Home Physical Sciences Bicyclic and tricyclic phosphanes with p-block substituents
Article
Licensed
Unlicensed Requires Authentication

Bicyclic and tricyclic phosphanes with p-block substituents

  • Jonas Bresien ORCID logo , Kirill Faust and Axel Schulz ORCID logo EMAIL logo
Published/Copyright: April 27, 2021

Abstract

This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.


Corresponding author: Axel Schulz, Anorganische Chemie, Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany; and Materialdesign, Leibniz-Institut für Katalyse an der Universität Rostock, A.-Einstein-Str. 29a, 18059 Rostock, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

Overview of tricyclic heptaphosphanes P7R3

Table 2:

Overview of tricyclic heptaphosphanes with the sum composition P7R3 and R being monodentate p-block substituents. The references include such in which the respective derivative was prepared, used as starting material or alternatively investigated.

Structure # Substituents References
64 R1=R2=R3=Me (Baudler and Pontzen, 1983; Baudler et al., 1980; Charles et al., 1995; Fritz and Härer, 1983; Fritz et al., 1983b, 1992; Hölderich and Fritz, 1979; Noblet et al., 2011a; Patel et al., 2013)
R1=R2=R3=Et (Fritz and Schneider, 1990; Fritz et al., 1990, 1992)
R1=R2=R3=iPr (Baudler et al., 1983a; Fritz and Schneider, 1990; Fritz et al., 1983a; Milyukov et al., 2007)
R1=R2=R3=nBu (Charles et al., 1995; Fritz and Schneider, 1990; Milyukov et al., 2007)
R1=R2=R3=iBu (Fritz and Schneider, 1990; Fritz et al., 1992; Milyukov et al., 2007)
R1=R2=R3=C(H)Et2 Milyukov et al. (2007)
R1=R2=R3=nHex Milyukov et al. (2007)
R1=R2=R3=Ph (Hölderich and Fritz, 1979; Patel et al., 2013)
R1=R2=R3=SiH3 (Fritz and Schneider, 1990; Fritz et al., 1983a; Noblet et al., 2011a)
R1=R2=R3=SiH2Me Fritz and Schneider (1990)
63 R1=R2=R3=SiMe3 (Ahlrichs et al., 1996; Baudler et al., 1979; Cicač-Hudi et al., 2016; Cummins et al., 2014; Feierabend and von Hänisch, 2014; Fritz and Hanke, 1986; Fritz and Härer, 1983; Fritz and Hölderich, 1975a; Fritz et al., 1982, 1983a, 1983b, 1987, 1992; Hölderich and Fritz, 1979; Hönle and von Schnering, 1978; Huang and Diaconescu, 2012; Mujica et al., 1986; Noblet et al., 2011a; Patel et al., 2013; Peruzzini and Stoppioni, 1985; Schmidbaur and Bauer, 1995; Tondreau et al., 2014)
R1=R2=R3=SitBu3 (Karaghiosoff et al., 2002; Kovács et al., 1993; Wiberg et al., 1998a, 2005)
R1=R2=R3=SiPh3 (Fritz et al., 1983a; Mujica et al., 1986)
R1=R2=R3=Si6Me11 Noblet et al. (2011b)
R1=R2=R3= SiMe(SiMe3)2 Noblet et al. (2011b)
R1=R2=R3=SiMe2(PEt2) Fritz and Schneider (1990)
R1=R2=R3=Si(SiMe3)2Ph Noblet et al. (2011b)
R1=R2=R3=Si(SiMe3)3 (Cappello et al., 2006; Noblet et al., 2011b; Siegl et al., 1999)
R1=R2=R3=GeMe3 Fritz et al. (1983a)
R1=R2=R3=GePh3 Mujica et al. (1986)
R1=R2=R3=SnMe3 (Abicht et al., 1984; Fritz et al., 1983a)
R1=R2=R3=SnPh3 (Cummins et al., 2014; Mujica et al., 1986)
R1=R2=R3=PbMe3 (Fritz et al., 1983a; Weber et al., 1982)
R1=R2=R3=P(tBu)2 (Fritz et al., 1991a, 1991b, 1991c)
R1=R2=R3=Sb(tBu)2 Fritz et al. (1991c)
R1=R2=R3=O Baudler and Floruss (1995)
R1=R2=R3=S Baudler and Floruss (1994)
R1=R2=R3=Br Tattershall and Kendall (1994a)
R1=R2=R3=I Tattershall and Kendall (1994a)
R1=SiMe3, R2=R3=Me, Et, iPr, iBu, tBu (Fritz and Härer, 1983; Fritz and Mayer, 1992; Fritz et al., 1983b, 1992; Hölderich and Fritz, 1979)
R1=R2=SiMe3, R3=Me, Et, iPr, iBu, tBu (Fritz and Härer, 1983; Fritz et al., 1983a, 1992)
R1=Bn, R2=R3=Me, nBu Milyukov et al. (2007)
R1=Me, R2=R3=nBu Milyukov et al. (2007)
R1=SiMe3, R2=R3=Hyp Noblet et al. (2011a)
66 R1=R2=R3=[AsPh3]+ Donath et al. (2014)
65 Weigand et al. (2009)
67 Noblet et al. (2011a)
Fritz and Hölderich (1975a)

