis, A.; Raptopoulou, C. P. Preparation, structures and optical properties of H3N(CH2)6NH3BiX5 (X: I, Cl) and H3N(CH2)6NH3SbX5 (X: I, Br). Z. Naturforsch. 1998, 53b, 927–932; https://doi.org/10.1515/znb-1998-0825.Search in Google Scholar
Mitzi, D. B.; Brock, P. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. J. Inorg. Chem. 2001, 40(9), 2096–2104; https://doi.org/10.1021/ic000622l.Search in Google Scholar PubMed
Mencel, K.; Kinzhybalo, V.; Jakubas, R.; Zaręba, J. K.; Szklarz, P.; Durlak, P.; Drozd, M.; Piecha-Bisiorek, A. 0D bismuth(III)-Based hybrid ferroelectric: tris(acetamidinium) hexabromobismuthate(III). J. Chem. Mater. 2021, 33(22), 8591–8601; https://doi.org/10.1021/acs.chemmater.1c01266.Search in Google Scholar
Mencel, K.; Gągor, A.; Jakubas, R.; Ciżman, A.; Medycki, W.; Zaręba, J. K.; Piecha-Bisiorek, A. Ferroelectricity in lead free organic-inorganic 0D hybrid: formamidinium bromoantimonate (III). J. Mater. Chem. C 2020, 8, 5025–5028; doi: https://doi.org/10.1039/D0TC00168F.Search in Google Scholar
Moyet, M. A.; Kanan, S. M.; Varney, H. M.; Abu-Farha, N.; Gold, D. B.; Lain, W. J.; Pike, R. D.; Patterson, H. H. Synthesis and characterization of (RPh3P)3[Bi3I12] (R=Me, Ph) iodobismuthate complexes for photocatalytic degradation of organic pollutants. J. Res. Chem. Intermed. 2019, 45, 5919–5933; https://doi.org/10.1007/s11164-019-04010-z.Search in Google Scholar
Ouasri, A.; Rhandour, A. Structural, vibrational, thermal, phase transitions, and properties of alkylammonium and alkylenediammonium hexafluorosilicates. Russ. J. Coord. Chem. 2021, 47, 502–517; doi: https://doi.org/10.1134/s1070328421070046.Search in Google Scholar
Ouasri, A.; Elyoubi, M. D.; Guedira, T.; Rhandour, A.; Mhiri, T.; Daoud, A. Synthesis, DTA, IR and Raman spectra of penthylenediammonium hexachlorostannate NH3(CH2)5NH3SnCl6. J. Spectrochim. Acta A 2001, 57, 2593–2598; https://doi.org/10.1016/s1386-1425(01)00431-0.Search in Google Scholar PubMed
Ouasri, A.; Jeghnou, H.; Rhandour, A.; Dhamelincourt, M-C.; Dhamelincourt, P.; Mazzah, A.; Roussel, P. Thermal and vibrational studies of propylenediammonium hexachllrobismuthate dihydrate [NH3(CH2)3NH3]3(BiCl6)2.2H2O. J. Raman Spectrosc. 2005, 36, 791–796; https://doi.org/10.1002/jrs.1365.Search in Google Scholar
Ouasri, A.; Jeghnou, H.; Rhandour, A.; Mazzah, A.; Roussel, P. X-ray thermal and vibrational studies of two structural phases transition in hexylenediammonium pentachlorobismuthate NH3(CH2)6NH3BiCl5. J. Mol. Struct. 2012, 1028, 79–87; https://doi.org/10.1016/j.molstruc.2012.05.061.Search in Google Scholar
Ouasri, A.; Jeghnou, H.; Rhandour, A.; Roussel, P. Structures and phases transition in hexylenediammonium pentachlorobismuthate NH3(CH2)6NH3BiCl5. J. Solid State Chem. 2013, 200, 22–29; https://doi.org/10.1016/j.jssc.2013.01.002.Search in Google Scholar
Ouasri, A.; Rhandour, A.; Saadi, M.; El Ammari, L. Catena-Poly[heptylenediammonium [[tetrachloridobismuthate(III)]-μ-chlorido]]. J Acta Cryst. 2013, E69, m437; https://doi.org/10.1107/s1600536813018102.Search in Google Scholar
