Abstract
This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Overview of tricyclic heptaphosphanes P7R3
Overview of tricyclic heptaphosphanes with the sum composition P7R3 and R being monodentate p-block substituents. The references include such in which the respective derivative was prepared, used as starting material or alternatively investigated.
References
Abicht, H.-P.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1984, 519, 7–23. https://doi.org/10.1002/zaac.19845191202.Search in Google Scholar
Ahlrichs, R.; Fenske, D.; Fromm, K.; Krautscheid, H.; Krautscheid, U.; Treutler, O. Chem. Eur. J. 1996, 2, 238–244. https://doi.org/10.1002/chem.19960020217.Search in Google Scholar
Baudler, M.; Aktalay, Y. Z. Anorg. Allg. Chem. 1983, 496, 29–39. https://doi.org/10.1002/zaac.19834960104.Search in Google Scholar
Baudler, M.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1984, 39b, 275–283. https://doi.org/10.1515/znb-1984-0302.Search in Google Scholar
Baudler, M.; Arndt, V. Chem. Ber. 1991, 124, 69–73. https://doi.org/10.1002/cber.19911240111.Search in Google Scholar
Baudler, M.; de Riese-Meye, L. Angew. Chem. Int. Ed. 1988, 100, 579–580. https://doi.org/10.1002/ange.19881000415.Search in Google Scholar
Baudler, M.; de Riese-Meyer, L. Z. Naturforsch. B Chem. Sci. 1986, 41b, 399–404. https://doi.org/10.1515/znb-1986-0401.Search in Google Scholar
Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1994, 620, 2070–2076. https://doi.org/10.1002/zaac.19946201209.Search in Google Scholar
Baudler, M.; Floruss, A. Z. Anorg. Allg. Chem. 1995, 621, 207–212. https://doi.org/10.1002/zaac.19956210208.Search in Google Scholar
Baudler, M.; Glinka, K. Chem. Rev. 1993, 93, 1623–1667. https://doi.org/10.1021/cr00020a010.Search in Google Scholar
Baudler, M.; Makowka, B. Angew. Chem. Int. Ed. 1984, 96, 976–977. https://doi.org/10.1002/ange.19840961218.Search in Google Scholar
Baudler, M.; Pontzen, T. Z. Naturforsch. B Chem. Sci. 1983, 38b, 955–960. https://doi.org/10.1515/znb-1983-0812.Search in Google Scholar
Baudler, M.; Schnalke, M. Z. Anorg. Allg. Chem. 1990, 585, 18–26. https://doi.org/10.1002/zaac.19905850103.Search in Google Scholar
Baudler, M.; Ständeke, H.; Borgardt, M.; Strabel, H. Die Naturwissenschaften 1965, 52, 345. https://doi.org/10.1007/bf00592013.Search in Google Scholar
Baudler, M.; Ternberger, H.; Faber, W.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1979, 34b, 1690–1697. https://doi.org/10.1515/znb-1979-1214.Search in Google Scholar
Baudler, M.; Faber, W.; Hahn, J. Z. Anorg. Allg. Chem. 1980, 469, 15–21. https://doi.org/10.1002/zaac.19804690103.Search in Google Scholar
Baudler, M.; Hellmann, J.; Bachmann, P.; Tebbe, K.-F.; Fröhlich, R.; Fehér, M. Angew. Chem. Int. Ed. 1981, 20, 406–408. https://doi.org/10.1002/anie.198104061.Search in Google Scholar
Baudler, M.; Aktalay, Y.; Tebbe, K.-F.; Heinlein, T. Angew. Chem. Int. Ed. 1981, 93, 1020–1022. https://doi.org/10.1002/ange.19810931125.Search in Google Scholar
Baudler, M.; Aktalay, Y.; Hahn, J.; Därr, E. Z. Anorg. Allg. Chem. 1981, 473, 20–34. https://doi.org/10.1002/zaac.19814730203.Search in Google Scholar