References

Abicht, H.-P.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1984, 519, 7–23. https://doi.org/10.1002/zaac.19845191202.Search in Google Scholar

Ahlrichs, R.; Fenske, D.; Fromm, K.; Krautscheid, H.; Krautscheid, U.; Treutler, O. Chem. Eur. J. 1996, 2, 238–244. https://doi.org/10.1002/chem.19960020217.Search in Google Scholar

Baudler, M.; Aktalay, Y. Z. Anorg. Allg. Chem. 1983, 496, 29–39. https://doi.org/10.1002/zaac.19834960104.Search in Google Scholar

Baudler, M.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1984, 39b, 275–283. https://doi.org/10.1515/znb-1984-0302.Search in Google Scholar

Baudler, M.; Arndt, V. Chem. Ber. 1991, 124, 69–73. https://doi.org/10.1002/cber.19911240111.Search in Google Scholar

Baudler, M.; de Riese-Meye, L. Angew. Chem. Int. Ed. 1988, 100, 579–580. https://doi.org/10.1002/ange.19881000415.Search in Google Scholar

Baudler, M.; de Riese-Meyer, L. Z. Naturforsch. B Chem. Sci. 1986, 41b, 399–404. https://doi.org/10.1515/znb-1986-0401.Search in Google Scholar

Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1994, 620, 2070–2076. https://doi.org/10.1002/zaac.19946201209.Search in Google Scholar

Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1995, 621, 207–212. https://doi.org/10.1002/zaac.19956210208.Search in Google Scholar

Baudler, M.; Glinka, K. Chem. Rev. 1993, 93, 1623–1667. https://doi.org/10.1021/cr00020a010.Search in Google Scholar

Baudler, M.; Makowka, B. Angew. Chem. Int. Ed. 1984, 96, 976–977. https://doi.org/10.1002/ange.19840961218.Search in Google Scholar

Baudler, M.; Pontzen, T. Z. Naturforsch. B Chem. Sci. 1983, 38b, 955–960. https://doi.org/10.1515/znb-1983-0812.Search in Google Scholar

Baudler, M.; Schnalke, M. Z. Anorg. Allg. Chem. 1990, 585, 18–26. https://doi.org/10.1002/zaac.19905850103.Search in Google Scholar

Baudler, M.; Ständeke, H.; Borgardt, M.; Strabel, H. Die Naturwissenschaften 1965, 52, 345. https://doi.org/10.1007/bf00592013.Search in Google Scholar

Baudler, M.; Ternberger, H.; Faber, W.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1979, 34b, 1690–1697. https://doi.org/10.1515/znb-1979-1214.Search in Google Scholar

Baudler, M.; Faber, W.; Hahn, J. Z. Anorg. Allg. Chem. 1980, 469, 15–21. https://doi.org/10.1002/zaac.19804690103.Search in Google Scholar

Baudler, M.; Hellmann, J.; Bachmann, P.; Tebbe, K.-F.; Fröhlich, R.; Fehér, M. Angew. Chem. Int. Ed. 1981, 20, 406–408. https://doi.org/10.1002/anie.198104061.Search in Google Scholar

Baudler, M.; Aktalay, Y.; Tebbe, K.-F.; Heinlein, T. Angew. Chem. Int. Ed. 1981, 93, 1020–1022. https://doi.org/10.1002/ange.19810931125.Search in Google Scholar

Baudler, M.; Aktalay, Y.; Hahn, J.; Därr, E. Z. Anorg. Allg. Chem. 1981, 473, 20–34. https://doi.org/10.1002/zaac.19814730203.Search in Google Scholar

Baudler, M.; Aktalay, Y.; Arndt, V.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1983, 95, 1005–1006.10.1002/ange.19830951211Search in Google Scholar

Baudler, M.; Aktalay, Y.; Kazmierczak, K.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1983, 38b, 428–433. https://doi.org/10.1515/znb-1983-0405.Search in Google Scholar

Baudler, M.; Därr, E.; Binsch, G.; Stephenson, D. S. Z. Naturforsch. B Chem. Sci. 1984, 39b, 1671–1675. https://doi.org/10.1515/znb-1984-1209.Search in Google Scholar

Baudler, M.; Michels, M.; Hahn, J.; Pieroth, M. Angew. Chem. Int. Ed. 1985, 24, 504–505. https://doi.org/10.1002/anie.198505041.Search in Google Scholar

Baudler, M.; Koll, B.; Adamek, C.; Gleiter, R. Angew. Chem. Int. Ed. 1987, 99, 371–372. https://doi.org/10.1002/ange.19870990431.Search in Google Scholar

