Home Physical Sciences Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)
Article
Licensed
Unlicensed Requires Authentication

Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)

  • Ali Ouasri ORCID logo EMAIL logo
Published/Copyright: July 7, 2022

Abstract

This paper aims to review recent advances on synthesis, crystal structures, thermal, spectroscopic, phase transitions, optical, dielectric, and catalysis properties of hydrate and anhydrous alkylenediammonium halogenometallates materials (Metal: Bi, Sb, Halogen: Cl, Br, I). These hybrid materials present rich structural diversities based on octahedra forming infinite zero dimensional, 1-dimensional chains, 2-dimensional layers, discrete bioctahedra, and discrete tetramer units. The effect, contribution and importance of hydrogen bonding N–H … X (X: Cl, Br, I) are reviewed in terms of solid state relationship. Particularly, a comparative study is made on hydrate and anyhdrous aliphatic chlorobismuthates with alkylenediammonium +NH3(CH2) n NH3+ based on structural data and V/Z variation with (CH2) n chains (n = 2–8, 12), and variation of BiCl63− Raman frequencies modes versus (CH2) n chains (n = 3–8). Hydrate salts with (n = 3, 12) consist of isolated BiCl63− anions and two water molecules, against others ones with isolated anionic chains [BiCl52−] n or Bi2Cl104− dimers, formed by distorted octahedra BiCl63− sharing corners, vices or edges. The reviewed optical and electronic band gaps suggested interesting compounds with band gaps (1.85–2.4 eV), as suitable materials in optoelectronic properties, photoactive layer in solution-processed photovoltaics, and bio-imaging or photovoltaic applications. It was concluded that iodobismuthate salts have generally the lowest bands gap, compared to that of bromo and chlorobismuthate slats. Catalysis proprieties are reviewed n fast (RhB) degradation under dark conditions for (C4N2H7)4Bi2Cl10, (C5H9N2)BiI4, and {(H-BPA)4·[(BiI6)I13]·2I3} n , and in organic salts synthesis under solvent-free conditions. Herein NH3(CH2) n NH3BiCl5 (n = 5–7) salts were used as highly efficient catalysts, which is a novel tendency in chlorobismuthate researchs in the green chemistry field.


Corresponding author: Ali Ouasri, Laboratoire (ReSIP), Centre Régional des Métiers de l’Education et de la Formation, Madinat Al Irfane, Souissi, BP 6210 Rabat, Morocco, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adonin, S. A.; Rakhmanova, M. I.; Samsonenko, D. G.; Sokolov, M. N.; Fedin, V. P. Hybrid salts of binuclear Bi(III) halide complexes with 1, 2-bis(pyridinium)ethane cation: synthesis, structure and luminescent behavior. J. Inorganica Chimica Acta 2016a, 450, 232–235; https://doi.org/10.1016/j.ica.2016.06.010.Search in Google Scholar

Adonin, S. A.; Sokolova, M. N.; Fedin, V. P. Polynuclear halide complexes of Bi(III): from structural diversity to the new properties. J. Coord. Chem. Rev. 2016b, 312, 1–21; https://doi.org/10.1016/j.ccr.2015.10.010.Search in Google Scholar

Adonin, S. A.; Sokolov, M. N.; Fedin, V. P. Bismuth(III) halide complexes: new structural types and new application areas. Russ. J. Inorg. Chem. 2017, 62(14), 1789–1796; https://doi.org/10.1134/s0036023617140029.Search in Google Scholar

Ahmad, K.; Ansari, S. N.; Natarajan, K.; Mobin, S. M. Design and synthesis of 1D-polymeric chain based [(CH3NH3)3Bi2Cl9]n perovskite: a new light absorber material for lead free perovskite solar cells. J. ACS Appl. Energy Mater. 2018, 1, 2405–2409; https://doi.org/10.1021/acsaem.8b00437.Search in Google Scholar

AlFarhan, K. A.; AlWassil, A. I. Crystal structure of tetrakisdiphenylammonium hexadecachlorotetrabismuthate (III). J. Chem. Crystallogr. 1995, 25, 841–844; https://doi.org/10.1007/bf01671080.Search in Google Scholar

Aurivillius, B.; Stalhandske, C. The crystal structure of a tetranuclear Bismuth(III) complex (C5H5N)6Bi4Br18. J. Acta Chem. Scand. A 1978, 32, 715–719; https://doi.org/10.3891/acta.chem.scand.32a-0715.Search in Google Scholar

Abdel-Aal, S. K.; Abdel-Rahman, A. S.; Gamal, W. M.; Abdel-Kader, M.; Ayoub, H. S.; El-Sherif, A. F.; Kandeel, M. F.; Bozhko, S.; Yakimov, E. E.; Yakimov, E. B. Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic–inorganic hybrid perovskite of [NH3CH2CH(NH3)CH2]BiCl5. J. Acta Cryst. 2019, B75, 1–7.10.1107/S2052520619011314Search in Google Scholar PubMed

Attia, S.; Chaari, N.; Chaabouni, S. Synthesis, crystal structure, and dielectric properties of (3-aminopropyl-imidazolium) pentachlorobismuthate (III) [C6H13N3]BiCl5. J. Cluster Sci. 2015, 26(4), 1343–1359; https://doi.org/10.1007/s10876-014-0818-x.Search in Google Scholar

Adonin, S. A.; Gorokh, I. D.; Novikov, A. S.; Usoltsev, A. N.; Sokolov, M. N.; Fedin, V. P. Tetranuclear anionic bromobismuthate [Bi4Br18]6−: new structural type in halometalate collection. J. Inorg. Chem. Commun. 2019, 103, 72–74; https://doi.org/10.1016/j.inoche.2019.03.014.Search in Google Scholar