Ouasri, A.; Lambarki, F.; Rhandour, A.; Zahariev, Ts. K.; Trendafilova, N.; Georgieva, I. Solid state DFT modeling and vibrational characterisation of butylenediammonium and hexylenediammonium hexafluorosilicate NH3(CH2)nNH3SiF6 (n=4 and 6). J. Vib. Spectrosc. 2017, 88C, 83–93; https://doi.org/10.1016/j.vibspec.2016.11.006.Search in Google Scholar
Ouasri, A.; Elyoubi, M. D.; Rhandour, A.; Georgieva, I.; Zahariev, T.s.; Trendafilova, N.; Roussel, P. Crystal structures, DFT modeling study of alkylenediammonium hexachlorostannate compounds NH3(CH2)nNH3SnCl6 (n=3–5). J. Mol. Struct. 2019, 1177, 55–67; https://doi.org/10.1016/j.molstruc.2018.09.040.Search in Google Scholar
Ounalli, C.; Essida, M.; Brunoc, G.; Santoroc, A.; Abid, S.; Aloui, Z. Synthesis, crystallographic structure, DFT computational studies and Hirshfeld surface analysis of a new tetranuclear anionic bromobismuthate(III): [C12H20N2]2Bi4Br16.2H2O. J. Mol. Struct. 2021, 1243, 130916; https://doi.org/10.1016/j.molstruc.2021.130916.Search in Google Scholar
Ouasri, A.; Rhandour, A.; Saadi, M.; El Ammari, L. Crystal structure, Hirshfeld surfaces analysis, infrared-Raman, and UV spectra of octylenediammonium pentachlorobismuthate NH3(CH2)8NH3BiCl5. J. Mol. Spectrosc. 2021, 1241, 130641; https://doi.org/10.1016/j.molstruc.2021.130641.Search in Google Scholar
Ouasri, A.; Rhandour, A.; Zahariev, T.s.; Georgieva, I. Structural characterisation, Hirshfeld surfaces, DSC, vibrational, and optical properties of heptylenediammonium pentachlorobismuthate NH3(CH2)7NH3BiCl5. J. Solid State Chem. 2022, 306, 122805; https://doi.org/10.1016/j.jssc.2021.122805.Search in Google Scholar
Ouerghi, Z.; Roisnel, T.; Fezai, R.; Kefi, R. Physico-chemical characterization, Hirshfeld surface analysis and optoelectric properties of a new hybrid material: tris (2-amino-5- chloropyridinium) hexachlorobismuthate(III). J. Mol. Struct. 2018, 1173, 439–447; https://doi.org/10.1016/j.molstruc.2018.05.084.Search in Google Scholar
Ozorio, M. S.; Oliveira, W. X. C.; Silveira, J. F. R. V.; Nogueira, A. F.; Da Silva, J. L. F. Novel zero-dimensional lead-free bismuth based perovskites: from synthesis to structural and optoelectronic characterization. J. Mater. Adv. 2020, 1, 3439–3448; https://doi.org/10.1039/d0ma00791a.Search in Google Scholar
Ouerghi, Z.; Guionneau, P.; Brandan, S. A.; Temel, E.; Kefi, R. Crystal structure, computational study, optical and vibrational properties of a new luminescent material based on bismuth(III): (C10H28N4)[Bi2Cl10]. J. Solid State Chem. 2021, 303, 122485; https://doi.org/10.1016/j.jssc.2021.122485.Search in Google Scholar
Piecha, A.; Jakubas, R.; Pietraszko, A.; Baran, J. Structural characterization and spectroscopic properties of imidazolium chlorobismuthate (III) [C3H5N2]6[Bi4Cl18]. J. Mol. Struct. 2007, 844–845, 132–139; https://doi.org/10.1016/j.molstruc.2007.03.052.Search in Google Scholar
Pan, D-S.; Chu, K-B.; Zhou, L.-L; Guo, Z.-H.; Song, J.-L. (C5H9N2)[BiI4]: a one-dimensional bismuth-based organic–inorganic hybrid material for fast rhodamine B degradation under dark condition. J. Cluster Sci. 2022, 33, 1205–1210; doi: https://doi.org/10.1007/s10876-021-02055-y(01234567.Search in Google Scholar
