Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production
-
Yetzin Rodríguez Mejía
, Fernando Romero Romero
, Murali Venkata Basavanag Unnamatla
, Maria Fernanda Ballesteros Rivas
Abstract
As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
Acknowledgements
YRM acknowledges CONACYT for the support granted with CVU number 745564.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
Aarthy, M.; Saravanan, P.; Gowthaman, M. K.; Rose, C.; Kamini, N. R. Enzymatic transesterification for production of biodiesel using yeast lipases: an overview. Chem. Eng. Res. Des. 2014, 92(8), 1591–1601. https://doi.org/10.1016/j.cherd.2014.04.008.Search in Google Scholar
Abdelmigeed, M. O.; Al-Sakkari, E. G.; Hefney, M. S.; Ismail, F. M.; Abdelghany, A.; Ahmed, T. S.; Ismail, I. M. Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production. Renew. Energy 2021, 165, 405–419. https://doi.org/10.1016/j.renene.2020.11.018.Search in Google Scholar
Abou-Elyazed, A. S.; Ye, G.; Sun, Y.; El-Nahas, A. M. A series of UiO-66(Zr)-Structured materials with defects as heterogeneous catalysts for biodiesel production. Ind. Eng. Chem. Res. 2019, 58(48), 21961–21971. https://doi.org/10.1021/acs.iecr.9b04344.Search in Google Scholar
Abrahams, B. F.; Hoskins, B. F.; Robson, R. A new type of infinite 3D polymeric network containing 4-connected, peripherally linked metalloporphyrin building blocks. J. Am. Chem. Soc. 1991, 113(9), 3606–3607. https://doi.org/10.1021/ja00009a065.Search in Google Scholar
De Abreu, W. C.; De Moura, C. V. R.; Costa, J. C. S.; De Moura, E. M. Strontium and nickel heterogeneous catalysts for biodiesel production from macaw oil. J. Braz. Chem. Soc. 2017, 28(2), 319–327. https://doi.org/10.5935/0103-5053.20160181.Search in Google Scholar
Adnan, M.; Li, K.; Wang, J.; Xu, L.; Yan, Y. Hierarchical ZIF-8 toward immobilizing Burkholderia cepacia lipase for application in biodiesel preparation. Int. J. Mol. Sci. 2018a, 19(5), 1424; https://doi.org/10.3390/ijms19051424.Search in Google Scholar PubMed PubMed Central
Adnan, M.; Li, K.; Xu, L.; Yan, Y. X-shaped Zif-8 for immobilization Rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts 2018b, 8(3), 1–14. https://doi.org/10.3390/catal8030096.Search in Google Scholar
Álvarez-Mateos, P.; García-Martín, J. F.; Guerrero-Vacas, F. J.; Naranjo-Calderón, C.; Barrios-Sánchez, C. C.; Pérez-Camino, M. C. Valorization of a high-acidity residual oil generated in the waste cooking oils recycling industries. Grasas Aceites 2019, 70(4), 1–9. https://doi.org/10.3989/gya.1179182.Search in Google Scholar
Amini, Z.; Ilham, Z.; Ong, H. C.; Mazaheri, H.; Chen, W. H. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 2017a, 141, 339–353. https://doi.org/10.1016/j.enconman.2016.09.049.Search in Google Scholar
Amini, Z.; Ong, H. C.; Harrison, M. D.; Kusumo, F.; Mazaheri, H.; Ilham, Z. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers. Manag. 2017b, 132(9), 82–90. https://doi.org/10.1016/j.enconman.2016.11.017.Search in Google Scholar
Amouhadi, E.; Fazaeli, R.; Aliyan, H. Biodiesel production via esterification of oleic acid catalyzed by MnO2@Mn(btc) as a novel and heterogeneous catalyst. J. Chin. Chem. Soc. 2019, 66(6), 608–613. https://doi.org/10.1002/jccs.201800288.Search in Google Scholar
Anastopoulos, G.; Zannikou, Y.; Stournas, S.; Kalligeros, S. Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies 2009, 2(2), 362–376. https://doi.org/10.3390/en20200362.Search in Google Scholar
Aransiola, E. F.; Ojumu, T. V.; Oyekola, O. O.; Madzimbamuto, T. F.; Ikhu-Omoregbe, D. I. O. A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 2014, 61, 276–297. https://doi.org/10.1016/j.biombioe.2013.11.014.Search in Google Scholar
Arenas, E.; Villafán-Cáceres, S. M.; Rodríguez-Mejía, Y.; García-Loyola, J. A.; Masera, O.; Sandoval, G. Biodiesel dry purification using unconventional bioadsorbents. Processes 2021, 9(2), 194. https://doi.org/10.3390/pr9020194.Search in Google Scholar
Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: an update. Int. J. Biol. Macromol. 2021, 168(4), 708–721. https://doi.org/10.1016/j.ijbiomac.2020.11.127.Search in Google Scholar PubMed
Atadashi, I. M.; Aroua, M. K.; Aziz, A. A. High quality biodiesel and its diesel engine application: a review. Renew. Sustain. Energy Rev. 2010, 14(7), 1999–2008. https://doi.org/10.1016/j.rser.2010.03.020.Search in Google Scholar
Athar, M.; Zaidi, S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J. Environ. Chem. Eng. 2020, 8(6), 104523. https://doi.org/10.1016/j.jece.2020.104523.Search in Google Scholar
Bartha-Vári, J. H.; Moisă, M. E.; Bencze, L. C.; Irimie, F. D.; Paizs, C.; Toșa, M. I. Efficient biodiesel production catalyzed by nanobioconjugate of lipase from Pseudomonas fluorescens. Molecules 2020, 25(3); https://doi.org/10.3390/molecules25030651.Search in Google Scholar PubMed PubMed Central
Baskar, G.; Aberna Ebenezer Selvakumari, I.; Aiswarya, R. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresour. Technol. 2018, 250, 793–798. https://doi.org/10.1016/j.biortech.2017.12.010.Search in Google Scholar PubMed
Bétard, A.; Fischer, R. A. Metal-organic framework thin films: from fundamentals to applications. Chem. Rev. 2012, 112(2), 1055–1083. https://doi.org/10.1021/cr200167v.Search in Google Scholar PubMed
Björk, E. M.; Militello, M. P.; Tamborini, L. H.; Coneo Rodriguez, R.; Planes, G. A.; Acevedo, D. F.; Moreno, M. S.; Odén, M.; Barbero, C. A. Mesoporous silica and carbon based catalysts for esterification and biodiesel fabrication—the effect of matrix surface composition and porosity. Appl. Catal. Gen. 2017, 533(17), 49–58. https://doi.org/10.1016/j.apcata.2017.01.007.Search in Google Scholar
Borges, M. E.; Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew. Sustain. Energy Rev. 2012, 16(5), 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071.Search in Google Scholar
Boudrant, J.; Woodley, J. M.; Fernandez-Lafuente, R. Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 2020, 90, 66–80. https://doi.org/10.1016/j.procbio.2019.11.026.Search in Google Scholar
Brito, A.; Borges, M. E.; Otero, N. Zeolite Y as a heterogeneous catalyst in biodiesel fuel production from used vegetable oil. Energy Fuel. 2007, 21(6), 3280–3283. https://doi.org/10.1021/ef700455r.Search in Google Scholar
Bustamante, E. L.; Fernández, J. L.; Zamaro, J. M. Influence of the solvent in the synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interface Sci. 2014, 424, 37–43. https://doi.org/10.1016/j.jcis.2014.03.014.Search in Google Scholar PubMed
Cai, F.; Zhang, B. B.; Lin, J.; Zhang, G. Y.; Fang, W. P.; Yang, L. F. CaO as a solid base catalyst for transesterification of soybean oil. Wuli Huaxue Xuebao/Acta Phys. – Chim. Sin. 2008, 24(10), 1817–1823. https://doi.org/10.1021/ef700518h.Search in Google Scholar
Cai, X.; Zhang, M.; Wei, W.; Zhang, Y.; Wang, Z.; Zheng, J. The immobilization of Candida antarctica lipase B by ZIF-8 encapsulation and macroporous resin adsorption: preparation and characterizations. Biotechnol. Lett. 2020, 42(2), 269–276. https://doi.org/10.1007/s10529-019-02771-6.Search in Google Scholar PubMed
Cao, F.; Chen, Y.; Zhai, F.; Li, J.; Wang, J.; Wang, X.; Wang, S.; Zhu, W. Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotechnol. Bioeng. 2008, 101(1), 93–100. https://doi.org/10.1002/bit.21879.Search in Google Scholar PubMed
Cao, Y.; Wu, Z.; Wang, T.; Xiao, Y.; Huo, Q.; Liu, Y. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification. Dalton Trans. 2016, 45(16), 6998–7003. https://doi.org/10.1039/c6dt00677a.Search in Google Scholar PubMed