Ben Ali, S.; Ferretti, V.; Del Bianco, L.; Spizzo, F.; Belhouchet, M. Structural, vibrational, optical properties and theoretical studies of a new organic-inorganic material: tris-acetoguanaminium hexachlorobismuthate monohydrate. J. Mol. Struct. 2020, 1199, 126986; https://doi.org/10.1016/j.molstruc.2019.126986.Search in Google Scholar

Benzekri, Z.; Sibous, S.; Serrar, H.; Ouasri, A.; Boukhris, S.; Rhandour, A.; Souizi, A. NH3(CH2)5NH3BiCl5: an efficient and recyclable catalyst for the synthesis of benzoxazole, benzimidazole and benzothiazole heterocycles. J. Iran. Chem. Soc. 2018, 15, 2781–2787; doi: https://doi.org/10.1007/s13738-018-1465-1.Search in Google Scholar

Bi, W. H.; Mercier, N. Reversible dynamic isomerism change in the solid state, from Bi4I16 clusters to BiI4 1D chains in l-cystine based hybrids: templating effect of cations in iodobismuthate network formation. J. Chem. Commun. 2008, 5743–5745; https://doi.org/10.1039/b812588k.Search in Google Scholar PubMed

Buikin, P. A.; Rudenko, A. Y.; Ilyukhin, A. B.; Simonenko, N. P.; Yorov, K. E.; Kotov, V. Y. Bromobismuthates of 1, 1’-(1, N-Alkanediyl) bis (picolines): synthesis, thermal stability, crystal structures, and optical properties. Russ. J. Coord. Chem. 2020, 46, 111–118; https://doi.org/10.1134/s1070328420020049.Search in Google Scholar

Bator, G.; Zeegers-Huyskens, T.; Jakubas, R.; Zaleski, J. Structure and phase transitions in guanidinium halogenobismuthates (III). J. Mol. Struct. 2001, 570, 61–74; https://doi.org/10.1016/s0022-2860(01)00490-2.Search in Google Scholar

Bator, G.; Jakubas, R.; Sobczyk, L. Molecular-ionic halogenoantimonates and bismuthates - a rich family of crystals showing attractive properties. J. Crystal Engineering 1999, 538, 459–468.10.1007/978-94-011-4505-3_26Search in Google Scholar

Bigoli, F.; Lanfranchi, M.; Pellinghelli, M. A. The structures of bis (1H+, 5H+-S-methylisothiocarbonohydrazidium) di-μ-chloro-octachlorodibismuthate (III) tetrahydrate and tris (1H+-S-methylisothiocarbonohydrazidium) esachlorobismuthate (III). J. Inorg. Chim. Acta 1984, 90(3), 215–220; https://doi.org/10.1016/s0020-1693(00)80749-5.Search in Google Scholar

Benzekri, Z.; Serrar, H.; Sibous, S.; Boukhris, S.; Ouasri, A.; Rhandour, A.; Souizi, A. Hybrid crystal NH3(CH2)4NH3SiF6 as an efficient catalyst for the synthesis of benzoxazoles, benzimidazoles and benzothiazoles under solvent-free conditions. J. Green Chem. Lett. Rev. E 2016, 9(4), 223–228; https://doi.org/10.1080/17518253.2016.1242662.Search in Google Scholar

Benzekri, Z.; Serrar, H.; Boukhris, S.; Ouasri, A.; Hassikou, A.; Rhandour, A.; Souizi, A. NH3(CH2)6NH3SiF6 catalyzed highly efficient synthesis of benzimidazoles, benzoxazoles, benzothiazoles, quinoxalines and pyrimidin-2-ones/thiones. French-Ukrainian J. Chem. 2017, 5(01), 60–71; https://doi.org/10.17721/fujcv5i1p60-71.Search in Google Scholar

Benetollo, F.; Bombieri, G.; Pra, A. D.; Alonzo, G.; Bertazzi, N. The influence of aromatic cations on the geometries of the Bi(III) halide polyhedra. Synthesis and crystal structures of quinolinium, isoquinolinium and 8-hydroxyquinolinium polychlorobismuthate(III) derivatives. J. Inorg. Chim. Acta 2001, 319(1–2), 49–56; https://doi.org/10.1016/s0020-1693(01)00436-4.Search in Google Scholar

Benzekri, Z.; Sibous, S.; Serrar, H.; Ouasri, A.; Boukhris, S.; Ghailane, R.; Rhandour, A.; Souizi, A. NH3(CH2)5NH3BiCl5 as a new hybrid and efficient catalyst for the synthesis of 1-(benzothiazolylamino) methyl-2-naphtol derivatives under solvent-free conditions. J. Mol. Struct. 2020, 1202, 127308; https://doi.org/10.1016/j.molstruc.2019.127308.Search in Google Scholar

CiŻman, A.; Poprawski, R.; Sieradzki, A. Ferroelectric phase transition in (CH3NH3)5Bi2Cl11 and (CH3NH3)5Bi2Br11 crystals. J. Phase Transit. 2007, 80(1–2), 171–176; https://doi.org/10.1080/01411590601091011.Search in Google Scholar

Chaabouni, S.; Kamoun, S.; Jaud, J. Crystal structure of NH3(CH2)2NH3BiCl5.2H2O. J. Chem. Crystallogr. 1998, 28(3), 209–210; https://doi.org/10.1023/a:1022474327917.10.1023/A:1022474327917Search in Google Scholar