Baudler, M.; Aktalay, Y.; Arndt, V.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1983, 95, 1005–1006.10.1002/ange.19830951211Search in Google Scholar
Baudler, M.; Aktalay, Y.; Kazmierczak, K.; Hahn, J. Z. Naturforsch. B Chem. Sci. 1983, 38b, 428–433. https://doi.org/10.1515/znb-1983-0405.Search in Google Scholar
Baudler, M.; Därr, E.; Binsch, G.; Stephenson, D. S. Z. Naturforsch. B Chem. Sci. 1984, 39b, 1671–1675. https://doi.org/10.1515/znb-1984-1209.Search in Google Scholar
Baudler, M.; Michels, M.; Hahn, J.; Pieroth, M. Angew. Chem. Int. Ed. 1985, 24, 504–505. https://doi.org/10.1002/anie.198505041.Search in Google Scholar
Baudler, M.; Koll, B.; Adamek, C.; Gleiter, R. Angew. Chem. Int. Ed. 1987, 99, 371–372. https://doi.org/10.1002/ange.19870990431.Search in Google Scholar
Baudler, M.; Schlitte, S.; Hasenbach, J. Z. Anorg. Allg. Chem. 1988, 560, 7–17. https://doi.org/10.1002/zaac.19885600102.Search in Google Scholar
Baudler, M.; de Riese-Meyer, L.; Wiaterek, C. Z. Naturforsch. B Chem. Sci. 1989, 44b, 375–380. https://doi.org/10.1515/znb-1989-0401.Search in Google Scholar
Baudler, M.; Jachow, H.; Lieser, B.; Tebbe, K.-F.; Fehér, M. Angew. Chem. Int. Ed. 1989, 101, 1245–1247. https://doi.org/10.1002/ange.19891010910.Search in Google Scholar
Baudler, M.; Schnalke, M.; Wiaterek, C.; Opiela, S.; Hahn, J. Z. Anorg. Allg. Chem. 1989, 578, 7–17. https://doi.org/10.1002/zaac.19895780102.Search in Google Scholar
Baudler, M.; Wiaterek, C.; Kazmierczak, K. Z. Anorg. Allg. Chem. 1989, 579, 7–15. https://doi.org/10.1002/zaac.19895790102.Search in Google Scholar
Baudler, M.; Schnalke, M.; Wiaterek, C. Z. Anorg. Allg. Chem. 1990, 585, 7–17. https://doi.org/10.1002/zaac.19905850102.Search in Google Scholar
Baudler, M.; Koll, B.; Arndt, V. Z. Naturforsch. B Chem. Sci. 1990, 45b, 1517–1521. https://doi.org/10.1515/znb-1990-1110.Search in Google Scholar
Becke-Goehring, M.; Hoffmann, H. Z. Anorg. Allg. Chem. 1969, 369, 73–82. https://doi.org/10.1002/zaac.19693690111.Search in Google Scholar
Bezombes, J.-P.; Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E. Dalton Trans. 2004, 9, 499–501. https://doi.org/10.1039/b315793h.Search in Google Scholar PubMed
Bihlmeier, A.; Gonsior, M.; Raabe, I.; Trapp, N.; Krossing, I. Chem. Eur. J. 2004, 10, 5041–5051. https://doi.org/10.1002/chem.200400096.Search in Google Scholar PubMed
Bolli, C.; Köchner, T.; Knapp, C. Z. Anorg. Allg. Chem. 2012, 638, 559–564. https://doi.org/10.1002/zaac.201100448.Search in Google Scholar
Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2014, 53, 12836–12839. https://doi.org/10.1002/anie.201405879.Search in Google Scholar PubMed
Borger, J. E.; Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. Angew. Chem. Int. Ed. 2016, 55, 613–617. https://doi.org/10.1002/anie.201508916.Search in Google Scholar PubMed
Bresien, J.; Schulz, A.; Villinger, A. Chem. Eur. J. 2015, 21, 18543–18546. https://doi.org/10.1002/chem.201503808.Search in Google Scholar PubMed