Baudler, M.; Schlitte, S.; Hasenbach, J. Z. Anorg. Allg. Chem. 1988, 560, 7–17. https://doi.org/10.1002/zaac.19885600102.Search in Google Scholar

Baudler, M.; de Riese-Meyer, L.; Wiaterek, C. Z. Naturforsch. B Chem. Sci. 1989, 44b, 375–380. https://doi.org/10.1515/znb-1989-0401.Search in Google Scholar

Baudler, M.; Jachow, H.; Lieser, B.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1989, 101, 1245–1247. https://doi.org/10.1002/ange.19891010910.Search in Google Scholar

Baudler, M.; Schnalke, M.; Wiaterek, C.; Opiela, S.; Hahn, J. Z. Anorg. Allg. Chem. 1989, 578, 7–17. https://doi.org/10.1002/zaac.19895780102.Search in Google Scholar

Baudler, M.; Wiaterek, C.; Kazmierczak, K. Z. Anorg. Allg. Chem. 1989, 579, 7–15. https://doi.org/10.1002/zaac.19895790102.Search in Google Scholar

Baudler, M.; Schnalke, M.; Wiaterek, C. Z. Anorg. Allg. Chem. 1990, 585, 7–17. https://doi.org/10.1002/zaac.19905850102.Search in Google Scholar

Baudler, M.; Koll, B.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1990, 45b, 1517–1521. https://doi.org/10.1515/znb-1990-1110.Search in Google Scholar

Becke-Goehring, M.; Hoffmann, H. Z. Anorg. Allg. Chem. 1969, 369, 73–82. https://doi.org/10.1002/zaac.19693690111.Search in Google Scholar

Bezombes, J.-P.; Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E. Dalton Trans. 2004, 9, 499–501. https://doi.org/10.1039/b315793h.Search in Google Scholar PubMed

Bihlmeier, A.; Gonsior, M.; Raabe, I.; Trapp, N.; Krossing, I. Chem. Eur. J. 2004, 10, 5041–5051. https://doi.org/10.1002/chem.200400096.Search in Google Scholar PubMed

Bolli, C.; Köchner, T.; Knapp, C. Z. Anorg. Allg. Chem. 2012, 638, 559–564. https://doi.org/10.1002/zaac.201100448.Search in Google Scholar

Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2014, 53, 12836–12839. https://doi.org/10.1002/anie.201405879.Search in Google Scholar PubMed

Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2016, 55, 613–617. https://doi.org/10.1002/anie.201508916.Search in Google Scholar PubMed

Bresien, J.; Schulz, A.; Villinger, A. Chem. Eur. J. 2015, 21, 18543–18546. https://doi.org/10.1002/chem.201503808.Search in Google Scholar PubMed

Bresien, J.; Faust, K.; Schulz, A.; Villinger, A. Angew. Chem. Int. Ed. 2015, 54, 6926–6930. https://doi.org/10.1002/anie.201500892.Search in Google Scholar PubMed

Bresien, J.; Schulz, A.; Villinger, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 601–604. https://doi.org/10.1080/10426507.2015.1128915.Search in Google Scholar

Bresien, J.; Faust, K.; Hering-Junghans, C.; Rothe, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 1998–2007. https://doi.org/10.1039/c5dt02757h.Search in Google Scholar PubMed

Bresien, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 498–501. https://doi.org/10.1039/c5dt03928b.Search in Google Scholar PubMed

Butts, C. P.; Green, M.; Hooper, T. N.; Kilby, R. J.; McGrady, J. E.; Pantazis, D. A.; Russell, C. A. Chem. Commun. 2008, 1, 856–858. https://doi.org/10.1039/b717204d.Search in Google Scholar PubMed

Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178–4235. https://doi.org/10.1021/cr900349u.Search in Google Scholar PubMed

Cappello, V.; Baumgartner, J.; Dransfeld, A.; Flock, M.; Hassler, K. Eur. J. Inorg. Chem. 2006, 2006, 2393–2405. https://doi.org/10.1002/ejic.200600028.Search in Google Scholar

Charles, S.; Fettinger, J. C.; Eichhron, B. W. J. Am. Chem. Soc. 1995, 117, 5303–5311. https://doi.org/10.1021/ja00124a013.Search in Google Scholar

Cicač-Hudi, M.; Bender, J.; Schlindwein, S. H.; Bispinghoff, M.; Nieger, M.; Grützmacher, H.; Gudat, D. Eur. J. Inorg. Chem. 2016, 2016, 649–658.10.1002/ejic.201501017Search in Google Scholar

Cossairt, B. M.; Cummins, C. C. Angew. Chem. Int. Ed. 2008, 120, 8995–8998. https://doi.org/10.1002/ange.200803971.Search in Google Scholar

Cossairt, B. M.; Cummins, C. C. New J. Chem. 2010, 34, 1533–1536. https://doi.org/10.1039/c0nj00124d.Search in Google Scholar

Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164–4177. https://doi.org/10.1021/cr9003709.Search in Google Scholar PubMed