Chu, K-B.; Xie, J-L.; Chen, W-J.; Lu, W-X.; Song, J-L.; Zhang, C. A novel bismuth-based hybrid material with highly activity for fast removal of rhodamine B under dark conditions. J. Polyhedron 2018, 151(1), 146–151; https://doi.org/10.1016/j.poly.2018.05.008.Search in Google Scholar

Dennington, A. J.; Weller, M. T.; Synthesis Structure and optoelectronic properties of hybrid iodobismuthate & iodoantimonate semiconducting materials. J. Dalton Trans. 2018, 47, 3469–3484; https://doi.org/10.1039/c7dt04280a.Search in Google Scholar PubMed

Dennington, A. J.; Weller, M. T. Synthesis and structure of pseudo-three dimensional hybrid iodobismuthate semiconductors. J. Dalton Trans. 2016, 45(44), 17974–17979; https://doi.org/10.1039/c6dt03602c.Search in Google Scholar PubMed

Du Bois, A.; Abriel, W. On the stereochemistry of the lone-pair electrons in AX6 E-systems, VIII statically distorted anion in [H3N(CH2)3NH3]3(BiX6)2(H20)2 with X=Cl. Br. Z. Naturforsch. 1988, 43b, 1003–1009; https://doi.org/10.1515/znb-1988-0815.Search in Google Scholar

Du Bois, A.; Abriel, W. Preparation and crystal Structure of [H3N(CH2)3NH3]SbCl5. Z. Naturforsch. 1989, 44b, 1151–1154; https://doi.org/10.1515/znb-1989-0925.Search in Google Scholar

El-Adel, L.; Ouasri, A.; Zouihri, H.; Rhandour, A. Crystal structure, DSC, TGA, Hirshfeld and Infrared study at ambient temperature of phenylammonium hexachlorobismuthate trihydrate [C6H5NH3]3BiCl6.3H2O. J. Mol. Struct. 2019, 1188, 110–120; https://doi.org/10.1016/j.molstruc.2019.03.090.Search in Google Scholar

El Adel, L.; Ouasri, A.; Rhandour, A.; Saadi, M.; El Ammari, L.; Hajji, L. Crystal structure, DSC, TGA and electrical studies of Bis (1, 12-dodecamethylenediammonium hexachlorobismuthate chloride dihydrate (C12H30N2)2BiCl6.Cl.2H2O. J. Mol. Struct. 2020, 1207, 127806; https://doi.org/10.1016/j.molstruc.2020.127806.Search in Google Scholar

El-Adel, L.; Ouasri, A.; Rhandour, A.; Hajji, L. Raman-Infrared spectroscopy, thermal behavior, dielectric, and UV-fluorescence studies of (C6H5NH3]3BiCl6.3H2O. J. Solid State Commun. 2021, 340, 114541; https://doi.org/10.1016/j.ssc.2021.114541.Search in Google Scholar

Essid, M.; Aloui, Z.; Rzaigui, M.; Marouani, H. Synthesis, crystal structure and IR spectroscopy of a new 2-methylpiperazine-1, 4-diium pentachlorobismuthate (III) monohydrate: [C5H14N2]BiCl5.H2O. J. Adv. Chem. 2014, 10(4), 2592–2600.Search in Google Scholar

Essid, M.; Aloui, Z.; Ferretti, V.; Abid, S.; Lefebvre, F.; Rzaigui, M.; Ben Nasr, C. Crystal structure, Hirshfeld surface and spectroscopic studies of the noncentrosymmetric Bi(III) halide complex: [C8H12N]3BiCl6. J. Inorg. Chim. Acta. 2017, 457, 122–129; https://doi.org/10.1016/j.ica.2016.12.012.Search in Google Scholar

Essalhi, R.; Abdelbaky, M. S. M.; Elleuch, S.; Zouari, F.; García-Granda, S. Crystal structure, Hirshfield surface analysis, thermal and DFT investigation accomplished with photoluminescence study of bis (N, N-diethylethylendiammonium) decabromodiantimoinate (III). J. Mol. Struct. 2020, 1221, 128828; https://doi.org/10.1016/j.molstruc.2020.128828.Search in Google Scholar

Fabian, D. M.; Ardo, S. Hybrid organic–inorganic solar cells based on bismuth iodide and 1, 6-hexanediammonium dication. J. Mater. Chem. A 2016, 6837–6841; https://doi.org/10.1039/c6ta00517a.Search in Google Scholar

Ferjani, H.; Boughzala, H. New quasi-one-dimensional organic-inorganic hybrid material: 1,3-Bis(4-piperidinium) propane pentachlorobismuthate(III) synthesis, crystal structure, and spectroscopic studies. J. Mater. 2014, 2014, 253602; doi: https://doi.org/10.1155/2014/253602.Search in Google Scholar

Ferjani, H.; Chebbi, H.; Fettouhi, M. One-Dimensional Organic-Inorganic Material (C6H9N2)2BiCl5: from synthesis to structural, spectroscopic, and electronic characterizations. Int. J. Mol. Sci. 2021, 22, 2030; https://doi.org/10.3390/ijms22042030.Search in Google Scholar PubMed PubMed Central

Goforth, A. M.; Peterson, L. Jr.; Smith, M. D.; zur Loye, H.-C. Syntheses and crystal structures of several novel alkylammonium iodobismuthate materials containing the 1, 3-bis-(4-piperidinium) propane cation. J. Solid State Chem. 2005, 178, 3529–3540; https://doi.org/10.1016/j.jssc.2005.09.010.Search in Google Scholar