Bresien, J.; Faust, K.; Schulz, A.; Villinger, A. Angew. Chem. Int. Ed. 2015, 54, 6926–6930. https://doi.org/10.1002/anie.201500892.Search in Google Scholar PubMed
Bresien, J.; Schulz, A.; Villinger, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 601–604. https://doi.org/10.1080/10426507.2015.1128915.Search in Google Scholar
Bresien, J.; Faust, K.; Hering-Junghans, C.; Rothe, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 1998–2007. https://doi.org/10.1039/c5dt02757h.Search in Google Scholar PubMed
Bresien, J.; Schulz, A.; Villinger, A. Dalton Trans. 2016, 45, 498–501. https://doi.org/10.1039/c5dt03928b.Search in Google Scholar PubMed
Butts, C. P.; Green, M.; Hooper, T. N.; Kilby, R. J.; McGrady, J. E.; Pantazis, D. A.; Russell, C. A. Chem. Commun. 2008, 1, 856–858. https://doi.org/10.1039/b717204d.Search in Google Scholar PubMed
Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178–4235. https://doi.org/10.1021/cr900349u.Search in Google Scholar PubMed
Cappello, V.; Baumgartner, J.; Dransfeld, A.; Flock, M.; Hassler, K. Eur. J. Inorg. Chem. 2006, 2006, 2393–2405. https://doi.org/10.1002/ejic.200600028.Search in Google Scholar
Charles, S.; Fettinger, J. C.; Eichhron, B. W. J. Am. Chem. Soc. 1995, 117, 5303–5311. https://doi.org/10.1021/ja00124a013.Search in Google Scholar
Cicač-Hudi, M.; Bender, J.; Schlindwein, S. H.; Bispinghoff, M.; Nieger, M.; Grützmacher, H.; Gudat, D. Eur. J. Inorg. Chem. 2016, 2016, 649–658.10.1002/ejic.201501017Search in Google Scholar
Cossairt, B. M.; Cummins, C. C. Angew. Chem. Int. Ed. 2008, 120, 8995–8998. https://doi.org/10.1002/ange.200803971.Search in Google Scholar
Cossairt, B. M.; Cummins, C. C. New J. Chem. 2010, 34, 1533–1536. https://doi.org/10.1039/c0nj00124d.Search in Google Scholar
Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164–4177. https://doi.org/10.1021/cr9003709.Search in Google Scholar PubMed
Cowley, A. H.; Knueppel, P. C.; Nunn, C. M. Organometallics 1989, 8, 2490–2492. https://doi.org/10.1021/om00112a038.Search in Google Scholar
Cummins, C. C.; Huang, C.; Miller, T. J.; Reintinger, M. W.; Stauber, J. M.; Tannou, I.; Tofan, D.; Toubaei, A.; Velian, A.; Wu, G. Inorg. Chem. 2014, 53, 3678–3687. https://doi.org/10.1021/ic403178j.Search in Google Scholar PubMed
Daly, J. J.; Maier, L. Nature 1964, 203, 1167–1168. https://doi.org/10.1038/2031167b0.Search in Google Scholar
Donath, M.; Conrad, E.; Jerabek, P.; Frenking, G.; Fröhlich, R.; Burford, N.; Weigand, J. J. Angew. Chem. Int. Ed. 2012, 51, 2964–2967. https://doi.org/10.1002/anie.201109010.Search in Google Scholar PubMed
Donath, M.; Bodensteiner, M.; Weigand, J. J. Chem. Eur. J. 2014, 20, 17306–17310. https://doi.org/10.1002/chem.201405196.Search in Google Scholar PubMed
Dube, J. W.; Graham, C. M. E.; Macdonald, C. L. B.; Brown, Z. D.; Power, P. P.; Ragogna, P. J. Chem. Eur. J. 2014, 20, 6739–6744. https://doi.org/10.1002/chem.201402031.Search in Google Scholar PubMed
Feierabend, M.; Von Hänisch, C. Chem. Commun. 2014, 50, 4416–4419. https://doi.org/10.1039/c4cc00165f.Search in Google Scholar PubMed