Casas-Godoy, L.; Duquesne, S.; Bordes, F.; Sandoval, G.; Marty, A. Lipases: an overview. In Lipases and Phospholipases: Methods and Protocols; Sandoval, G., Ed., 2nd ed.; Springer: Hatfield, Hertfordshire AL10 9AB, UK, 2012; pp. 3–30.10.1007/978-1-61779-600-5_1Search in Google Scholar PubMed
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130(42), 13850–13851. https://doi.org/10.1021/ja8057953.Search in Google Scholar PubMed
Chai, F.; Cao, F.; Zhai, F.; Chen, Y.; Wang, X.; Su, Z. Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst. J. Catal. 2007, 245(2), 1057–1065. https://doi.org/10.1016/j.jcat.2006.10.027.Search in Google Scholar
Changmai, B.; Vanlalveni, C.; Ingle, A. P.; Bhagat, R.; Rokhum, L. Widely used catalysts in biodiesel production: a review. RSC Adv. 2020, 10(68), 41625–41679. https://doi.org/10.1039/d0ra07931f.Search in Google Scholar PubMed PubMed Central
Chen, G.; Ying, M.; Li, W. Enzymatic conversion of waste cooking oils into alternative fuel – biodiesel. Appl. Biochem. Biotechnol. 2006, 132(1–3), 911–921. https://doi.org/10.1385/ABAB:132:1:911.10.1385/ABAB:132:1:911Search in Google Scholar PubMed
Chen, D. D.; Yi, X. H.; Zhao, C.; Fu, H.; Wang, P.; Wang, C. C. Polyaniline modified MIL-100(Fe) for enhanced photocatalytic Cr(VI) reduction and tetracycline degradation under white light. Chemosphere 2020, 245, 125659. https://doi.org/10.1016/j.chemosphere.2019.125659.Search in Google Scholar PubMed
Cheng, J.; Qiu, Y.; Huang, R.; Yang, W.; Zhou, J.; Cen, K. Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresour. Technol. 2016, 221, 344–349. https://doi.org/10.1016/j.biortech.2016.09.064.Search in Google Scholar PubMed
Cheong, L. Z.; Wei, Y.; Wang, H.; Wang, Z.; Su, X.; Shen, C. Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification. J. Nanoparticle Res. 2017, 19(8), 280; https://doi.org/10.1007/s11051-017-3979-3.Search in Google Scholar
Chin, L. H.; Hameed, B. H.; Ahmad, A. L. Process optimization for biodiesel production from waste cooking palm oil (Elaeis guineensis) using response surface methodology. Energy Fuel. 2009, 23(2), 1040–1044. https://doi.org/10.1021/ef8007954.Search in Google Scholar
Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud, A. A.; Bats, N. Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. J. Am. Chem. Soc. 2010, 132(35), 12365–12377. https://doi.org/10.1021/ja103365s.Search in Google Scholar PubMed
Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44(19), 6804–6849. https://doi.org/10.1039/c4cs00395k.Search in Google Scholar PubMed
Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]N. Science 1999, 283(February), 1148; https://doi.org/10.1126/science.283.5405.1148.Search in Google Scholar PubMed
Cirujano, F. G.; Corma, A.; Llabrés I Xamena, F. X. Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: synthesis of biodiesel and other compounds of interest. Catal. Today 2015, 257(Part 2), 213–220. https://doi.org/10.1016/j.cattod.2014.08.015.Search in Google Scholar
Coady, D.; Parry, I.; Sears, L.; Shang, B. How large are global fossil fuel subsidies? World Dev. 2017, 91, 11–27. https://doi.org/10.1016/j.worlddev.2016.10.004.Search in Google Scholar
Cong, W.-J.; Nanda, S.; Li, H.; Fang, Z.; Dalai, A. K.; Kozinski, J. A. Metal–organic framework-based functional catalytic materials for biodiesel production: a review. Green Chem. 2021, 23(7), 2595–2618. https://doi.org/10.1039/d1gc00233c.Search in Google Scholar
Cooper, G. M.; Hdusitian, R. E. Metabolismo celular. In La Célula; Goodsell, David S., Ed., 5th ed.; Marbán Libros: Madrid, España, 2011; pp. 73–79.Search in Google Scholar
Dahnum, D.; Seo, B.; Cheong, S.-H.; Lee, U.; Ha, J.-M.; Lee, H. Formation of defect site on ZIF-7 and its effect on the methoxycarbonylation of aniline with dimethyl carbonate. J. Catal. 2019, 380, 297–306. https://doi.org/10.1016/j.jcat.2019.09.039.Search in Google Scholar
Dai, Q.; Yang, Z.; Li, J.; Cao, Y.; Tang, H.; Wei, X. Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil. Renew. Energy 2021, 163, 1588–1594. https://doi.org/10.1016/j.renene.2020.09.122.Search in Google Scholar
Demirbas, A. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manag. 2008, 49(1), 125–130. https://doi.org/10.1016/j.enconman.2007.05.002.Search in Google Scholar
Demirbas, A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers. Manag. 2009, 50(4), 923–927. https://doi.org/10.1016/j.enconman.2008.12.023.Search in Google Scholar
Dhawane, S. H.; Karmakar, B.; Ghosh, S.; Halder, G. Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach. J. Environ. Chem. Eng. 2018a, 6(4), 3971–3980. https://doi.org/10.1016/j.jece.2018.05.053.Search in Google Scholar
Dhawane, S. H.; Kumar, T.; Halder, G. Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Convers. Manag. 2018b, 167(March), 176–202. https://doi.org/10.1016/j.enconman.2018.04.073.Search in Google Scholar
Dhawane, S. H.; Chowdhury, S.; Halder, G. Lipase immobilised carbonaceous catalyst assisted enzymatic transesterification of mesua ferrea oil. Energy Convers. Manag. 2019, 184(January), 671–680. https://doi.org/10.1016/j.enconman.2019.01.038.Search in Google Scholar
Dong, H. L.; Jung, M. K.; Hyun, Y. S.; Seong, W. K.; Seung, W. K. Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnol. Bioproc. Eng. 2006, 11(pH 7), 522–525; https://doi.org/10.1007/bf02932077.Search in Google Scholar
Dossin, T. F.; Reyniers, M. F.; Berger, R. J.; Marin, G. B. Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Appl. Catal. B Environ. 2006, 67(1–2), 136–148. https://doi.org/10.1016/j.apcatb.2006.04.008.Search in Google Scholar
Eddaoudi, M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295(5554), 469–472. https://doi.org/10.1126/science.1067208.Search in Google Scholar PubMed
El-Sayed, E. S. M.; Yuan, D. Waste to MOFs: sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications. Green Chem. 2020, 22(13), 4082–4104. https://doi.org/10.1039/d0gc00353k.Search in Google Scholar
Endalew, A. K.; Kiros, Y.; Zanzi, R. Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy 2011, 36(5), 2693–2700. https://doi.org/10.1016/j.energy.2011.02.010.Search in Google Scholar
Eom, G. T.; Lee, S. H.; Song, B. K.; Chung, K. W.; Kim, Y. W.; Song, J. K. High-level extracellular production and characterization of Candida antarctica lipase B in pichia pastoris. J. Biosci. Bioeng. 2013, 116(2), 165–170. https://doi.org/10.1016/j.jbiosc.2013.02.016.Search in Google Scholar PubMed
Farias, M. A.; Coelho, M. A. Z. Critical technological analysis for enzymatic biodiesel production: an appraisal and future directions. In Biofuels in Brazil; Springer International Publishing: Cham, 2014; pp 303–329.10.1007/978-3-319-05020-1_14Search in Google Scholar
Fazaeli, R.; Aliyan, H. Production of biodiesel through transesterification of soybean oil using ZIF-8@GO doped with sodium and potassium catalyst. Russ. J. Appl. Chem. 2015, 88(10), 1701–1710. https://doi.org/10.1134/S1070427215100237.Search in Google Scholar
Farzaneh, F.; Mohammadi, Z.; Azarkamanzad, Z. Immobilized different amines on modified magnetic nanoparticles as catalyst for biodiesel production from soybean oil. J. Iran. Chem. Soc. 2018, 15(7), 1625–1632. https://doi.org/10.1007/s13738-018-1360-9.Search in Google Scholar
Felizardo, P.; Neiva Correia, M. J.; Raposo, I.; Mendes, J. F.; Berkemeier, R.; Bordado, J. M. Production of biodiesel from waste frying oils. Waste Manag. 2006, 26(5), 487–494. https://doi.org/10.1016/j.wasman.2005.02.025.Search in Google Scholar PubMed