Ghali, M.; Aloui, Z.; Hassini, I.; Akriche, S.; Rzaigui, M. Synthesis, crystal structure, Hirshfeld surface analysis, optical and antioxidant properties of the binuclear complex [C5H14N2]2Bi2Br10.4H2O. J. Mol. Struct. 2020, 1226, 129252; https://doi.org/10.1016/j.molstruc.2020.129252.Search in Google Scholar

Gargouri, A.; Chaaboun, S.; Bensalah, A. Structure cristalline, calorimétrie différentielle en balayage et études diélectriques dans NH3(CH2)5NH3BiCl5. J. Annales de Chimie 2005, 30(1), 55–65.Search in Google Scholar

Goforth, A. M.; Smith, M. D.; Peterson, L.Jr.; zur Loye, H. -C. Preparation and characterization of novel inorganic-organic hybrid materials containing rare, mixed-halide anions of bismuth(III). J. Inorg. Chem. 2004, 43, 7042–7049; https://doi.org/10.1021/ic049212d.Search in Google Scholar PubMed

Garcia, M. D.; Marti-Rujas, J.; Metrangolo, P.; Peinador, C.; Pilati, T.; Resnati, G.; Terraneo, G.; Ursini, M. Dimensional caging of polyiodides: cation-templated synthesis using bipyridinium salts. J. CrystEngComm 2011, 13, 4411–4416; https://doi.org/10.1039/c0ce00860e.Search in Google Scholar

Hajji, R.; Oueslati, A.; Errien, N.; Hlel, F. Synthesis, crystal structure, thermal and dielectric properties of bis(2, 4-diammonium toluene) decachlorodibismuthate(III) tetrahydrate [C7H12N2]2Bi2Cl10.4H2O. J. Polyhedron 2014, 79(5), 97–103; https://doi.org/10.1016/j.poly.2014.04.062.Search in Google Scholar

Hamdi, M.; Karoui, S.; Oueslati, A.; Kamoun, S.; Hlel, F. Synthesis, crystal structure and dielectric properties of the new organic-inorganic hybrid compound [C6H10N2]7[Bi2Cl11]2.4[Cl]. J. Mol. Struct. 2018, 1154, 516–523; https://doi.org/10.1016/j.molstruc.2017.10.063.Search in Google Scholar

Hu, Y. Q.; Hui, H. Y.; Lin, W. Q.; Wen, H. Q.; Yang, D. S.; Feng, G. D. Crystal and band-gap engineering of one-dimensional antimony/bismuth-based organic–inorganic hybrids. J. Inorg. Chem. 2019, 58, 16346–16353; https://doi.org/10.1021/acs.inorgchem.9b01439.Search in Google Scholar PubMed

Jakubas, R.; Gagor, A.; Winiarski, M. J.; Ptak, M.; Piecha-Bisiorek, A.; Cizman, A. Ferroelectricity in ethylammonium bismuth-Based organic-inorganic hybrid: (C2H5NH3)2[BiBr5]. J. Inorg. Chem. 2020, 59, 3417–3427; https://doi.org/10.1021/acs.inorgchem.9b03193.Search in Google Scholar PubMed

Józków, J.; Jakubas, R.; Bator, G.; Pietraszko, A. Ferroelectric properties of (C5H5NH)5Bi2Br11. J. Chem. Phys. 2001, 114, 7239–7246; https://doi.org/10.1063/1.1349897.Search in Google Scholar

Jeghnou, H.; Ouasri, A.; Rhandour, A.; Dhamelincourt, M. C.; Dhamelincourt, P.; Mazzah, A.; Roussel, P. Structural phase transition in NH3(CH2)5NH3BiCl5: thermal and vibrational studies. J. Raman Spectrosc. 2005, 36, 1023–1028; https://doi.org/10.1002/jrs.1400.Search in Google Scholar

James, Z.; Cai, Y.; Vaqueiro, P. Crystal structure of (C9H17N2)3[Bi2I9]. J. Acta Cryst 2021, 77, 899–902.10.1107/S2056989021007799Search in Google Scholar PubMed PubMed Central

Jakubas, R.; Piecha, A.; Pietraszko, A.; Bator, G. Structure and ferroelectric properties of (C3N2H5)5Bi2Cl11. J. Phys. Rev. 2005, B72(10), 104107.Search in Google Scholar

Jiang, J.; Zhang, L. Z.; Li, H.; He, W. W.; Yin, J. J. Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. J. Nanoscale 2013, 5, 10573–10581; https://doi.org/10.1039/c3nr03597b.Search in Google Scholar PubMed

Kahouli, K.; Kahouli, A.; Khirouni, K.; Chaabouni, S. Crystal structure, thermal studies, vibrational properties, atomic Hirshfeld surface, and electrical and dielectric studies of [C9H14N]3BiCl6 single crystal. J. Mol. Struct. 2020, 1199, 126944–126955; https://doi.org/10.1016/j.molstruc.2019.126944.Search in Google Scholar

Kotov, V. Yu.; Buikin, P. A.; Ilyukhin, A. B.; Korlyukov, A. A.; Dorovatovskii, P. V. Synthesis and first-principles study of structural, electronic and optical properties of tetragonal hybrid halobismuthates [Py2(XK)]2Bi2Br10-xIx. New J. Chem. 2021, 45, 18349–18357; doi: https://doi.org/10.1039/d1nj02390j.Search in Google Scholar