Cowley, A. H.; Knueppel, P. C.; Nunn, C. M. Organometallics 1989, 8, 2490–2492. https://doi.org/10.1021/om00112a038.Search in Google Scholar

Cummins, C. C.; Huang, C.; Miller, T. J.; Reintinger, M. W.; Stauber, J. M.; Tannou, I.; Tofan, D.; Toubaei, A.; Velian, A.; Wu, G. Inorg. Chem. 2014, 53, 3678–3687. https://doi.org/10.1021/ic403178j.Search in Google Scholar PubMed

Daly, J. J.; Maier, L. Nature 1964, 203, 1167–1168. https://doi.org/10.1038/2031167b0.Search in Google Scholar

Donath, M.; Conrad, E.; Jerabek, P.; Frenking, G.; Fröhlich, R.; Burford, N.; Weigand, J. J. Angew. Chem. Int. Ed. 2012, 51, 2964–2967. https://doi.org/10.1002/anie.201109010.Search in Google Scholar PubMed

Donath, M.; Bodensteiner, M.; Weigand, J. J. Chem. Eur. J. 2014, 20, 17306–17310. https://doi.org/10.1002/chem.201405196.Search in Google Scholar PubMed

Dube, J. W.; Graham, C. M. E.; Macdonald, C. L. B.; Brown, Z. D.; Power, P. P.; Ragogna, P. J. Chem. Eur. J. 2014, 20, 6739–6744. https://doi.org/10.1002/chem.201402031.Search in Google Scholar PubMed

Feierabend, M.; Von Hänisch, C. Chem. Commun. 2014, 50, 4416–4419. https://doi.org/10.1039/c4cc00165f.Search in Google Scholar PubMed

Fluck, E.; Riedel, R.; Hausen, H.; Heckmann, G. Z. Anorg. Allg. Chem. 1987, 551, 85–94. https://doi.org/10.1002/zaac.19875510809.Search in Google Scholar

Fox, A. R.; Wright, R. J.; Rivard, E.; Power, P. P. Angew. Chem. Int. Ed. 2005, 44, 7729–7733. https://doi.org/10.1002/anie.200502865.Search in Google Scholar PubMed

Fritz, G.; Biastoch, R. AAC – J. Inorg. Gen. Chem. 1986, 535, 63–85. https://doi.org/10.1002/zaac.19865350409.Search in Google Scholar

Fritz, G.; Hanke, D. Z. Anorg. Allg. Chem. 1986, 537, 17–30. https://doi.org/10.1002/zaac.19865370603.Search in Google Scholar

Fritz, G.; Härer, J. Z. Anorg. Allg. Chem. 1983, 504, 23–37. https://doi.org/10.1002/zaac.19835040904.Search in Google Scholar

Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Search in Google Scholar

Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Search in Google Scholar

Fritz, G.; Mayer, B. Z. Anorg. Allg. Chem. 1992, 610, 51–56. https://doi.org/10.1002/zaac.19926100109.Search in Google Scholar

Fritz, G.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1990, 584, 12–20. https://doi.org/10.1002/zaac.19905840103.Search in Google Scholar

Fritz, G.; Härer, J.; Scheider, K. H. Z. Anorg. Allg. Chem. 1982, 487, 44–58. https://doi.org/10.1002/zaac.19824870105.Search in Google Scholar

Fritz, G.; Hoppe, K. D.; Hönle, W.; Weber, D.; Mujica, C.; Manriquez, V.; von Schnering, H. G. J. Organomet. Chem. 1983, 249, 63–80. https://doi.org/10.1016/s0022-328x(00)98800-4.Search in Google Scholar

Fritz, G.; Härer, J.; Stoll, K.; Vaahs, T. Phosphorus Sulfur Relat. Elem. 1983, 18, 65–68. https://doi.org/10.1080/03086648308075968.Search in Google Scholar

Fritz, G.; Biastoch, R.; Stoll, K.; Vaahs, T.; Hanke, D.; Schneider, H. W. Phosphorus Sulfur Relat. Elem. 1987, 30, 385–388. https://doi.org/10.1080/03086648708080601.Search in Google Scholar

Fritz, G.; Schneider, H.-W.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1990, 584, 21–50. https://doi.org/10.1002/zaac.19905840104.Search in Google Scholar

Fritz, G.; Layher, E.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1991, 595, 67–94. https://doi.org/10.1002/zaac.19915950110.Search in Google Scholar

Fritz, G.; Layher, E.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1991, 598, 111–120. https://doi.org/10.1002/zaac.19915980111.Search in Google Scholar

Fritz, G.; Layher, E.; Goesmann, H.; Hanke, D.; Persau, C. Z. Anorg. Allg. Chem. 1991, 594, 36–46. https://doi.org/10.1002/zaac.19915940105.Search in Google Scholar

Fritz, G.; Rothmann, H.; Matern, E. Z. Anorg. Allg. Chem. 1992, 610, 33–45. https://doi.org/10.1002/zaac.19926100107.Search in Google Scholar