Fluck, E.; Riedel, R.; Hausen, H.; Heckmann, G. Z. Anorg. Allg. Chem. 1987, 551, 85–94. https://doi.org/10.1002/zaac.19875510809.Search in Google Scholar
Fox, A. R.; Wright, R. J.; Rivard, E.; Power, P. P. Angew. Chem. Int. Ed. 2005, 44, 7729–7733. https://doi.org/10.1002/anie.200502865.Search in Google Scholar PubMed
Fritz, G.; Biastoch, R. AAC – J. Inorg. Gen. Chem. 1986, 535, 63–85. https://doi.org/10.1002/zaac.19865350409.Search in Google Scholar
Fritz, G.; Hanke, D. Z. Anorg. Allg. Chem. 1986, 537, 17–30. https://doi.org/10.1002/zaac.19865370603.Search in Google Scholar
Fritz, G.; Härer, J. Z. Anorg. Allg. Chem. 1983, 504, 23–37. https://doi.org/10.1002/zaac.19835040904.Search in Google Scholar
Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Search in Google Scholar
Fritz, G.; Hölderich, W. Die Naturwissenschaften 1975, 62, 573–575. https://doi.org/10.1007/bf01166973.Search in Google Scholar
Fritz, G.; Mayer, B. Z. Anorg. Allg. Chem. 1992, 610, 51–56. https://doi.org/10.1002/zaac.19926100109.Search in Google Scholar
Fritz, G.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1990, 584, 12–20. https://doi.org/10.1002/zaac.19905840103.Search in Google Scholar
Fritz, G.; Härer, J.; Scheider, K. H. Z. Anorg. Allg. Chem. 1982, 487, 44–58. https://doi.org/10.1002/zaac.19824870105.Search in Google Scholar
Fritz, G.; Hoppe, K. D.; Hönle, W.; Weber, D.; Mujica, C.; Manriquez, V.; von Schnering, H. G. J. Organomet. Chem. 1983, 249, 63–80. https://doi.org/10.1016/s0022-328x(00)98800-4.Search in Google Scholar
Fritz, G.; Härer, J.; Stoll, K.; Vaahs, T. Phosphorus Sulfur Relat. Elem. 1983, 18, 65–68. https://doi.org/10.1080/03086648308075968.Search in Google Scholar
Fritz, G.; Biastoch, R.; Stoll, K.; Vaahs, T.; Hanke, D.; Schneider, H. W. Phosphorus Sulfur Relat. Elem. 1987, 30, 385–388. https://doi.org/10.1080/03086648708080601.Search in Google Scholar
Fritz, G.; Schneider, H.-W.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1990, 584, 21–50. https://doi.org/10.1002/zaac.19905840104.Search in Google Scholar
Fritz, G.; Layher, E.; Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1991, 595, 67–94. https://doi.org/10.1002/zaac.19915950110.Search in Google Scholar
Fritz, G.; Layher, E.; Schneider, H.-W. Z. Anorg. Allg. Chem. 1991, 598, 111–120. https://doi.org/10.1002/zaac.19915980111.Search in Google Scholar
Fritz, G.; Layher, E.; Goesmann, H.; Hanke, D.; Persau, C. Z. Anorg. Allg. Chem. 1991, 594, 36–46. https://doi.org/10.1002/zaac.19915940105.Search in Google Scholar
Fritz, G.; Rothmann, H.; Matern, E. Z. Anorg. Allg. Chem. 1992, 610, 33–45. https://doi.org/10.1002/zaac.19926100107.Search in Google Scholar
Gärtner, S.; Korber, N. Structure and Bonding; Fässler, T. F., Ed. Springer-Verlag: Berlin, Heidelberg, 2011; pp 25–57.10.1007/430_2011_43Search in Google Scholar
Gi, N. A.; Hendsbee, A. D.; Roemmele, T. L.; Lumsden, M. D.; Pye, C. C.; Masuda, J. D.; Giffin, N. A. Inorg. Chem. 2012, 51, 11837–11850.10.1021/ic301758kSearch in Google Scholar
Giffin, N. A.; Masuda, J. D. Coord. Chem. Rev. 2011, 255, 1342–1359. https://doi.org/10.1016/j.ccr.2010.12.016.Search in Google Scholar