Krautscheid, H. Synthese und Kristallstrukturen von (Ph4P)4[Bi8I28], (nBu4N)[Bi2I7] und (Et3PhN)2[Bi3I11]-iodobismutate mit isolierten bzw. Polymeren Anionen. Z. Anorg. Allg. Chem. 1995, 621, 2049; https://doi.org/10.1002/zaac.19956211212.Search in Google Scholar

Lambarki, F.; Ouasri, A.; Zouihri, H.; Rhandour, A. Crystal structure, Hirshfeld and vibrational study at ambient temperature of propylammonium pentachlorobismuthate [n-C3H7NH3]2BiCl5 (III). J. Mol. Struct. 2017, 1142, 275–284; https://doi.org/10.1016/j.molstruc.2017.04.031.Search in Google Scholar

Latanowicz, L.; Medycki, W.; Jakubas, R. Complex molecular dynamics of (CH3NH3)5Bi2Br11 (MAPBB) protons from NMR relaxation and second moment of NMR spectrum. J. Magn. Reson. 2011, 211(2), 207–216; https://doi.org/10.1016/j.jmr.2011.05.016.Search in Google Scholar PubMed

Li, J. Y.; Zhao, C. X.; Lan, F. J.; Chen, F.; Teng, C. L.; Yan, Q. Y.; Tang, J. T. An efficient CeGeO4 catalyst for degradation of organic dyes without light irradiation at room temperature. J. Catal. Commun. 2016, 77(5), 26–31; https://doi.org/10.1016/j.catcom.2016.01.011.Search in Google Scholar

Moskwa, M.; Bator, G.; Rok, M.; Medycki, W.; Miniewicz, A.; Jakubas, R. Investigations of organic-inorganic hybrids based on homopiperidinium cation with haloantimonates(III) and halobismuthates (III). Crystal structures, reversible phase transitions, semiconducting and molecular dynamic properties. J. Dalton Trans. 2018, 47, 13507–13522; doi: https://doi.org/10.1039/c8dt03121e.Search in Google Scholar PubMed

Mahjoor, P.; Latturner, S. E. Synthesis and Structural characterization of [bpyr]4[V4O4Cl12] and [bpyr]4[Bi4Cl16] grown in ionic liquid [bpyr] [AlCl4] (bpyr = 1-Butylpyridinium). J. Cryst. Growth Des. 2009, 9, 1385–1389; https://doi.org/10.1021/cg800625w.Search in Google Scholar

Mousdis, G. A.; Papavassiliou, G. C.; Terzis, A.; Raptopoulou, C. P. Preparation, structures and optical properties of H3N(CH2)6NH3BiX5 (X: I, Cl) and H3N(CH2)6NH3SbX5 (X: I, Br). Z. Naturforsch. 1998, 53b, 927–932; https://doi.org/10.1515/znb-1998-0825.Search in Google Scholar

Mitzi, D. B.; Brock, P. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. J. Inorg. Chem. 2001, 40(9), 2096–2104; https://doi.org/10.1021/ic000622l.Search in Google Scholar PubMed

Mencel, K.; Kinzhybalo, V.; Jakubas, R.; Zaręba, J. K.; Szklarz, P.; Durlak, P.; Drozd, M.; Piecha-Bisiorek, A. 0D bismuth(III)-Based hybrid ferroelectric: tris(acetamidinium) hexabromobismuthate(III). J. Chem. Mater. 2021, 33(22), 8591–8601; https://doi.org/10.1021/acs.chemmater.1c01266.Search in Google Scholar

Mencel, K.; Gągor, A.; Jakubas, R.; Ciżman, A.; Medycki, W.; Zaręba, J. K.; Piecha-Bisiorek, A. Ferroelectricity in lead free organic-inorganic 0D hybrid: formamidinium bromoantimonate (III). J. Mater. Chem. C 2020, 8, 5025–5028; doi: https://doi.org/10.1039/D0TC00168F.Search in Google Scholar

Moyet, M. A.; Kanan, S. M.; Varney, H. M.; Abu-Farha, N.; Gold, D. B.; Lain, W. J.; Pike, R. D.; Patterson, H. H. Synthesis and characterization of (RPh3P)3[Bi3I12] (R=Me, Ph) iodobismuthate complexes for photocatalytic degradation of organic pollutants. J. Res. Chem. Intermed. 2019, 45, 5919–5933; https://doi.org/10.1007/s11164-019-04010-z.Search in Google Scholar

Ouasri, A.; Rhandour, A. Structural, vibrational, thermal, phase transitions, and properties of alkylammonium and alkylenediammonium hexafluorosilicates. Russ. J. Coord. Chem. 2021, 47, 502–517; doi: https://doi.org/10.1134/s1070328421070046.Search in Google Scholar

Ouasri, A.; Elyoubi, M. D.; Guedira, T.; Rhandour, A.; Mhiri, T.; Daoud, A. Synthesis, DTA, IR and Raman spectra of penthylenediammonium hexachlorostannate NH3(CH2)5NH3SnCl6. J. Spectrochim. Acta A 2001, 57, 2593–2598; https://doi.org/10.1016/s1386-1425(01)00431-0.Search in Google Scholar PubMed

Ouasri, A.; Jeghnou, H.; Rhandour, A.; Dhamelincourt, M-C.; Dhamelincourt, P.; Mazzah, A.; Roussel, P. Thermal and vibrational studies of propylenediammonium hexachllrobismuthate dihydrate [NH3(CH2)3NH3]3(BiCl6)2.2H2O. J. Raman Spectrosc. 2005, 36, 791–796; https://doi.org/10.1002/jrs.1365.Search in Google Scholar