Gärtner, S.; Korber, N. Structure and Bonding; Fässler, T. F., Ed. Springer-Verlag: Berlin, Heidelberg, 2011; pp 25–57.10.1007/430_2011_43Search in Google Scholar

Gi, N. A.; Hendsbee, A. D.; Roemmele, T. L.; Lumsden, M. D.; Pye, C. C.; Masuda, J. D.; Giffin, N. A. Inorg. Chem. 2012, 51, 11837–11850.10.1021/ic301758kSearch in Google Scholar

Giffin, N. A.; Masuda, J. D. Coord. Chem. Rev. 2011, 255, 1342–1359. https://doi.org/10.1016/j.ccr.2010.12.016.Search in Google Scholar

Gonsior, M.; Krossing, I.; Müller, L.; Raabe, I.; Jansen, M.; van Wüllen, L. Chem. Eur. J. 2002, 8, 4475–4492. https://doi.org/10.1002/1521-3765(20021004)8:19<4475::aid-chem4475>3.0.co;2-m.10.1002/1521-3765(20021004)8:19<4475::AID-CHEM4475>3.0.CO;2-MSearch in Google Scholar

He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E. Chem. Rev. 2014, 114, 7815–7880. https://doi.org/10.1021/cr400547x.Search in Google Scholar

Heinl, S.; Reisinger, S.; Schwarzmaier, C.; Bodensteiner, M.; Scheer, M. Angew. Chem. Int. Ed. 2014, 53, 7639–7642. https://doi.org/10.1002/anie.201403295.Search in Google Scholar PubMed

Hennersdorf, F.; Weigand, J. J. Angew. Chem. Int. Ed. 2017, 129, 7966–7970. https://doi.org/10.1002/ange.201703953.Search in Google Scholar

Hölderich, W.; Fritz, G. Z. Anorg. Allg. Chem. 1979, 457, 127–142.10.1002/zaac.19794570114Search in Google Scholar

Holschumacher, D.; Bannenberg, T.; Ibrom, K.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Dalton Trans. 2010, 39, 10590–10592. https://doi.org/10.1039/c0dt01045f.Search in Google Scholar PubMed

Holthausen, M. H.; Weigand, J. J. J. Am. Chem. Soc. 2009, 131, 14210–14211. https://doi.org/10.1021/ja906878q.Search in Google Scholar PubMed

Holthausen, M. H.; Weigand, J. J. Z. Anorg. Allg. Chem. 2012, 638, 1103–1108. https://doi.org/10.1002/zaac.201200123.Search in Google Scholar

Holthausen, M. H.; Weigand, J. J. Dalton Trans. 2016, 45, 1953–1961. https://doi.org/10.1039/c5dt01512j.Search in Google Scholar PubMed

Holthausen, M. H.; Richter, C.; Hepp, A.; Weigand, J. J. Chem. Commun. 2010, 46, 6921–6923. https://doi.org/10.1039/c0cc02418j.Search in Google Scholar PubMed

Holthausen, M. H.; Feldmann, K.-O.; Schulz, S.; Hepp, A.; Weigand, J. J. Inorg. Chem. 2012, 51, 3374–3387. https://doi.org/10.1021/ic2013304.Search in Google Scholar PubMed

Holthausen, M. H.; Surmiak, S. K.; Jerabek, P.; Frenking, G.; Weigand, J. J. Angew. Chem. Int. Ed. 2013, 52, 11078–11082. https://doi.org/10.1002/anie.201302914.Search in Google Scholar PubMed

Holthausen, M. H.; Hepp, A.; Weigand, J. J. Chem. Eur. J. 2013, 19, 9895–9907. https://doi.org/10.1002/chem.201204337.Search in Google Scholar

Holthausen, M. H.; Sala, C.; Weigand, J. J. Eur. J. Inorg. Chem. 2016, 2016, 667–677. https://doi.org/10.1002/ejic.201500875.Search in Google Scholar

Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1978, 440, 171–182.10.1002/zaac.19784400117Search in Google Scholar

Huang, W.; Diaconescu, P. L. Chem. Commun. 2012, 48, 2216–2218. https://doi.org/10.1039/c2cc17638f.Search in Google Scholar

Jutzi, P.; Brusdeilins, N. Z. Anorg. Allg. Chem. 1994, 620, 1375–1380. https://doi.org/10.1002/zaac.19946200809.Search in Google Scholar

Jutzi, P.; Meyer, U. J. Organomet. Chem. 1987, 333, C18–C20. https://doi.org/10.1016/0022-328x(87)85161-6.Search in Google Scholar

Jutzi, P.; Wippermann, T. J. Organomet. Chem. 1985, 287, C5–C7. https://doi.org/10.1016/0022-328x(85)80078-4.Search in Google Scholar

Jutzi, P.; Kroos, R.; Müller, A.; Penk, M. Angew. Chem. Int. Ed. 1989, 101, 628–629. https://doi.org/10.1002/ange.19891010519.Search in Google Scholar