Fernandes, M. L. M.; Krieger, N.; Baron, A. M.; Zamora, P. P.; Ramos, L. P.; Mitchell, D. A. Hydrolysis and synthesis reactions catalysed by Thermomyces lanuginosa lipase in the AOT/isooctane reversed micellar system. J. Mol. Catal. B Enzym. 2004, 30(1), 43–49. https://doi.org/10.1016/j.molcatb.2004.03.004.Search in Google Scholar
Fernandes, F. A. N.; Lopes, R. M.; Mercado, M. P.; Siqueira, E. S. Production of soybean ethanol-based biodiesel using CaO heterogeneous catalysts promoted by Zn, K and Mg. Int. J. Green Energy 2016, 13(4), 417–423. https://doi.org/10.1080/15435075.2014.977441.Search in Google Scholar
Ferrero, G. O.; Faba, E. M. S.; Eimer, G. A. Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicified enzyme as biocatalyst. Biotechnol. Biofuels 2021, 14(1), 1–11. https://doi.org/10.1186/s13068-021-01917-x.Search in Google Scholar PubMed PubMed Central
Fonseca, J. M.; Teleken, J. G.; de Cinque Almeida, V.; da Silva, C. Biodiesel from waste frying oils: methods of production and purification. Energy Convers. Manag. 2019, 184(December 2018), 205–218. https://doi.org/10.1016/j.enconman.2019.01.061.Search in Google Scholar
Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001, 92(5), 405–416. https://doi.org/10.1016/S1389-1723(01)80288-7.Search in Google Scholar
Gogoi, T. K.; Baruah, D. C. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends. Energy 2010, 35(3), 1317–1323. https://doi.org/10.1016/j.energy.2009.11.014.Search in Google Scholar
Goh, B. H. H.; Chong, C. T.; Ge, Y.; Ong, H. C.; Ng, J. H.; Tian, B.; Ashokkumar, V.; Lim, S.; Seljak, T.; Józsa, V. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers. Manag. 2020, 223(May), 113296; https://doi.org/10.1016/j.enconman.2020.113296.Search in Google Scholar
González Bacerio, J.; Rodríguez Hernández, J.; Del Monte Martínez, A. Las lipasas: enzimas con potencial para el desarrollo de biocatalizadores inmovilizados por adsorción interfacial: [revisión]. Rev. Colomb. Biotecnol. 2010, 12(1), 113–140.Search in Google Scholar
Guan, G.; Kusakabe, K.; Yamasaki, S. Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil. Fuel Process. Technol. 2009, 90(4), 520–524. https://doi.org/10.1016/j.fuproc.2009.01.008.Search in Google Scholar
Guan, F.; Peng, P.; Wang, G.; Yin, T.; Peng, Q.; Huang, J.; Guan, G.; Li, Y. Combination of two lipases more efficiently catalyzes methanolysis of soybean oil for biodiesel production in aqueous medium. Process Biochem. 2010, 45(10), 1677–1682. https://doi.org/10.1016/j.procbio.2010.06.021.Search in Google Scholar
Hadi, A.; Karimi-Sabet, J.; Dastbaz, A. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: a response surface study. Front. Chem. Sci. Eng. 2020, 14(4), 579–594. https://doi.org/10.1007/s11705-018-1770-3.Search in Google Scholar
Halim, S. F. A.; Harun Kamaruddin, A. Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem. 2008, 43(12), 1436–1439. https://doi.org/10.1016/j.procbio.2008.08.010.Search in Google Scholar
Han, M.; Li, Y.; Gu, Z.; Shi, H.; Chen, C.; Wang, Q.; Wan, H.; Guan, G. Immobilization of thiol-functionalized ionic liquids onto the surface of MIL-101(Cr) Frameworks by S–Cr coordination bond for biodiesel production. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 553, 593–600. https://doi.org/10.1016/j.colsurfa.2018.05.085.Search in Google Scholar
Hasan, M. M.; Rahman, M. M. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: a review. Renew. Sustain. Energy Rev. 2017, 74(February), 938–948. https://doi.org/10.1016/j.rser.2017.03.045.Search in Google Scholar
Hasan, Z.; Jun, J. W.; Jhung, S. H. Sulfonic acid-functionalized MIL-101(Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem. Eng. J. 2015, 278, 265–271. https://doi.org/10.1016/j.cej.2014.09.025.Search in Google Scholar
Hassan, H. M. A.; Betiha, M. A.; Mohamed, S. K.; El-Sharkawy, E. A.; Ahmed, E. A. Salen-Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions. Appl. Surf. Sci. 2017, 412(Iv), 394–404. https://doi.org/10.1016/j.apsusc.2017.03.247.Search in Google Scholar
Hoogendoorn, A.; van, Kasteren, H. J. Enzymatic biodiesel. In Transportation Biofuels: Novel Pathways for the Production of Ethanol; Royal Society of Chemistry: States, United, Chapter 4, 2011; pp 131–180.Search in Google Scholar
Hu, Y.; Dai, L.; Liu, D.; Du, W. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chem. 2018a, 20(19), 4500–4506. https://doi.org/10.1039/c8gc01284a.Search in Google Scholar
Hu, Y.; Dai, L.; Liu, D.; Du, W.; Wang, Y. Progress & prospect of Metal-Organic Frameworks (MOFs) for enzyme immobilization (Enzyme/MOFs). Renew. Sustain. Energy Rev. 2018b, 91(April), 793–801. https://doi.org/10.1016/j.rser.2018.04.103.Search in Google Scholar
Hu, Y.; Dai, L.; Liu, D.; Liu, D.; Du, W.; Du, W. Hydrophobic pore space constituted in macroporous ZIF-8 for lipase immobilization greatly improving lipase catalytic performance in biodiesel preparation. Biotechnol. Biofuels 2020, 13(1), 1–9. https://doi.org/10.1186/s13068-020-01724-w.Search in Google Scholar PubMed PubMed Central
Hu, Y.; Zhou, H.; Dai, L.; Liu, D.; Al-Zuhair, S.; Du, W. Lipase immobilization on macroporous ZIF-8 for enhanced enzymatic biodiesel production. ACS Omega 2021, 6(3), 2143–2148; https://doi.org/10.1021/acsomega.0c05225.Search in Google Scholar PubMed PubMed Central
Huang, J.; Xia, J.; Yang, Z.; Guan, F.; Cui, D.; Guan, G.; Jiang, W.; Li, Y. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel. Biotechnol. Biofuels 2014, 7(1), 1–11. https://doi.org/10.1186/1754-6834-7-111.Search in Google Scholar PubMed PubMed Central
Jacobson, K.; Gopinath, R.; Meher, L. C.; Dalai, A. K. Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B Environ. 2008, 85(1–2), 86–91. https://doi.org/10.1016/j.apcatb.2008.07.005.Search in Google Scholar
Jamil, F.; Al-Muhatseb, A. H.; Myint, M. T. Z.; Al-Hinai, M.; Al-Haj, L.; Baawain, M.; Al-Abri, M.; Kumar, G.; Atabani, A. E. Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2). Energy Convers. Manag. 2018, 155(August 2017), 128–137. https://doi.org/10.1016/j.enconman.2017.10.064.Search in Google Scholar
Jamil, U.; Husain Khoja, A.; Liaquat, R.; Raza Naqvi, S.; Nor Nadyaini Wan Omar, W.; Aishah Saidina Amin, N. Copper and calcium-based Metal Organic Framework (MOF) catalyst for biodiesel production from waste cooking oil: a process optimization study. Energy Convers. Manag. 2020, 215(May), 112934. https://doi.org/10.1016/j.enconman.2020.112934.Search in Google Scholar
Jeon, Y.; Chi, W. S.; Hwang, J.; Kim, D. H.; Kim, J. H.; Shul, Y. G. Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: bifunctional heterogeneous catalyst for efficient biodiesel production. Appl. Catal. B Environ. 2019, 242, 51–59. https://doi.org/10.1016/j.apcatb.2018.09.071.Search in Google Scholar
João, J. H.; Tres, M. V.; Jahn, S. L.; de Oliveira, J. V. Lipases in liquid formulation for biodiesel production: current status and challenges. Biotechnol. Appl. Biochem. 2020, 67(4), 648–667. https://doi.org/10.1002/bab.1835.Search in Google Scholar PubMed
Kant Bhatia, S.; Kant Bhatia, R.; Jeon, J. M.; Pugazhendhi, A.; Kumar Awasthi, M.; Kumar, D.; Kumar, G.; Yoon, J. J.; Yang, Y. H. An overview on advancements in biobased transesterification methods for biodiesel production: oil resources, extraction, biocatalysts, and process intensification technologies. Fuel 2021, 285(August 2020), 119117. https://doi.org/10.1016/j.fuel.2020.119117.Search in Google Scholar
Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101(19), 7201–7210. https://doi.org/10.1016/j.biortech.2010.04.079.Search in Google Scholar PubMed
Khan, F. I.; Lan, D.; Durrani, R.; Huan, W.; Zhao, Z.; Wang, Y. The lid domain in lipases: structural and functional determinant of enzymatic properties. Front. Bioeng. Biotechnol. 2017, 5(Mar), 1–13. https://doi.org/10.3389/fbioe.2017.00016.Search in Google Scholar PubMed PubMed Central
Kirubakaran, K.; Arul Mozhi Selvan, V. Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. J. Environ. Chem. Eng. 2018, 6(4), 4490–4503. https://doi.org/10.1016/j.jece.2018.06.027.Search in Google Scholar
Kondo, M.; Okubo, T.; Asami, A.; Noro, S. I.; Yoshitomi, T.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Seki, K. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(Pzdc)2(L)}(n)] (Pzdc = Pyrazine-2, 3-Dicarboxylate; L = a pillar ligand. Angew. Chem., Int. Ed. 1999, 38(1–2), 140–143. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<140::AID-ANIE140>3.0.CO;2-9.10.1002/(SICI)1521-3773(19990115)38:1/2<140::AID-ANIE140>3.0.CO;2-9Search in Google Scholar
Konnerth, H.; Matsagar, B. M.; Chen, S. S.; Prechtl, M. H. G.; Shieh, F. K.; Wu, K. C. W. Metal-Organic Framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 2020, 416(1), 213319. https://doi.org/10.1016/j.ccr.2020.213319.Search in Google Scholar
Konwar, L. J.; Wärnå, J.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J. P. Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel 2016, 166, 1–11. https://doi.org/10.1016/j.fuel.2015.10.102.Search in Google Scholar
Korbekandi, H.; Abedi, D.; Pourhossein, M.; Motovali-Bashi, M.; Hejazi, M.; Narimousaei, M.; Kabiri, M. Optimisation of Candida rugosa lipase esterase activity. Biotechnology 2008, 7(1), 112–117; https://doi.org/10.3923/biotech.2008.112.117.Search in Google Scholar
Korkut, I.; Bayramoglu, M. Selection of catalyst and reaction conditions for ultrasound assisted biodiesel production from canola oil. Renew. Energy 2018, 116, 543–551. https://doi.org/10.1016/j.renene.2017.10.010.Search in Google Scholar
Kouzu, M.; Kasuno, T.; Tajika, M.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 2008, 87(12), 2798–2806. https://doi.org/10.1016/j.fuel.2007.10.019.Search in Google Scholar
Kulkarni, M. G.; Dalai, A. K. Waste cooking oil – an economical source for biodiesel: a review. Ind. Eng. Chem. Res. 2006, 45(9), 2901–2913. https://doi.org/10.1021/ie0510526.Search in Google Scholar
Lam, M. K.; Lee, K. T. Mixed methanol-ethanol technology to produce greener biodiesel from waste cooking oil: a breakthrough for SO42−/SnO2-SiO2 catalyst. Fuel Process. Technol. 2011, 92(8), 1639–1645. https://doi.org/10.1016/j.fuproc.2011.04.012.Search in Google Scholar
Lam, M. K.; Lee, K. T.; Mohamed, A. R. Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: an optimization study. Appl. Catal. B Environ. 2009, 93(1–2), 134–139. https://doi.org/10.1016/j.apcatb.2009.09.022.Search in Google Scholar
Lam, M. K.; Lee, K. T.; Mohamed, A. R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv. 2010, 28(4), 500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002.Search in Google Scholar
Lai, J. Q.; Hu, Z. L.; Sheldon, R. A.; Yang, Z. Catalytic performance of cross-linked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Process Biochem. 2012, 47(12), 2058–2063. https://doi.org/10.1016/j.procbio.2012.07.024.Search in Google Scholar
Lee, J. H.; Kim, S. B.; Kang, S. W.; Song, Y. S.; Park, C.; Han, S. O.; Kim, S. W. Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresour. Technol. 2011, 102(2), 2105–2108. https://doi.org/10.1016/j.biortech.2010.08.034.Search in Google Scholar PubMed
Leung, D. Y. C.; Guo, Y. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process. Technol. 2006, 87(10), 883–890. https://doi.org/10.1016/j.fuproc.2006.06.003.Search in Google Scholar
Leung, D. Y. C.; Wu, X.; Leung, M. K. H. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87(4), 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006.Search in Google Scholar
Li, X.; Huang, W. Synthesis of biodiesel from rap oil over sulfated titania-based solid superacid catalysts. Energy Sources, Part A Recover. Util. Environ. Eff. 2009, 31(18), 1666–1672. https://doi.org/10.1080/15567030903021988.Search in Google Scholar
Li, H.; Mohamed, E.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402(November), 276–279; https://doi.org/10.1038/46248.Search in Google Scholar
Li, L.; Du, W.; Liu, D.; Wang, L.; Li, Z. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B Enzym. 2006, 43(1–4), 58–62. https://doi.org/10.1016/j.molcatb.2006.06.012.Search in Google Scholar
Li, X.; Lu, G.; Guo, Y.; Guo, Y.; Wang, Y.; Zhang, Z.; Liu, X.; Wang, Y. A novel solid superbase of Eu2O3/Al2O3 and its catalytic performance for the transesterification of soybean oil to biodiesel. Catal. Commun. 2007, 8(12), 1969–1972. https://doi.org/10.1016/j.catcom.2007.03.013.Search in Google Scholar
Li, N. W.; Zong, M. H.; Wu, H. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem. 2009, 44(6), 685–688. https://doi.org/10.1016/j.procbio.2009.02.012.Search in Google Scholar
Li, J.; Yang, W. M.; An, H.; Maghbouli, A.; Chou, S. K. Effects of piston bowl geometry on combustion and emission characteristics of biodiesel fueled diesel engines. Fuel 2014, 120, 66–73. https://doi.org/10.1016/j.fuel.2013.12.005.Search in Google Scholar
Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol. 2014, 154, 345–348. https://doi.org/10.1016/j.biortech.2013.12.070.Search in Google Scholar PubMed
Li, K.; Fan, Y.; He, Y.; Zeng, L.; Han, X.; Yan, Y. Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis. Sci. Rep. 2017, 7(1), 1–17. https://doi.org/10.1038/s41598-017-16626-5.Search in Google Scholar PubMed PubMed Central
Li, H.; Liu, F.; Ma, X.; Wu, Z.; Li, Y.; Zhang, L.; Zhou, S.; Helian, Y. Catalytic performance of strontium oxide supported by MIL–100(Fe) derivate as transesterification catalyst for biodiesel production. Energy Convers. Manag. 2019a, 180(October 2018), 401–410. https://doi.org/10.1016/j.enconman.2018.11.012.Search in Google Scholar
Li, H.; Wang, Y.; Ma, X.; Wu, Z.; Cui, P.; Lu, W.; Liu, F.; Chu, H.; Wang, Y. A novel magnetic CaO-based catalyst synthesis and characterization: enhancing the catalytic activity and stability of CaO for biodiesel production. Chem. Eng. J. 2019b, 391, 123549; https://doi.org/10.1016/j.cej.2019.123549.Search in Google Scholar
Li, X.; Huang, W.; Liu, X.; Bian, H. Graphene oxide assisted ZIF-90 composite with enhanced n-hexane vapor adsorption capacity, efficiency and rate. J. Solid State Chem. 2019, 278(June), 120890. https://doi.org/10.1016/j.jssc.2019.07.051.Search in Google Scholar
Li, H.; Chu, H.; Ma, X.; Wang, G.; Liu, F.; Guo, M.; Lu, W.; Zhou, S.; Yu, M. Efficient heterogeneous acid synthesis and stability enhancement of UiO-66 impregnated with ammonium sulfate for biodiesel production. Chem. Eng. J. 2020a, 408(September), 127277; https://doi.org/10.1016/j.cej.2020.127277.Search in Google Scholar
Li, H.; Liu, F.; Ma, X.; Cui, P.; Guo, M.; Li, Y.; Gao, Y.; Zhou, S.; Yu, M. An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification. Renew. Energy 2020b, 149, 816–827. https://doi.org/10.1016/j.renene.2019.12.118.Search in Google Scholar
Li, Q. Q.; Chen, Y.; Bai, S.; Shao, X.; Jiang, L.; Li, Q. Q. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: a sustainable biocatalyst for biodiesel synthesis. Colloids Surf., B 2020, 188(November 2019), 110812; https://doi.org/10.1016/j.colsurfb.2020.110812.Search in Google Scholar PubMed
Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord. Chem. Rev. 2020, 406, 213149. https://doi.org/10.1016/j.ccr.2019.213149.Search in Google Scholar
Linder-Patton, O. M.; De Prinse, T. J.; Furukawa, S.; Bell, S. G.; Sumida, K.; Doonan, C. J.; Sumby, C. J. Influence of nanoscale structuralisation on the catalytic performance of ZIF-8: a cautionary surface catalysis study. CrystEngComm 2018, 20(34), 4926–4934. https://doi.org/10.1039/c8ce00746b.Search in Google Scholar
Liu, D. M.; Dong, C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 2020, 92(February), 464–475. https://doi.org/10.1016/j.procbio.2020.02.005.Search in Google Scholar
Liu, W. L.; Yang, N. S.; Chen, Y. T.; Lirio, S.; Wu, C. Y.; Lin, C. H.; Huang, H. Y. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis. Chem. Eur J. 2015, 21(1), 115–119. https://doi.org/10.1002/chem.201405252.Search in Google Scholar PubMed
Liu, J.; He, J.; Wang, L.; Li, R.; Chen, P.; Rao, X.; Deng, L.; Rong, L.; Lei, J. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Sci. Rep. 2016, 6, 1–11. https://doi.org/10.1038/srep23667.Search in Google Scholar PubMed PubMed Central
Liu, L. H.; Shih, Y. H.; Liu, W. L.; Lin, C. H.; Huang, H. Y. Enzyme immobilized on nanoporous carbon derived from metal–organic framework: a new support for biodiesel synthesis. ChemSusChem 2017, 10(7), 1364–1369. https://doi.org/10.1002/cssc.201700142.Search in Google Scholar PubMed
Liu, F.; Ma, X.; Li, H.; Wang, Y.; Cui, P.; Guo, M.; Yaxin, H.; Lu, W.; Zhou, S.; Yu, M. Dilute sulfonic acid post functionalized metal organic framework as a heterogeneous acid catalyst for esterification to produce biodiesel. Fuel 2020, 266(January), 117149. https://doi.org/10.1016/j.fuel.2020.117149.Search in Google Scholar
Liu, J.; Ma, R.-T.; Shi, Y. Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods-a review. Anal. Chim. Acta 2020, 1101, 9–22. https://doi.org/10.1016/j.aca.2019.11.073.Search in Google Scholar PubMed
López, D. E.; Goodwin, J. G.; Bruce, D. A.; Lotero, E. Transesterification of triacetin with methanol on solid acid and base catalysts. Appl. Catal. Gen. 2005, 295(2), 97–105. https://doi.org/10.1016/j.apcata.2005.07.055.Search in Google Scholar
López, D. E.; Goodwin, J. G.; Bruce, D. A. Transesterification of triacetin with methanol on Nafion® acid resins. J. Catal. 2006, 245(2), 381–391. https://doi.org/10.1016/j.jcat.2006.10.027.Search in Google Scholar
Lopresto, C. G.; Naccarato, S.; Albo, L.; De Paola, M. G.; Chakraborty, S.; Curcio, S.; Calabrò, V. Enzymatic transesterification of waste vegetable oil to produce biodiesel. Ecotoxicol. Environ. Saf. 2015, 121, 229–235. https://doi.org/10.1016/j.ecoenv.2015.03.028.Search in Google Scholar PubMed
Lotero, E.; Liu, Y.; Lopez, D. E.; Suwannakarn, K.; Bruce, D. A.; Goodwin, J. G. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 2005, 44(14), 5353–5363. https://doi.org/10.1021/ie049157g.Search in Google Scholar
Lou, W. Y.; Zong, M. H.; Duan, Z. Q. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 2008, 99(18), 8752–8758. https://doi.org/10.1016/j.biortech.2008.04.038.Search in Google Scholar PubMed
Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H.-C. Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J. Am. Chem. Soc. 2007, 129(7), 1858–1859. https://doi.org/10.1021/ja067435s.Search in Google Scholar PubMed
Ma, X.; Liu, F.; Helian, Y.; Li, C.; Wu, Z.; Li, H.; Chu, H.; Wang, Y. Y.; Wang, Y. Y.; Lu, W.; Guo, M.; Yu, M. Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production : a review. Energy Convers. Manag. 2021, 229(September 2020), 113760. https://doi.org/10.1016/j.enconman.2020.113760.Search in Google Scholar
Malani, R. S.; Umriwad, S. B.; Kumar, K.; Goyal, A.; Moholkar, V. S. Ultrasound–assisted enzymatic biodiesel production using blended feedstock of non–edible oils: kinetic analysis. Energy Convers. Manag. 2019, 188(March), 142–150. https://doi.org/10.1016/j.enconman.2019.03.052.Search in Google Scholar
Malins, K.; Brinks, J.; Kampars, V.; Malina, I. Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl. Catal. Gen. 2016, 519, 99–106. https://doi.org/10.1016/j.apcata.2016.03.020.Search in Google Scholar
de Man, R.; German, L. Certifying the sustainability of biofuels: promise and reality. Energy Pol. 2017, 109(December 2016), 871–883. https://doi.org/10.1016/j.enpol.2017.05.047.Search in Google Scholar
Marín-Suárez, M.; Méndez-Mateos, D.; Guadix, A.; Guadix, E. M. Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renew. Energy 2019, 140, 1–8. https://doi.org/10.1016/j.renene.2019.03.035.Search in Google Scholar
Meher, L. C.; Dharmagadda, V. S. S.; Naik, S. N. Optimization of alkali-catalyzed transesterification of pongamia pinnata oil for production of biodiesel. Bioresour. Technol. 2006a, 97(12), 1392–1397. https://doi.org/10.1016/j.biortech.2005.07.003.Search in Google Scholar PubMed
Meher, L. C.; Kulkarni, M. G.; Dalai, A. K.; Naik, S. N. Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts. Eur. J. Lipid Sci. Technol. 2006b, 108(5), 389–397. https://doi.org/10.1002/ejlt.200500307.Search in Google Scholar
Meunier, S. M.; Legge, R. L. Evaluation of diatomaceous earth as a support for sol-gel immobilized lipase for transesterification. J. Mol. Catal. B Enzym. 2010, 62(1), 53–57. https://doi.org/10.1016/j.molcatb.2009.09.002.Search in Google Scholar
Miao, C.; Yang, L.; Wang, Z.; Luo, W.; Li, H.; Lv, P.; Yuan, Z. Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production. Fuel 2018, 224(January), 774–782. https://doi.org/10.1016/j.fuel.2018.02.149.Search in Google Scholar
Moatamed Sabzevar, A.; Ghahramaninezhad, M.; Niknam Shahrak, M. Enhanced biodiesel production from oleic acid using TiO2-decorated magnetic ZIF-8 nanocomposite catalyst and its utilization for used frying oil conversion to valuable product. Fuel 2020, 288(October 2020), 119586. https://doi.org/10.1016/j.fuel.2020.119586.Search in Google Scholar
Moazeni, F.; Chen, Y. C.; Zhang, G. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 2019, 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181.Search in Google Scholar
Montes-Andrés, H.; Orcajo, G.; Martos, C.; Botas, J. A.; Calleja, G. Co/Ni mixed-metal expanded IRMOF-74 series and their hydrogen adsorption properties. Int. J. Hydrogen Energy 2019, 44(33), 18205–18213. https://doi.org/10.1016/j.ijhydene.2019.05.007.Search in Google Scholar
Moradi, G. R.; Arjmandzadeh, E.; Ghanei, R. Single-stage biodiesel production from used soybean oil by using a sulfuric-acid catalyst. Energy Technol. 2013, 1(4), 226–232. https://doi.org/10.1002/ente.201200034.Search in Google Scholar
Moreira, A. B. R.; Perez, V. H.; Zanin, G. M.; de Castro, H. F. Biodiesel synthesis by enzymatic transesterification of palm oil with ethanol using lipases from several sources immobilized on silica-PVA composite. Energy Fuel. 2007, 21(6), 3689–3694. https://doi.org/10.1021/ef700399b.Search in Google Scholar
Mottillo, C.; Friščić, T. Advances in solid-state transformations of coordination bonds: from the ball mill to the aging chamber. Molecules 2017, 22(1), 144; https://doi.org/10.3390/molecules22010144.Search in Google Scholar PubMed PubMed Central
Mühlbauer, E.; Klinkebiel, A.; Beyer, O.; Auras, F.; Wuttke, S.; Lüning, U.; Bein, T. Functionalized PCN-6 metal-organic frameworks. Microporous Mesoporous Mater. 2015, 216, 51–55. https://doi.org/10.1016/j.micromeso.2015.06.007.Search in Google Scholar