Piecha, A.; Białonska, A.; Jakubas, R. Structure and ferroelectric properties of [C 3N2H5]5[Bi2Br11]. J. Phys. Condens. Matter 2008a, 20, 325224–325233; https://doi.org/10.1088/0953-8984/20/32/325224.Search in Google Scholar
Piecha, A.; Białońska, A.; Jakubas, R.; Medycki, W. Structural polymorphism in new organic–inorganic hybrid: pyrazolium bromoantimonates (III) [C3N2H5]6Sb4Br18·2H2O (tetragonal and triclinic forms). Thermal, dielectric and proton magnetic resonance (1H NMR) studies on the tetragonal form. J. Solid State Sci. 2008b, 10, 1469–1479; https://doi.org/10.1016/j.solidstatesciences.2008.02.023.Search in Google Scholar
Piecha, A.; Jakubas, R.; Bator, G.; Baran, J. Infrared investigations of the order–disorder ferroelectric phase transitions in imidazolium halogenobismuthates(III) and halogenoantimonates(III): (C3N2H5)5Bi2Cl11, (C3N2H5)5Bi2Br11 and (C3N2H5)5Sb2Br11. J. Vib. Spectrosc. 2009a, 51(2), 226–237; https://doi.org/10.1016/j.vibspec.2009.05.003.Search in Google Scholar
Piecha, A.; Jakubas, R.; Pietraszko, A.; Baran, J.; Medycki, W.; Kruk, D. Structural characterization, thermal, dielectric, vibrational properties and molecular motions in [C3N2H5]6Bi4Br18. J. Solid State Chem. 2009b, 182, 2949–2960; https://doi.org/10.1016/j.jssc.2009.08.007.Search in Google Scholar
Piecha, A.; Gągor, A.; Jakubas, R.; Ciżman, A.; Janicki, R.; Medycki, W. Ferroelectricity in bis(ethylammonium) pentachlorobismuthate(iii): synthesis, structure, polar and spectroscopic properties. J. Inorg. Chem. Front. 2017, 4(8), 1281–1286.10.1039/C7QI00254HSearch in Google Scholar
Płowaś, I.; Szklarz, P.; Jakubas, R.; Bator, G. Structural, thermal and dielectric studies on the novel solution grown (4-dimethylaminopyridinium) chloroantimonate (III) and chlorobismuthate (III) crystals. J. Mater. Res. Bull. 2011, 46, 1177–1185; https://doi.org/10.1016/j.materresbull.2011.04.013.Search in Google Scholar
Przesławski, J.; Medycki, W.; Piecha, A.; Jakubas, R.; Kruk, D. Dynamics and ferroelectric phase transition of (C3N2H5)5Bi2Br11 by means of ac calorimetry and 1 H NMR relaxometry. J. Chem. Phys. 2013, 410, 19–24; https://doi.org/10.1016/j.chemphys.2012.10.009.Search in Google Scholar
Prassides, K.; Day, P.; Cheetham, A. K. Crystal structures of mixed-valency and mixed-metal salts A2MIII0.5SbV0.5X6 (A = Rb, Cs; M = Sb, Bi, In, Tl, Fe, Rh; X = Cl, Br). A powder neutron diffraction study. J. Inorg. Chem. 1985, 24(4), 545–552; https://doi.org/10.1021/ic00198a023.Search in Google Scholar
Piecha-Bisiorek, A.; Pietraszko, A.; Bator, G.; Jakubas, R. Structural characterization and ferroelectric ordering in (C3N2H5)5Sb2Br11. J. Solid State Chem. 2008, 181, 1155–1166; doi: https://doi.org/10.1016/j.jssc.2008.02.029.Search in Google Scholar
Płowas, I.; Bator, G.; Jakubas, R.; Baran, J. Thermal, dielectric and vibrational properties of alkylammoniums chloroantimonates (III) and chlorobismuthates (III): [C3H5NH3]3[BiCl6] and [C3H5NH3]3[SbCl5].Cl. J. Vib. Spectrosc. 2012, 62, 121–132; https://doi.org/10.1016/j.vibspec.2012.05.015.Search in Google Scholar