Jutzi, P.; Kroos, R.; Müller, A.; Bögge, H.; Penk, M. Chem. Ber. 1991, 124, 75–81. https://doi.org/10.1002/cber.19911240112.Search in Google Scholar

Karaghiosoff, K.; Lerner, H.-W.; Wörner, A.; Wiberg, N. Z. Naturforsch. 2002, 57b, 1027–1035.10.1515/znb-2002-0909Search in Google Scholar

Khan, S.; Michel, R.; Dieterich, J. M.; Mata, R. A.; Roesky, H. W.; Demers, J.; Lange, A.; Stalke, D. J. Am. Chem. Soc. 2011, 133, 17889–17894. https://doi.org/10.1021/ja207538g.Search in Google Scholar

Köchner, T.; Riedel, S.; Lehner, A. J.; Scherer, H.; Raabe, I.; Engesser, T. A.; Scholz, F. W.; Gellrich, U.; Eiden, P.; Paz Schmidt, R. A.; Plattner, D. A.; Krossing, I. Angew. Chem. Int. Ed. 2010, 49, 8139–8143. https://doi.org/10.1002/anie.201003031.Search in Google Scholar

Köhler, H.; Michaelis, A. Ber. Dtsch. Chem. Ges. 1877, 10, 807–814. https://doi.org/10.1002/cber.187701001222.Search in Google Scholar

Kollegger, G. M.; Katzenbeisser, U.; Hassler, K.; Krüger, C.; Brauer, D.; Gielen, R. J. Organomet. Chem. 1997, 543, 103–110. https://doi.org/10.1016/s0022-328x(97)00128-9.Search in Google Scholar

Korber, N.; Daniels, J. J. Chem. Soc., Dalton Trans. 1996, 1653–1658. https://doi.org/10.1039/dt9960001653.Search in Google Scholar

Korber, N.; Richter, F. Chem. Commun. 1996, 2023–2024. https://doi.org/10.1039/cc9960002023.Search in Google Scholar

Korber, N.; Daniels, J.; von Schnering, H. G. Angew. Chem. Int. Ed. 1996, 35, 1107–1110. https://doi.org/10.1002/anie.199611071.Search in Google Scholar

Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Search in Google Scholar

Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Search in Google Scholar

Kovács, I.; Baum, G.; Fritz, G.; Fenske, D.; Wiberg, N.; Schuster, H.; Karaghiosoff, K. Z. Anorg. Allg. Chem. 1993, 619, 453–460. https://doi.org/10.1002/zaac.19936190902.Search in Google Scholar

Krossing, I. J. Chem. Soc., Dalton Trans. 2002, 500–512. https://doi.org/10.1039/b103957c.Search in Google Scholar

Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. 2001, 40, 4406–4409. https://doi.org/10.1002/1521-3773(20011203)40:23<4406::aid-anie4406>3.0.co;2-x.10.1002/1521-3773(20011203)40:23<4406::AID-ANIE4406>3.0.CO;2-XSearch in Google Scholar

Krossing, I.; Reisinger, A. Coord. Chem. Rev. 2006, 250, 2721–2744. https://doi.org/10.1016/j.ccr.2005.10.023.Search in Google Scholar

Łapczuk-Krygier, A.; Baranowska, K.; Pikies, J. Acta Crystallogr. E 2008, 64, o2427.10.1107/S1600536808037938Search in Google Scholar

Lerner, H.-W.; Margraf, G.; Kaufmann, L.; Bats, J. W.; Bolte, M.; Wagner, M. Eur. J. Inorg. Chem. 2005, 2005, 1932–1939. https://doi.org/10.1002/ejic.200400970.Search in Google Scholar

Lorbach, A.; Nadj, A.; Tüllmann, S.; Dornhaus, F.; Schödel, F.; Sänger, I.; Margraf, G.; Bats, J. W.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. Inorg. Chem. 2009, 48, 1005–1017. https://doi.org/10.1021/ic8016003.Search in Google Scholar

Ma, J.; Hozaki, A.; Inagaki, S. Inorg. Chem. 2002, 41, 1876–1882. https://doi.org/10.1021/ic0107835.Search in Google Scholar

Martin, C. D.; Weinstein, C. M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Chem. Commun. 2013, 49, 4486. https://doi.org/10.1039/c3cc42041h.Search in Google Scholar

Matern, E.; Fritz, G.; Pikies, J. Z. Anorg. Allg. Chem. 1997, 623, 1769–1773. https://doi.org/10.1002/zaac.19976231118.Search in Google Scholar

Miluykov, V.; Kataev, A.; Sinyashin, O.; Lönnecke, P.; Hey-Hawkins, E. Z. Anorg. Allg. Chem. 2006, 632, 1728–1732. https://doi.org/10.1002/zaac.200600108.Search in Google Scholar