Mulinari, J.; Oliveira, J. V.; Hotza, D. Lipase immobilization on ceramic supports: an overview on techniques and materials. Biotechnol. Adv. 2020, 42(June), 107581. https://doi.org/10.1016/j.biotechadv.2020.107581.Search in Google Scholar PubMed
Nadar, S. S.; Rathod, V. K. Immobilization of proline activated lipase within Metal Organic Framework (MOF). Int. J. Biol. Macromol. 2020, 152, 1108–1112. https://doi.org/10.1016/j.ijbiomac.2019.10.199.Search in Google Scholar PubMed
Navarro-Sánchez, J.; Almora-Barrios, N.; Lerma-Berlanga, B.; Ruiz-Pernía, J. J.; Lorenz-Fonfria, V. A.; Tuñón, I.; Martí-Gastaldo, C. Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions. Chem. Sci. 2019, 10(14), 4082–4088. https://doi.org/10.1039/c9sc00082h.Search in Google Scholar PubMed PubMed Central
Nikseresht, A.; Daniyali, A.; Ali-Mohammadi, M.; Afzalinia, A.; Mirzaie, A. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem. 2017, 37, 203–207. https://doi.org/10.1016/j.ultsonch.2017.01.011.Search in Google Scholar PubMed
Nisha, S.; Karthick, S. A.; Gobi, N. A review on methods, application and properties of immobilized enzyme. Chem. Sci. Rev. Lett. 2012, 1(3), 148–155.Search in Google Scholar
Nobakht, N.; Faramarzi, M. A.; Shafiee, A.; Khoobi, M.; Rafiee, E. Polyoxometalate-metal organic framework-lipase: an efficient green catalyst for synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. Int. J. Biol. Macromol. 2018, 113(2017), 8–19. https://doi.org/10.1016/j.ijbiomac.2018.02.023.Search in Google Scholar PubMed
Nurun Nab, Md.; Johan Einar Hustad, D. K. First generation biodiesel production from non edible vegetable oil and its effect on diesel emissions. Int. Conf. Therm. Eng. 2008, 3, 748–753.Search in Google Scholar
Para, R.; Biodiesel, O.; Esterificación, Y. Transesterificación de aceites residuales para obtener biodiesel. Luna Azul 2015, 40, 25–34. https://doi.org/10.17151/luaz.2015.40.3.Search in Google Scholar
Park, Y. M.; Lee, D. W.; Kim, D. K.; Lee, J. S.; Lee, K. Y. The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today 2008, 131(1–4), 238–243. https://doi.org/10.1016/j.cattod.2007.10.052.Search in Google Scholar
Pangestu, T.; Kurniawan, Y.; Soetaredjo, F. E.; Santoso, S. P.; Irawaty, W.; Yuliana, M.; Hartono, S. B.; Ismadji, S. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J. Environ. Chem. Eng. 2019, 7(4), 103277. https://doi.org/10.1016/j.jece.2019.103277.Search in Google Scholar
Peña-Rodríguez, R.; Márquez-López, E.; Guerrero, A.; Chiñas, L. E.; Hernández-González, D. F.; Rivera, J. M. Hydrothermal synthesis of cobalt (II) 3D metal-organic framework acid catalyst applied in the transesterification process of vegetable oil. Mater. Lett. 2018, 217(Ii), 117–119. https://doi.org/10.1016/j.matlet.2018.01.052.Search in Google Scholar
Peng, B. X.; Shu, Q.; Wang, J. F.; Wang, G. R.; Wang, D. Z.; Han, M. H. Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Saf. Environ. Protect. 2008, 86(6), 441–447. https://doi.org/10.1016/j.psep.2008.05.003.Search in Google Scholar
Pfeffer, J.; Richter, S.; Nieveler, J.; Hansen, C. E.; Rhlid, R. B.; Schmid, R. D.; Rusnak, M. High yield expression of lipase A from Candida antarctica in the methylotrophic yeast Pichia pastoris and its purification and characterisation. Appl. Microbiol. Biotechnol. 2006, 72(5), 931–938. https://doi.org/10.1007/s00253-006-0400-z.Search in Google Scholar PubMed
Poppe, J. K.; Matte, C. R.; Do Carmo Ruaro Peralba, M.; Fernandez-Lafuente, R.; Rodrigues, R. C.; Ayub, M. A. Z. Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases. Appl. Catal. Gen. 2015, 490, 50–56. https://doi.org/10.1016/j.apcata.2014.10.050.Search in Google Scholar
Qi, L.; Luo, Z.; Lu, X. Biomimetic mineralization inducing lipase-metal-organic framework nanocomposite for pickering interfacial biocatalytic system. ACS Sustain. Chem. Eng. 2019, 7(7), 7127–7139. https://doi.org/10.1021/acssuschemeng.9b00113.Search in Google Scholar
Quayson, E.; Amoah, J.; Hama, S.; Kondo, A.; Ogino, C. Immobilized lipases for biodiesel production: current and future greening opportunities. Renew. Sustain. Energy Rev. 2020, 134(September), 110355. https://doi.org/10.1016/j.rser.2020.110355.Search in Google Scholar
Rachmaniah, O.; Ju, Y. H.; Vali, S. R.; Tjondronegoro, I.; As, M. A study on acid-catalyzed transesterification of crude rice bran oil for biodiesel production. In Youth Energy Symposium 19th World Energy Congress and Exhibition; Sydney, 2004. Search in Google Scholar
Rafiei, S.; Tangestaninejad, S.; Horcajada, P.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Kardanpour, R.; Zadehahmadi, F. Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor. Chemical Engineering Journal 2018, 334, 1233–1241. https://doi.org/10.1016/j.cej.2017.10.094.Search in Google Scholar
Rathi, P.; Saxena, R. K.; Gupta, R. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 2001, 37(2), 187–192. https://doi.org/10.1016/S0032-9592(01)00200-X.Search in Google Scholar
Rathore, V.; Newalkar, B. L.; Badoni, R. P. Processing of vegetable oil for biofuel production through conventional and non-conventional routes. Energy Sustain. Dev. 2016, 31, 24–49. https://doi.org/10.1016/j.esd.2015.11.003.Search in Google Scholar
Rizwanul Fattah, I. M.; Ong, H. C.; Mahlia, T. M. I.; Mofijur, M.; Silitonga, A. S.; Ashrafur Rahman, S. M.; Ahmad, A. State of the art of catalysts for biodiesel production. Front. Energy Res. 2020, 8, 101; https://doi.org/10.3389/fenrg.2020.00101.Search in Google Scholar
Rodrigues, R. C.; Volpato, G.; Ayub, M. A. Z.; Wada, K. Lipase-catalyzed ethanolysis of soybean oil in a solvent-free system using central composite design and response surface methodology. J. Chem. Technol. Biotechnol. 2008, 83(6), 849–854. https://doi.org/10.1002/jctb.1879.Search in Google Scholar
Rodrigues, J.; Canet, A.; Rivera, I.; Osório, N. M.; Sandoval, G.; Valero, F.; Ferreira-Dias, S. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases. Bioresour. Technol. 2016, 213, 88–95. https://doi.org/10.1016/j.biortech.2016.03.011.Search in Google Scholar PubMed
Rosset, D. V.; Wancura, J. H. C.; Ugalde, G. A.; Oliveira, J. V.; Tres, M. V.; Kuhn, R. C.; Jahn, S. L. Enzyme-catalyzed production of FAME by hydroesterification of soybean oil using the novel soluble lipase NS 40116. Appl. Biochem. Biotechnol. 2019, 188(4), 914–926. https://doi.org/10.1007/s12010-019-02966-7.Search in Google Scholar PubMed
Ruthusree, S.; Sundarrajan, S.; Ramakrishna, S. Progress and perspectives on ceramic membranes for solvent recovery. Membranes 2019, 9(10), 128; https://doi.org/10.3390/membranes9100128.Search in Google Scholar PubMed PubMed Central
Saeedi, M.; Fazaeli, R.; Aliyan, H. Nanostructured sodium–zeolite imidazolate framework (ZIF-8) doped with potassium by sol–gel processing for biodiesel production from soybean oil. J. Sol. Gel Sci. Technol. 2016, 77(2), 404–415. https://doi.org/10.1007/s10971-015-3867-1.Search in Google Scholar
Sahar; Sadaf, S.; Iqbal, J.; Ullah, I.; Bhatti, H. N.; Nouren, S.; Habib-ur-Rehman; Nisar, J.; Iqbal, M. Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018, 41(May), 220–226. https://doi.org/10.1016/j.scs.2018.05.037.Search in Google Scholar
Sandoval, G.; Casas-Godoy, L.; Bonet-Ragel, K.; Rodrigues, J.; Ferreira-Dias, S.; Valero, F. Enzyme-catalyzed production of biodiesel as alternative to chemical-catalyzed processes: advantages and constraints. Curr. Biochem. Eng. 2017, 4(2), 109–141. https://doi.org/10.2174/2212711904666170615123640.Search in Google Scholar
Santos, J. C. S. D.; Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Rodrigues, R. C.; Fernandez-Lafuente, R. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 2015, 7(16), 2413–2432. https://doi.org/10.1002/cctc.201500310.Search in Google Scholar