Ouasri, A.; Jeghnou, H.; Rhandour, A.; Mazzah, A.; Roussel, P. X-ray thermal and vibrational studies of two structural phases transition in hexylenediammonium pentachlorobismuthate NH3(CH2)6NH3BiCl5. J. Mol. Struct. 2012, 1028, 79–87; https://doi.org/10.1016/j.molstruc.2012.05.061.Search in Google Scholar

Ouasri, A.; Jeghnou, H.; Rhandour, A.; Roussel, P. Structures and phases transition in hexylenediammonium pentachlorobismuthate NH3(CH2)6NH3BiCl5. J. Solid State Chem. 2013, 200, 22–29; https://doi.org/10.1016/j.jssc.2013.01.002.Search in Google Scholar

Ouasri, A.; Rhandour, A.; Saadi, M.; El Ammari, L. Catena-Poly[heptylenediammonium [[tetrachloridobismuthate(III)]-μ-chlorido]]. J Acta Cryst. 2013, E69, m437; https://doi.org/10.1107/s1600536813018102.Search in Google Scholar

Ouasri, A.; Lambarki, F.; Rhandour, A.; Zahariev, Ts. K.; Trendafilova, N.; Georgieva, I. Solid state DFT modeling and vibrational characterisation of butylenediammonium and hexylenediammonium hexafluorosilicate NH3(CH2)nNH3SiF6 (n=4 and 6). J. Vib. Spectrosc. 2017, 88C, 83–93; https://doi.org/10.1016/j.vibspec.2016.11.006.Search in Google Scholar

Ouasri, A.; Elyoubi, M. D.; Rhandour, A.; Georgieva, I.; Zahariev, T.s.; Trendafilova, N.; Roussel, P. Crystal structures, DFT modeling study of alkylenediammonium hexachlorostannate compounds NH3(CH2)nNH3SnCl6 (n=3–5). J. Mol. Struct. 2019, 1177, 55–67; https://doi.org/10.1016/j.molstruc.2018.09.040.Search in Google Scholar

Ounalli, C.; Essida, M.; Brunoc, G.; Santoroc, A.; Abid, S.; Aloui, Z. Synthesis, crystallographic structure, DFT computational studies and Hirshfeld surface analysis of a new tetranuclear anionic bromobismuthate(III): [C12H20N2]2Bi4Br16.2H2O. J. Mol. Struct. 2021, 1243, 130916; https://doi.org/10.1016/j.molstruc.2021.130916.Search in Google Scholar

Ouasri, A.; Rhandour, A.; Saadi, M.; El Ammari, L. Crystal structure, Hirshfeld surfaces analysis, infrared-Raman, and UV spectra of octylenediammonium pentachlorobismuthate NH3(CH2)8NH3BiCl5. J. Mol. Spectrosc. 2021, 1241, 130641; https://doi.org/10.1016/j.molstruc.2021.130641.Search in Google Scholar

Ouasri, A.; Rhandour, A.; Zahariev, T.s.; Georgieva, I. Structural characterisation, Hirshfeld surfaces, DSC, vibrational, and optical properties of heptylenediammonium pentachlorobismuthate NH3(CH2)7NH3BiCl5. J. Solid State Chem. 2022, 306, 122805; https://doi.org/10.1016/j.jssc.2021.122805.Search in Google Scholar

Ouerghi, Z.; Roisnel, T.; Fezai, R.; Kefi, R. Physico-chemical characterization, Hirshfeld surface analysis and optoelectric properties of a new hybrid material: tris (2-amino-5- chloropyridinium) hexachlorobismuthate(III). J. Mol. Struct. 2018, 1173, 439–447; https://doi.org/10.1016/j.molstruc.2018.05.084.Search in Google Scholar

Ozorio, M. S.; Oliveira, W. X. C.; Silveira, J. F. R. V.; Nogueira, A. F.; Da Silva, J. L. F. Novel zero-dimensional lead-free bismuth based perovskites: from synthesis to structural and optoelectronic characterization. J. Mater. Adv. 2020, 1, 3439–3448; https://doi.org/10.1039/d0ma00791a.Search in Google Scholar

Ouerghi, Z.; Guionneau, P.; Brandan, S. A.; Temel, E.; Kefi, R. Crystal structure, computational study, optical and vibrational properties of a new luminescent material based on bismuth(III): (C10H28N4)[Bi2Cl10]. J. Solid State Chem. 2021, 303, 122485; https://doi.org/10.1016/j.jssc.2021.122485.Search in Google Scholar

Piecha, A.; Jakubas, R.; Pietraszko, A.; Baran, J. Structural characterization and spectroscopic properties of imidazolium chlorobismuthate (III) [C3H5N2]6[Bi4Cl18]. J. Mol. Struct. 2007, 844–845, 132–139; https://doi.org/10.1016/j.molstruc.2007.03.052.Search in Google Scholar

Pan, D-S.; Chu, K-B.; Zhou, L.-L; Guo, Z.-H.; Song, J.-L. (C5H9N2)[BiI4]: a one-dimensional bismuth-based organic–inorganic hybrid material for fast rhodamine B degradation under dark condition. J. Cluster Sci. 2022, 33, 1205–1210; doi: https://doi.org/10.1007/s10876-021-02055-y(01234567.Search in Google Scholar

Piecha, A.; Białonska, A.; Jakubas, R. Structure and ferroelectric properties of [C 3N2H5]5[Bi2Br11]. J. Phys. Condens. Matter 2008a, 20, 325224–325233; https://doi.org/10.1088/0953-8984/20/32/325224.Search in Google Scholar