Milyukov, V. A.; Kataev, A. V.; Hey-Hawkins, E.; Sinyashin, O. G. Russ. Chem. Bull. 2007, 56, 298–303. https://doi.org/10.1007/s11172-007-0048-6.Search in Google Scholar

Möller, M. H.; Jeitschko, W. J. Solid State Chem. 1986, 65, 178–189. https://doi.org/10.1016/0022-4596(86)90052-6.Search in Google Scholar

Moy, R. J. Electrochem. Soc. 1986, 133, 855–858. https://doi.org/10.1149/1.2108748.Search in Google Scholar

Mujica, C.; Weber, D.; von Schnering, H. G. Z. Naturforsch. B Chem. Sci. 1986, 41b, 991–999. https://doi.org/10.1515/znb-1986-0811.Search in Google Scholar

Niecke, E.; Rüger, R.; Krebs, B. Angew. Chem. Int. Ed. 2006, 94, 553–554. https://doi.org/10.1002/ange.19820940725.Search in Google Scholar

Noblet, P.; Dransfeld, A.; Fischer, R.; Flock, M.; Hassler, K. J. Organomet. Chem. 2011, 696, 652–660. https://doi.org/10.1016/j.jorganchem.2010.09.040.Search in Google Scholar

Noblet, P.; Cappello, V.; Tekautz, G.; Baumgartner, J.; Hassler, K. Eur. J. Inorg. Chem. 2011, 2011, 101–109. https://doi.org/10.1002/ejic.201000749.Search in Google Scholar

Oppenheim, A. Allgemeine Deutsche Biographie, Band 3; Duncker & Humblot: Leipzig (Germany), 1876; p 236.Search in Google Scholar

Patel, D.; Tuna, F.; McInnes, E. J. L.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2013, 52, 13334–13337. https://doi.org/10.1002/anie.201306492.Search in Google Scholar

Peruzzini, M.; Stoppioni, P. J. Organomet. Chem. 1985, 288, C44–C46. https://doi.org/10.1016/0022-328x(85)80133-9.Search in Google Scholar

Power, M. B.; Barron, A. R. Angew. Chem. Int. Ed. 1991, 30, 1353–1354. https://doi.org/10.1002/anie.199113531.Search in Google Scholar

Prabusankar, G.; Doddi, A.; Gemel, C.; Winter, M.; Fischer, R. A. Inorg. Chem. 2010, 49, 7976–7980. https://doi.org/10.1021/ic1010743.Search in Google Scholar PubMed

Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770–12779. https://doi.org/10.1002/chem.200800987.Search in Google Scholar PubMed

Riedel, R.; Hausen, H.-D.; Fluck, E. Angew. Chem. Int. Ed. 1985, 97, 1050. https://doi.org/10.1002/ange.19850971211.Search in Google Scholar

Robertson, A. P. M.; Gray, P. A.; Burford, N. Angew. Chem. Int. Ed. 2014, 53, 6050–6069. https://doi.org/10.1002/anie.201307658.Search in Google Scholar PubMed

Romanenko, V. D.; Rudzevich, V. L.; Rusanov, E. B.; Chernega, A. N.; Senio, A.; Sotiropoulos, J.-M.; Pfister-Guillouzo, G.; Sanchez, M. J. Chem. Soc., Chem. Commun. 1995, 6, 1383–1385. https://doi.org/10.1039/c39950001383.Search in Google Scholar

Rotter, C.; Schuster, M.; Karaghiosoff, K. Inorg. Chem. 2009, 48, 7531–7533. https://doi.org/10.1021/ic901149m.Search in Google Scholar PubMed

Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T. F. Angew. Chem. Int. Ed. 2011, 123, 3712–3754. https://doi.org/10.1002/ange.201001630.Search in Google Scholar

Scheer, M.; Balázs, G.; Seitz, A. Chem. Rev. 2010, 110, 4236–4256. https://doi.org/10.1021/cr100010e.Search in Google Scholar PubMed

Schisler, A.; Lönnecke, P.; Gelbrich, T.; Hey-Hawkins, E. Dalton Trans. 2004, 2895–2898. https://doi.org/10.1039/b407736a.Search in Google Scholar PubMed

Schisler, A.; Lönnecke, P.; Hey-Hawkins, E. Inorg. Chem. 2005, 44, 461–464. https://doi.org/10.1021/ic048844x.Search in Google Scholar PubMed

Schmidbaur, H.; Bauer, A. Phosphorus, Sulfur, Silicon Relat. Elem. 1995, 102, 217–219. https://doi.org/10.1080/10426509508042560.Search in Google Scholar

Schrödel, H.-P.; Nöth, H.; Schmidt-Amelunxen, M.; Schoeller, W. W.; Schmidpeter, A. Chem. Ber. 1997, 130, 1801–1805. https://doi.org/10.1002/cber.19971301215.Search in Google Scholar

Sidiropoulos, A.; Osborne, B.; Simonov, A. N.; Dange, D.; Bond, A. M.; Stasch, A.; Jones, C. Dalton Trans. 2014, 43, 14858–14864. https://doi.org/10.1039/c4dt02074j.Search in Google Scholar