Sargazi, G.; Afzali, D.; Ebrahimi, A. K.; Badoei-dalfard, A.; Malekabadi, S.; Karami, Z. Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@ Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization. Mater. Sci. Eng. C 2018, 93, 768–775. https://doi.org/10.1016/j.msec.2018.08.041.Search in Google Scholar PubMed
Sarker, M.; Shin, S.; Jeong, J. H.; Jhung, S. H. Mesoporous metal-organic framework PCN-222(Fe): promising adsorbent for removal of big anionic and cationic dyes from water. Chem. Eng. J. 2019, 371(March), 252–259. https://doi.org/10.1016/j.cej.2019.04.039.Search in Google Scholar
Sarno, M.; Iuliano, M. Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Appl. Surf. Sci. 2019, 474, 135–146. https://doi.org/10.1016/j.apsusc.2018.04.060.Search in Google Scholar
Shao, P.; Meng, X.; He, J.; Sun, P. Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock. Food Bioprod. Process. 2008, 86(4), 283–289. https://doi.org/10.1016/j.fbp.2008.02.004.Search in Google Scholar
Sharanyakanth, P. S.; Radhakrishnan, M. Synthesis of Metal-Organic Frameworks (MOFs) and its application in food packaging: a critical review. Trends Food Sci. Technol. 2020, 104(August), 102–116. https://doi.org/10.1016/j.tifs.2020.08.004.Search in Google Scholar
Sharma, Y. C.; Singh, B. A hybrid feedstock for a very efficient preparation of biodiesel. Fuel Process. Technol. 2010, 91(10), 1267–1273. https://doi.org/10.1016/j.fuproc.2010.04.008.Search in Google Scholar
Shuit, S. H.; Yee, K. F.; Lee, K. T.; Subhash, B.; Tan, S. H. Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview. RSC Adv. 2013, 3(24), 9070–9094. https://doi.org/10.1039/c3ra22945a.Search in Google Scholar
da Silva, J. R. P.; Nürnberg, A. J.; da Costa, F. P.; Zenevicz, M. C.; Lerin, L. A.; Zanetti, M.; Valério, A.; de Oliveira, J. V.; Ninow, J. L.; de Oliveira, D. Lipase NS40116 as catalyst for enzymatic transesterification of abdominal chicken fat as substrate. Bioresour. Technol. Rep. 2018, 4(November), 214–217. https://doi.org/10.1016/j.biteb.2018.11.005.Search in Google Scholar
Singh, D.; Sharma, D.; Soni, S. L.; Inda, C. S.; Sharma, S.; Sharma, P. K.; Jhalani, A. A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas. Fuel 2021, 285(August), 119110; https://doi.org/10.1016/j.fuel.2020.119110.Search in Google Scholar
Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 47, 6336–6338. https://doi.org/10.1039/b814740j.Search in Google Scholar PubMed
Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H. K. S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M. M. Reactor technologies for biodiesel production and processing: a review. Prog. Energy Combust. Sci. 2019, 74, 239–303. https://doi.org/10.1016/j.pecs.2019.06.001.Search in Google Scholar
Taghizadeh, T.; Ameri, A.; Talebian-Kiakalaieh, A.; Mojtabavi, S.; Ameri, A.; Forootanfar, H.; Tarighi, S.; Faramarzi, M. A. Lipase@zeolitic imidazolate framework ZIF-90: a highly stable and recyclable biocatalyst for the synthesis of fruity banana flavour. Int. J. Biol. Macromol. 2021, 166, 1301–1311. https://doi.org/10.1016/j.ijbiomac.2020.11.011.Search in Google Scholar PubMed
Talha, N. S.; Sulaiman, S. Overview of catalysts in biodiesel production. ARPN J. Eng. Appl. Sci. 2016, 11(1), 439–442.Search in Google Scholar
Tamilselvan, P.; Nallusamy, N.; Rajkumar, S. A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines. Renew. Sustain. Energy Rev. 2017, 79(May), 1134–1159. https://doi.org/10.1016/j.rser.2017.05.176.Search in Google Scholar
Taufiq-Yap, Y. H.; Lee, H. V.; Hussein, M. Z.; Yunus, R. Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenergy 2011, 35(2), 827–834. https://doi.org/10.1016/j.biombioe.2010.11.011.Search in Google Scholar
Tongboriboon, K.; Cheirsilp, B.; H-Kittikun, A. Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. J. Mol. Catal. B Enzym. 2010, 67(1–2), 52–59. https://doi.org/10.1016/j.molcatb.2010.07.005.Search in Google Scholar
Torres-Rodríguez, D. A.; Romero-Ibarra, I. C.; Ibarra, I. A.; Pfeiffer, H. Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst. Renew. Energy 2016, 93, 323–331. https://doi.org/10.1016/j.renene.2016.02.061.Search in Google Scholar
Tran, T. T. V.; Kaiprommarat, S.; Kongparakul, S.; Reubroycharoen, P.; Guan, G.; Nguyen, M. H.; Samart, C. Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Manag. 2016, 52, 367–374. https://doi.org/10.1016/j.wasman.2016.03.053.Search in Google Scholar PubMed
Uprety, B. K.; Chaiwong, W.; Ewelike, C.; Rakshit, S. K. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Convers. Manag. 2016, 115, 191–199. https://doi.org/10.1016/j.enconman.2016.02.032.Search in Google Scholar
Vaidya, L. B.; Nadar, S. S.; Rathod, V. K. Metal-Organic Frameworks (MOFs) for Enzyme Immobilization; Mozafari, M., Ed. Elsevier: Amsterdam, 2020; pp. 491–523.10.1016/B978-0-12-816984-1.00024-XSearch in Google Scholar
Valvekens, P.; Vermoortele, F.; De Vos, D. Metal-organic frameworks as catalysts: the role of metal active sites. Catal. Sci. Technol. 2013, 3(6), 1435–1445. https://doi.org/10.1039/c3cy20813c.Search in Google Scholar
Vanleeuw, E.; Winderickx, S.; Thevissen, K.; Lagrain, B.; Dusselier, M.; Cammue, B. P. A.; Sels, B. F. Substrate-specificity of Candida rugosa lipase and its industrial application. ACS Sustain. Chem. Eng. 2019, 7(19), 15828–15844. https://doi.org/10.1021/acssuschemeng.9b03257.Search in Google Scholar
Vasudevan, P. T. Purification of lipase. In Lipases and Phospholipases in Drug Development; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, FRG, 2005; pp 1–22.10.1002/3527601910.ch1Search in Google Scholar
Verma, P.; Sharma, M. P. Performance and emission characteristics of biodiesel fuelled diesel engines. Int. J. Renew. Energy Resour. 2015, 5(1), 245–250. https://doi.org/10.20508/ijrer.32087.Search in Google Scholar
Vicente, G.; Martínez, M.; Aracil, J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 2004, 92(3), 297–305. https://doi.org/10.1016/j.biortech.2003.08.014.Search in Google Scholar PubMed
Vyas, A. P.; Verma, J. L.; Subrahmanyam, N. A review on FAME production processes. Fuel 2010, 89(1), 1–9. https://doi.org/10.1016/j.fuel.2009.08.014.Search in Google Scholar
Wan, H.; Chen, C.; Wu, Z.; Que, Y.; Feng, Y.; Wang, W.; Wang, L.; Guan, G.; Liu, X. Encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100(Fe) for biodiesel production. ChemCatChem 2015, 7(3), 441–449. https://doi.org/10.1002/cctc.201402800.Search in Google Scholar
Wang, Y.; Ou, S.; Liu, P.; Xue, F.; Tang, S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. Chem. 2006, 252(1–2), 107–112. https://doi.org/10.1016/j.molcata.2006.02.047.Search in Google Scholar
Wang, J.; Zhao, G.; Yu, F. Facile preparation of Fe3O4@MOF core-shell microspheres for lipase immobilization. J. Taiwan Inst. Chem. Eng. 2016, 69, 139–145. https://doi.org/10.1016/j.jtice.2016.10.004.Search in Google Scholar
Wang, M.; Liu, J.; Guo, C.; Gao, X.; Gong, C.; Wang, Y.; Liu, B.; Li, X.; Gurzadyan, G. G.; Sun, L. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect. J. Mater. Chem. 2018, 6(11), 4768–4775. https://doi.org/10.1039/c8ta00154e.Search in Google Scholar
Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. JAOCS, J. Am. Oil Chem. Soc. 2001, 78(7), 703–707. https://doi.org/10.1007/s11746-001-0329-5.Search in Google Scholar