Piecha, A.; Białońska, A.; Jakubas, R.; Medycki, W. Structural polymorphism in new organic–inorganic hybrid: pyrazolium bromoantimonates (III) [C3N2H5]6Sb4Br18·2H2O (tetragonal and triclinic forms). Thermal, dielectric and proton magnetic resonance (1H NMR) studies on the tetragonal form. J. Solid State Sci. 2008b, 10, 1469–1479; https://doi.org/10.1016/j.solidstatesciences.2008.02.023.Search in Google Scholar

Piecha, A.; Jakubas, R.; Bator, G.; Baran, J. Infrared investigations of the order–disorder ferroelectric phase transitions in imidazolium halogenobismuthates(III) and halogenoantimonates(III): (C3N2H5)5Bi2Cl11, (C3N2H5)5Bi2Br11 and (C3N2H5)5Sb2Br11. J. Vib. Spectrosc. 2009a, 51(2), 226–237; https://doi.org/10.1016/j.vibspec.2009.05.003.Search in Google Scholar

Piecha, A.; Jakubas, R.; Pietraszko, A.; Baran, J.; Medycki, W.; Kruk, D. Structural characterization, thermal, dielectric, vibrational properties and molecular motions in [C3N2H5]6Bi4Br18. J. Solid State Chem. 2009b, 182, 2949–2960; https://doi.org/10.1016/j.jssc.2009.08.007.Search in Google Scholar

Piecha, A.; Gągor, A.; Jakubas, R.; Ciżman, A.; Janicki, R.; Medycki, W. Ferroelectricity in bis(ethylammonium) pentachlorobismuthate(iii): synthesis, structure, polar and spectroscopic properties. J. Inorg. Chem. Front. 2017, 4(8), 1281–1286.10.1039/C7QI00254HSearch in Google Scholar

Płowaś, I.; Szklarz, P.; Jakubas, R.; Bator, G. Structural, thermal and dielectric studies on the novel solution grown (4-dimethylaminopyridinium) chloroantimonate (III) and chlorobismuthate (III) crystals. J. Mater. Res. Bull. 2011, 46, 1177–1185; https://doi.org/10.1016/j.materresbull.2011.04.013.Search in Google Scholar

Przesławski, J.; Medycki, W.; Piecha, A.; Jakubas, R.; Kruk, D. Dynamics and ferroelectric phase transition of (C3N2H5)5Bi2Br11 by means of ac calorimetry and 1 H NMR relaxometry. J. Chem. Phys. 2013, 410, 19–24; https://doi.org/10.1016/j.chemphys.2012.10.009.Search in Google Scholar

Prassides, K.; Day, P.; Cheetham, A. K. Crystal structures of mixed-valency and mixed-metal salts A2MIII0.5SbV0.5X6 (A = Rb, Cs; M = Sb, Bi, In, Tl, Fe, Rh; X = Cl, Br). A powder neutron diffraction study. J. Inorg. Chem. 1985, 24(4), 545–552; https://doi.org/10.1021/ic00198a023.Search in Google Scholar

Piecha-Bisiorek, A.; Pietraszko, A.; Bator, G.; Jakubas, R. Structural characterization and ferroelectric ordering in (C3N2H5)5Sb2Br11. J. Solid State Chem. 2008, 181, 1155–1166; doi: https://doi.org/10.1016/j.jssc.2008.02.029.Search in Google Scholar

Płowas, I.; Bator, G.; Jakubas, R.; Baran, J. Thermal, dielectric and vibrational properties of alkylammoniums chloroantimonates (III) and chlorobismuthates (III): [C3H5NH3]3[BiCl6] and [C3H5NH3]3[SbCl5].Cl. J. Vib. Spectrosc. 2012, 62, 121–132; https://doi.org/10.1016/j.vibspec.2012.05.015.Search in Google Scholar

Rhandour, A.; Ouasri, A.; Mazzah, A.; Roussel, P. Crystal structure and vibrational studies of butylenediammonium pentachlorobismuthate hydrate NH3(CH2)4NH3BiCl5.H2O. J. Mol. Struct. 2011, 990, 95–101; https://doi.org/10.1016/j.molstruc.2011.01.022.Search in Google Scholar

Rao, A. S.; Baruah, U.; Das, S. K. Stabilization of [BiCl6]3– and [Bi2Cl10]4– with various organic precursors as cations leading to inorganic-organic supramolecular adducts: syntheses, crystal structures and properties of [C5H7N2]3[BiCl6], [C5H7N2] [C5H8N2] [BiCl6] and [C10H10N2]2[Bi2Cl10]. J. Inorganica Chimica Acta 2011, 372(1), 206–212; https://doi.org/10.1016/j.ica.2011.01.109.Search in Google Scholar

Saveleva, M. S.; Eftekhari, K.; Abalymov, A.; Douglas, T. E. L.; Volodkin, D.; Parakhonskiy, B. V.; Skirtach, A. G. Hierarchy of hybrid materials - the place of inorganics–in-organics in it, their composition and applications. J. Front. Chem. 2019, 7, 179; https://doi.org/10.3389/fchem.2019.00179.Search in Google Scholar PubMed PubMed Central

Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 2016a, 8, 14542–14547; https://doi.org/10.1021/acsami.6b02843.Search in Google Scholar PubMed

Singh, B. K.; Chaudhari, M. K.; Pandey, P. C. Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material. J. Lightwave Technol. 2016b, 34, 2431–2438; https://doi.org/10.1109/jlt.2016.2531900.Search in Google Scholar