Siegl, H.; Krumlacher, W.; Hassler, K. Monatsh. Chem./Chem. Mon. 1999, 130, 139–145. https://doi.org/10.1007/s007060050170.Search in Google Scholar

Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 1517–1521. https://doi.org/10.1016/s0277-5387(00)83446-4.Search in Google Scholar

Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 2629–2637. https://doi.org/10.1016/s0277-5387(00)81313-3.Search in Google Scholar

Tebbe, K.-F.; Heinlein, T. Z. Kristallogr. 1982, 160, 285–298. https://doi.org/10.1524/zkri.1982.160.3-4.285.Search in Google Scholar

Tondreau, A. M.; Benkő, Z.; Harmer, J. R.; Grützmacher, H. Chem. Sci. 2014, 5, 1545. https://doi.org/10.1039/c3sc53140f.Search in Google Scholar

Traut, S.; Von Hänisch, C.; Kathagen, H. J. Eur. J. Inorg. Chem. 2009, 2009, 777–783. https://doi.org/10.1002/ejic.200800903.Search in Google Scholar

van IJzendoorn, B.; Mehta, M. Dalton Trans. 2020, 49, 14758–14765. https://doi.org/10.1039/d0dt02890h.Search in Google Scholar PubMed

Von Hänisch, C.; Feierabend, M. Z. Anorg. Allg. Chem. 2013, 639, 788–793. https://doi.org/10.1002/zaac.201200544.Search in Google Scholar

Von Hänisch, C.; Matern, E. Z. Anorg. Allg. Chem. 2005, 631, 1655–1659. https://doi.org/10.1002/zaac.200500092.Search in Google Scholar

Von Hänisch, C.; Traut, S.; Stahl, S. Z. Anorg. Allg. Chem. 2007, 633, 2199–2204. https://doi.org/10.1002/zaac.200700180.Search in Google Scholar

Von Hänisch, C. Z. Anorg. Allg. Chem. 2001, 627, 1414–1416. https://doi.org/10.1002/1521-3749(200107)627:7<1414::aid-zaac1414>3.0.co;2-f.10.1002/1521-3749(200107)627:7<1414::AID-ZAAC1414>3.0.CO;2-FSearch in Google Scholar

von Schnering, H. G.; Hoenle, W. Chem. Rev. 1988, 88, 243–273. https://doi.org/10.1021/cr00083a012.Search in Google Scholar

Von Schnering, H. G.; Fenske, D.; Hönle, W.; Binnewies, M.; Peters, K. Angew. Chem. Int. Ed. 1979, 91, 755–756. https://doi.org/10.1002/ange.19790910928.Search in Google Scholar

Weber, D.; Mujica, C.; von Schnering, H. G. Angew. Chem. Int. Ed. 1982, 94, 869–870.10.1002/ange.19820941116Search in Google Scholar

Weber, L.; Meine, G.; Boese, R.; Niederprüm, N. Z. Naturforsch. B Chem. Sci. 1988, 43b, 1397–1403.Search in Google Scholar

Weigand, J. J.; Holthausen, M.; Fröhlich, R. Angew. Chem. Int. Ed. 2009, 48, 295–298. https://doi.org/10.1002/anie.200804903.Search in Google Scholar

Wiberg, E.; van Ghemen, M.; Müller-Schiedmayer, G. Angew. Chem. Int. Ed. 1963, 75, 814–823. https://doi.org/10.1002/ange.19630751803.Search in Google Scholar

Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. Chem. Ber./Recueil 1997, 130, 135–140. https://doi.org/10.1002/cber.19971300123.Search in Google Scholar

Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Fenske, D.; Baum, G.; Dransfeld, A.; von Ragué Schleyer, P. Eur. J. Inorg. Chem. 1998, 1998, 833–841. https://doi.org/10.1002/(sici)1099-0682(199806)1998:6<833::aid-ejic833>3.0.co;2-1.10.1002/(SICI)1099-0682(199806)1998:6<833::AID-EJIC833>3.0.CO;2-1Search in Google Scholar

Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Nöth, H. Z. Naturforsch. B Chem. Sci. 1998, 53b, 1004–1014. https://doi.org/10.1515/znb-1998-0912.Search in Google Scholar

Wiberg, N.; Wörner, A.; Nöth, H.; Karaghiosoff, K. Organosilicon Chemistry Set: From Molecules to Materials; Auner, N., Weis, J., Eds. Wiley-VCH Verlag GmbH: Weinheim, Germany, 2005; pp 195–201.10.1002/9783527620777.ch25aSearch in Google Scholar

Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem. Int. Ed. 2007, 46, 4511–4513. https://doi.org/10.1002/anie.200701203.Search in Google Scholar

Received: 2020-12-08
Accepted: 2021-04-09
Published Online: 2021-04-27
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2020-0028/html?lang=en
Scroll to top button