Rhandour, A.; Ouasri, A.; Mazzah, A.; Roussel, P. Crystal structure and vibrational studies of butylenediammonium pentachlorobismuthate hydrate NH3(CH2)4NH3BiCl5.H2O. J. Mol. Struct. 2011, 990, 95–101; https://doi.org/10.1016/j.molstruc.2011.01.022.Search in Google Scholar
Rao, A. S.; Baruah, U.; Das, S. K. Stabilization of [BiCl6]3– and [Bi2Cl10]4– with various organic precursors as cations leading to inorganic-organic supramolecular adducts: syntheses, crystal structures and properties of [C5H7N2]3[BiCl6], [C5H7N2] [C5H8N2] [BiCl6] and [C10H10N2]2[Bi2Cl10]. J. Inorganica Chimica Acta 2011, 372(1), 206–212; https://doi.org/10.1016/j.ica.2011.01.109.Search in Google Scholar
Saveleva, M. S.; Eftekhari, K.; Abalymov, A.; Douglas, T. E. L.; Volodkin, D.; Parakhonskiy, B. V.; Skirtach, A. G. Hierarchy of hybrid materials - the place of inorganics–in-organics in it, their composition and applications. J. Front. Chem. 2019, 7, 179; https://doi.org/10.3389/fchem.2019.00179.Search in Google Scholar PubMed PubMed Central
Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 2016a, 8, 14542–14547; https://doi.org/10.1021/acsami.6b02843.Search in Google Scholar PubMed
Singh, B. K.; Chaudhari, M. K.; Pandey, P. C. Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material. J. Lightwave Technol. 2016b, 34, 2431–2438; https://doi.org/10.1109/jlt.2016.2531900.Search in Google Scholar
Szklarz, P.; Smiałkowski, M.; Bator, G.; Jakubas, R.; Cichos, J.; Karbowiak, M.; Medycki, W.; Baran, J. Phase transitions and properties of 0D hybrid iodoantimonate(III) and iodobismuthate(III) semiconducting ferroics: [C(NH2)3]3Bi2I9 and [C(NH2)3]3Sb2I9. J. Mol. Struct. 2021, 1226, 129387; https://doi.org/10.1016/j.molstruc.2020.129387.Search in Google Scholar
Szklarz, P.; Gagor, A.; Jakubas, R.; Zielinski, P.; Piecha-Bisiorek, A.; Cichos, J.; Karbowiak, M.; Bator, G.; Ciżman, A. Lead-free hybrid ferroelectric material based on the formamidine: [NH2CHNH2]3Bi2I9. J. Mater. Chem. C 2019, 1–12; https://doi.org/10.1039/c8tc06458j.Search in Google Scholar
Trigui, W.; Hlel, F. Ferroelectric properties and Raman spectroscopy of the [(C4H9)4N]3Bi2Cl9 compound. J. RSC Advances 2019, 9, 24291; https://doi.org/10.1039/c9ra02577d.Search in Google Scholar PubMed PubMed Central
Trigui, W.; Oueslati, A.; Chaabane, I.; Hlel, F. Synthesis, crystal structure, thermal analysis and dielectric properties of [(C4H9)4N]3Bi2Cl9 compound. J. Solid State Chem. 2015, 227, 10–16; https://doi.org/10.1016/j.jssc.2015.01.034.Search in Google Scholar
Trabelsie, S.; Samet, A.; Dammak, H.; Michaud, F.; Santos, L.; Abid, Y.; Chaabouni, S. Optical properties of a new luminescent hybrid material [C6N2H5]3BiCl6 involving a resonance energy transfer (RET). J. Opt. Mater. 2019, 89, 355–360; https://doi.org/10.1016/j.optmat.2019.01.015.Search in Google Scholar
Usoltsev, A. N.; Petrov, M. D.; Korol’kov, I. V.; Sokolov, M. N.; Blatov, V. A.; Adonin, S. A. Bromide complexes of Sb(III) with the 4, 4’-dimethyl-1, 1’- butanediylbis(pyridinium) cation: unexpected formation of polymorphs with complex cations of various nuclearity. Russ. J. Coord. Chem. 2021, 47(9), 620–625; https://doi.org/10.1134/s107032842108008x.Search in Google Scholar