Wu, W. H.; Foglia, T. A.; Marmer, W. N.; Phillips, J. G. Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology. JAOCS, J. Am. Oil Chem. Soc. 1999, 76(4), 517–521. https://doi.org/10.1007/s11746-999-0034-2.Search in Google Scholar
Xiang, H.; Carter, J. H.; Tang, C. C.; Murray, C. A.; Yang, S.; Fan, X.; Siperstein, F. R. C2H4 and C2H6 adsorption-induced structural variation of pillared-layer CPL-2 MOF: a combined experimental and Monte Carlo simulation study. Chem. Eng. Sci. 2020, 218, 115566. https://doi.org/10.1016/j.ces.2020.115566.Search in Google Scholar
Xie, W.; Huang, M. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Convers. Manag. 2018, 159(September 2017), 42–53. https://doi.org/10.1016/j.enconman.2018.01.021.Search in Google Scholar
Xie, W.; Huang, M. Enzymatic production of biodiesel using immobilized lipase on core-shell structured Fe3O4@MIL-100(Fe) composites. Catalysts 2019, 9(10), 850; https://doi.org/10.3390/catal9100850.Search in Google Scholar
Xie, W.; Li, H. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. Chem. 2006, 255(1–2), 1–9. https://doi.org/10.1016/j.molcata.2006.03.061.Search in Google Scholar
Xie, W.; Wan, F. Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production. Fuel 2018, 220(February), 248–256. https://doi.org/10.1016/j.fuel.2018.02.014.Search in Google Scholar
Xie, W.; Wan, F. Biodiesel production from acidic oils using polyoxometalate-based sulfonated ionic liquids functionalized metal–organic frameworks. Catal. Lett. 2019a, 149(10), 2916–2929. https://doi.org/10.1007/s10562-019-02800-z.Search in Google Scholar
Xie, W.; Wan, F. Guanidine post-functionalized crystalline ZIF-90 Frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification. Energy Convers. Manag. 2019b, 198(August), 111922. https://doi.org/10.1016/j.enconman.2019.111922.Search in Google Scholar
Xie, W.; Wan, F. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem. Eng. J. 2019c, 365(January), 40–50. https://doi.org/10.1016/j.cej.2019.02.016.Search in Google Scholar
Xie, W.; Gao, C.; Li, J. Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites. Renew. Energy 2021, 168, 927–937. https://doi.org/10.1016/j.renene.2020.12.129.Search in Google Scholar
Yan, S.; Dimaggio, C.; Mohan, S.; Kim, M.; Salley, S. O.; Ng, K. Y. S. Advancements in heterogeneous catalysis for biodiesel synthesis. Top. Catal. 2010, 53(11–12), 721–736. https://doi.org/10.1007/s11244-010-9460-5.Search in Google Scholar
Yang, D.; Gaggioli, C. A.; Conley, E.; Babucci, M.; Gagliardi, L.; Gates, B. C. Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67: catalyst for ethylene hydrogenation. J. Catal. 2020, 382, 165–172. https://doi.org/10.1016/j.jcat.2019.11.031.Search in Google Scholar
Yee, K. F.; Lee, K. T.; Ceccato, R.; Abdullah, A. Z. Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42−/ZrO2 catalyst: effect of interaction between process variables. Bioresour. Technol. 2011, 102(5), 4285–4289. https://doi.org/10.1016/j.biortech.2010.12.048.Search in Google Scholar PubMed
Ying, M.; Chen, G. Study on the production of biodiesel by magnetic cell biocatalyst based on lipase-producing Bacillus subtilis. Appl. Biochem. Biotechnol. 2007, 137–140(1–12), 793–803. https://doi.org/10.1007/s12010-007-9098-3.Search in Google Scholar PubMed
Zare, A.; Bordbar, A. K.; Jafarian, F.; Tangestaninejad, S. Candida rugosa lipase immobilization on various chemically modified chromium terephthalate MIL-101J. Mol. Liq. 2018, 254, 137–144; https://doi.org/10.1016/j.molliq.2018.01.097.Search in Google Scholar
Zare, A.; Bordbar, A. K.; Razmjou, A.; Jafarian, F. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane. J. Biotechnol. 2019, 289(November), 55–63. https://doi.org/10.1016/j.jbiotec.2018.11.011.Search in Google Scholar PubMed
Zdarta, J.; Meyer, A. S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 2018, 8(2), 92; https://doi.org/10.3390/catal8020092.Search in Google Scholar
Zhang, X.; Li, J.; Chen, Y.; Wang, J.; Feng, L.; Wang, X.; Cao, F. Heteropolyacid nanoreactor with double acid sites as a highly efficient and reusable catalyst for the transesterification of waste cooking oil. Energy Fuel. 2009, 23(9), 4640–4646. https://doi.org/10.1021/ef900396a.Search in Google Scholar
Zhang, Y.; Jia, Y.; Li, M.; Hou, L. Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Sci. Rep. 2018, 8(1), 1–7. https://doi.org/10.1038/s41598-018-28015-7.Search in Google Scholar PubMed PubMed Central
Zhang, Q.; Yang, T.; Liu, X.; Yue, C.; Ao, L.; Deng, T.; Zhang, Y. Heteropoly acid-encapsulated metal-organic framework as a stable and highly efficient nanocatalyst for esterification reaction. RSC Adv. 2019, 9(29), 16357–16365. https://doi.org/10.1039/c9ra03209f.Search in Google Scholar PubMed PubMed Central
Zhang, Q.; Zhang, Q.; Yang, T.; Lei, D.; Wang, J.; Zhang, Y.; Zhang, Y. Efficient production of biodiesel from esterification of lauric acid catalyzed by ammonium and silver co-doped phosphotungstic acid embedded in a zirconium metal-organic framework nanocomposite. ACS Omega 2020, 5(22), 12760–12767. https://doi.org/10.1021/acsomega.0c00375.Search in Google Scholar PubMed PubMed Central
Zhang, Y.; Zhou, J.; Chen, J.; Feng, X.; Cai, W. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. J. Hazard Mater. 2020b, 392(April 2019), 122315. https://doi.org/10.1016/j.jhazmat.2020.122315.Search in Google Scholar PubMed
Zhao, X.; Qi, F.; Yuan, C.; Du, W.; Liu, D. Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew. Sustain. Energy Rev. 2015, 44, 182–197. https://doi.org/10.1016/j.rser.2014.12.021.Search in Google Scholar
Zheng, S.; Kates, M.; Dubé, M. A.; McLean, D. D. Acid-catalyzed production of biodiesel from waste frying oil. Biomass Bioenergy 2006, 30(3), 267–272. https://doi.org/10.1016/j.biombioe.2005.10.004.Search in Google Scholar
Zheng, J.; Wei, W.; Wang, S.; Li, X.; Zhang, Y.; Wang, Z. Immobilization of lipozyme TL 100L for methyl esterification of soybean oil deodorizer distillate. 3 Biotech 2020, 10(2), 1–10. https://doi.org/10.1007/s13205-019-2028-6.Search in Google Scholar PubMed PubMed Central
Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int. J. Biol. Macromol. 2020, 152, 207–222. https://doi.org/10.1016/j.ijbiomac.2020.02.258.Search in Google Scholar PubMed
Zhou, K.; Chaemchuen, S. Metal-organic framework as catalyst in esterification of oleic acid for biodiesel production. Int. J. Environ. Sustain Dev. 2017, 8(4), 251–254. https://doi.org/10.18178/ijesd.2017.8.4.957.Search in Google Scholar
Zhou, K.; Mousavi, B.; Luo, Z.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. 2017, 5(3), 952–957. https://doi.org/10.1039/C6TA07860E.Search in Google Scholar
Zhu, H.; Wu, Z.; Chen, Y.; Zhang, P.; Duan, S.; Liu, X.; Mao, Z. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin. J. Catal. 2006, 27(5), 391–396. https://doi.org/10.1016/S1872-2067(06)60024-7.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review
- Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation
- Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)
- Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior
- Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production
Articles in the same Issue
- Frontmatter
- Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review
- Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation
- Recent advances on structural, thermal, vibrational, optical, phase transitions, and catalysis properties of alkylenediammonium halogenometallate materials (Metal: Bi, Sb, Halogen: Cl, Br, I)
- Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior
- Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production