Szklarz, P.; Smiałkowski, M.; Bator, G.; Jakubas, R.; Cichos, J.; Karbowiak, M.; Medycki, W.; Baran, J. Phase transitions and properties of 0D hybrid iodoantimonate(III) and iodobismuthate(III) semiconducting ferroics: [C(NH2)3]3Bi2I9 and [C(NH2)3]3Sb2I9. J. Mol. Struct. 2021, 1226, 129387; https://doi.org/10.1016/j.molstruc.2020.129387.Search in Google Scholar

Szklarz, P.; Gagor, A.; Jakubas, R.; Zielinski, P.; Piecha-Bisiorek, A.; Cichos, J.; Karbowiak, M.; Bator, G.; Ciżman, A. Lead-free hybrid ferroelectric material based on the formamidine: [NH2CHNH2]3Bi2I9. J. Mater. Chem. C 2019, 1–12; https://doi.org/10.1039/c8tc06458j.Search in Google Scholar

Trigui, W.; Hlel, F. Ferroelectric properties and Raman spectroscopy of the [(C4H9)4N]3Bi2Cl9 compound. J. RSC Advances 2019, 9, 24291; https://doi.org/10.1039/c9ra02577d.Search in Google Scholar PubMed PubMed Central

Trigui, W.; Oueslati, A.; Chaabane, I.; Hlel, F. Synthesis, crystal structure, thermal analysis and dielectric properties of [(C4H9)4N]3Bi2Cl9 compound. J. Solid State Chem. 2015, 227, 10–16; https://doi.org/10.1016/j.jssc.2015.01.034.Search in Google Scholar

Trabelsie, S.; Samet, A.; Dammak, H.; Michaud, F.; Santos, L.; Abid, Y.; Chaabouni, S. Optical properties of a new luminescent hybrid material [C6N2H5]3BiCl6 involving a resonance energy transfer (RET). J. Opt. Mater. 2019, 89, 355–360; https://doi.org/10.1016/j.optmat.2019.01.015.Search in Google Scholar

Usoltsev, A. N.; Petrov, M. D.; Korol’kov, I. V.; Sokolov, M. N.; Blatov, V. A.; Adonin, S. A. Bromide complexes of Sb(III) with the 4, 4’-dimethyl-1, 1’- butanediylbis(pyridinium) cation: unexpected formation of polymorphs with complex cations of various nuclearity. Russ. J. Coord. Chem. 2021, 47(9), 620–625; https://doi.org/10.1134/s107032842108008x.Search in Google Scholar

Wojtaś, M.; Bator, G.; Jakubas, R.; Zaleski, J.; Kosturek, B.; Barand, J. Crystal structure, phase transitions and ferroelastic properties of [(CH3)2NH2]3Bi2Cl9. J. Solid State Chem. 2003, 173, 425–434; https://doi.org/10.1016/s0022-4596(03)00137-3.Search in Google Scholar

Wojtas, M.; Reece, M. J. Dynamics of ferroelectric switching of [H3CNH3]5[Bi2Br11]. J. Appl. Phys. 2012, 111, 024108; https://doi.org/10.1063/1.3677994.Search in Google Scholar

Węcławik, M.; Gągor, A.; Jakubas, R.; Piecha-Bisiorek, A.; Medycki, W.; Baran, J.; Zielińskid, P.; Gałązka, M. Structure–property relationships in hybrid (C3H5N2)3[Sb2I9] and (C3H5N2)3[Bi2I9] isomorphs. J. Inorg. Chem. Front. 2016, 3, 1306; https://doi.org/10.1039/c6qi00260a.Search in Google Scholar

Wang, D. H.; Lin, X. Y.; Wang, Y. K.; Zhang, W. T.; Song, K. Y.; Lin, H.; Li, H. H.; Chen, Z. R. A new iodiplumbate-based hybird constructed from asymmetric Viologen and polyiodides: structure, properties and photocatalytic activity for the degradation of organic dye. Chin. J. Struct. Chem. 2017, 36, 2000–2006.Search in Google Scholar

Wang, Y. K.; Wu, Y. L.; Lin, X. Y.; Wang, D. H.; Zhang, W. T.; Song, K. Y.; Li, H. H.; Chen, Z. R. Halobismuthate/diphenyliodonium hybrids stabilized by secondary hypervalent I(III)···X interactions: structures, optical studies and thermochromisms. J. Mol. Struct. 2018, 1151, 81–87; https://doi.org/10.1016/j.molstruc.2017.09.033.Search in Google Scholar

Zhang, J.; Han, S.; Ji, C.; Zhang, W.; Wang, Y.; Tao, K.; Sun, Z.; Luo, J. [(CH3)3NH]3Bi2I9: a polar lead-free hybrid perovskite-like material as a potential semiconducting absorber. Chem. Eur. J. 2017, 23(68), 17304–17310; https://doi.org/10.1002/chem.201703346.Search in Google Scholar PubMed

Zaleski, J.; Pietraszko, A. Structure at 200 and 298 K and X-ray investigations of the phase transition at 242 K of [NH2(CH3)2]3Sb2Cl9 (DMACA). J. Acta Crystallogr. 1996, B52, 287–295; https://doi.org/10.1107/s0108768195010615.Search in Google Scholar

Zhuang, X.; Wu, Q.; Huang, X.; Li, H.; Lin, T.; Gao, Y. A three-component hybrid templated by asymmetric viologen exhibiting visible-light-driven photocatalytic degradation on dye pollutant in maritime accident seawater. J. Catal. 2021, 11, 640; https://doi.org/10.3390/catal11050640.Search in Google Scholar

Received: 2022-04-15
Accepted: 2022-06-24
Published Online: 2022-07-07
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0012/html
Scroll to top button