Wojtaś, M.; Bator, G.; Jakubas, R.; Zaleski, J.; Kosturek, B.; Barand, J. Crystal structure, phase transitions and ferroelastic properties of [(CH3)2NH2]3Bi2Cl9. J. Solid State Chem. 2003, 173, 425–434; https://doi.org/10.1016/s0022-4596(03)00137-3.Search in Google Scholar
Wojtas, M.; Reece, M. J. Dynamics of ferroelectric switching of [H3CNH3]5[Bi2Br11]. J. Appl. Phys. 2012, 111, 024108; https://doi.org/10.1063/1.3677994.Search in Google Scholar
Węcławik, M.; Gągor, A.; Jakubas, R.; Piecha-Bisiorek, A.; Medycki, W.; Baran, J.; Zielińskid, P.; Gałązka, M. Structure–property relationships in hybrid (C3H5N2)3[Sb2I9] and (C3H5N2)3[Bi2I9] isomorphs. J. Inorg. Chem. Front. 2016, 3, 1306; https://doi.org/10.1039/c6qi00260a.Search in Google Scholar
Wang, D. H.; Lin, X. Y.; Wang, Y. K.; Zhang, W. T.; Song, K. Y.; Lin, H.; Li, H. H.; Chen, Z. R. A new iodiplumbate-based hybird constructed from asymmetric Viologen and polyiodides: structure, properties and photocatalytic activity for the degradation of organic dye. Chin. J. Struct. Chem. 2017, 36, 2000–2006.Search in Google Scholar
Wang, Y. K.; Wu, Y. L.; Lin, X. Y.; Wang, D. H.; Zhang, W. T.; Song, K. Y.; Li, H. H.; Chen, Z. R. Halobismuthate/diphenyliodonium hybrids stabilized by secondary hypervalent I(III)···X interactions: structures, optical studies and thermochromisms. J. Mol. Struct. 2018, 1151, 81–87; https://doi.org/10.1016/j.molstruc.2017.09.033.Search in Google Scholar
Zhang, J.; Han, S.; Ji, C.; Zhang, W.; Wang, Y.; Tao, K.; Sun, Z.; Luo, J. [(CH3)3NH]3Bi2I9: a polar lead-free hybrid perovskite-like material as a potential semiconducting absorber. Chem. Eur. J. 2017, 23(68), 17304–17310; https://doi.org/10.1002/chem.201703346.Search in Google Scholar PubMed
Zaleski, J.; Pietraszko, A. Structure at 200 and 298 K and X-ray investigations of the phase transition at 242 K of [NH2(CH3)2]3Sb2Cl9 (DMACA). J. Acta Crystallogr. 1996, B52, 287–295; https://doi.org/10.1107/s0108768195010615.Search in Google Scholar
Zhuang, X.; Wu, Q.; Huang, X.; Li, H.; Lin, T.; Gao, Y. A three-component hybrid templated by asymmetric viologen exhibiting visible-light-driven photocatalytic degradation on dye pollutant in maritime accident seawater. J. Catal. 2021, 11, 640; https://doi.org/10.3390/catal11050640.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review
- Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation
- Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)
- Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior
- Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production
Articles in the same Issue
- Frontmatter
- Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review
- Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation
- Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)
- Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior
- Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production