Gonsior, M.; Krossing, I.; Müller, L.; Raabe, I.; Jansen, M.; van Wüllen, L. Chem. Eur. J. 2002, 8, 4475–4492. https://doi.org/10.1002/1521-3765(20021004)8:19<4475::aid-chem4475>3.0.co;2-m.10.1002/1521-3765(20021004)8:19<4475::AID-CHEM4475>3.0.CO;2-MSearch in Google Scholar
He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E. Chem. Rev. 2014, 114, 7815–7880. https://doi.org/10.1021/cr400547x.Search in Google Scholar
Heinl, S.; Reisinger, S.; Schwarzmaier, C.; Bodensteiner, M.; Scheer, M. Angew. Chem. Int. Ed. 2014, 53, 7639–7642. https://doi.org/10.1002/anie.201403295.Search in Google Scholar PubMed
Hennersdorf, F.; Weigand, J. J. Angew. Chem. Int. Ed. 2017, 129, 7966–7970. https://doi.org/10.1002/ange.201703953.Search in Google Scholar
Hölderich, W.; Fritz, G. Z. Anorg. Allg. Chem. 1979, 457, 127–142.10.1002/zaac.19794570114Search in Google Scholar
Holschumacher, D.; Bannenberg, T.; Ibrom, K.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Dalton Trans. 2010, 39, 10590–10592. https://doi.org/10.1039/c0dt01045f.Search in Google Scholar PubMed
Holthausen, M. H.; Weigand, J. J. J. Am. Chem. Soc. 2009, 131, 14210–14211. https://doi.org/10.1021/ja906878q.Search in Google Scholar PubMed
Holthausen, M. H.; Weigand, J. J. Z. Anorg. Allg. Chem. 2012, 638, 1103–1108. https://doi.org/10.1002/zaac.201200123.Search in Google Scholar
Holthausen, M. H.; Weigand, J. J. Dalton Trans. 2016, 45, 1953–1961. https://doi.org/10.1039/c5dt01512j.Search in Google Scholar PubMed
Holthausen, M. H.; Richter, C.; Hepp, A.; Weigand, J. J. Chem. Commun. 2010, 46, 6921–6923. https://doi.org/10.1039/c0cc02418j.Search in Google Scholar PubMed
Holthausen, M. H.; Feldmann, K.-O.; Schulz, S.; Hepp, A.; Weigand, J. J. Inorg. Chem. 2012, 51, 3374–3387. https://doi.org/10.1021/ic2013304.Search in Google Scholar PubMed
Holthausen, M. H.; Surmiak, S. K.; Jerabek, P.; Frenking, G.; Weigand, J. J. Angew. Chem. Int. Ed. 2013, 52, 11078–11082. https://doi.org/10.1002/anie.201302914.Search in Google Scholar PubMed
Holthausen, M. H.; Hepp, A.; Weigand, J. J. Chem. Eur. J. 2013, 19, 9895–9907. https://doi.org/10.1002/chem.201204337.Search in Google Scholar
Holthausen, M. H.; Sala, C.; Weigand, J. J. Eur. J. Inorg. Chem. 2016, 2016, 667–677. https://doi.org/10.1002/ejic.201500875.Search in Google Scholar
Hönle, W.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1978, 440, 171–182.10.1002/zaac.19784400117Search in Google Scholar
Huang, W.; Diaconescu, P. L. Chem. Commun. 2012, 48, 2216–2218. https://doi.org/10.1039/c2cc17638f.Search in Google Scholar
Jutzi, P.; Brusdeilins, N. Z. Anorg. Allg. Chem. 1994, 620, 1375–1380. https://doi.org/10.1002/zaac.19946200809.Search in Google Scholar
Jutzi, P.; Meyer, U. J. Organomet. Chem. 1987, 333, C18–C20. https://doi.org/10.1016/0022-328x(87)85161-6.Search in Google Scholar
Jutzi, P.; Wippermann, T. J. Organomet. Chem. 1985, 287, C5–C7. https://doi.org/10.1016/0022-328x(85)80078-4.Search in Google Scholar
Jutzi, P.; Kroos, R.; Müller, A.; Penk, M. Angew. Chem. Int. Ed. 1989, 101, 628–629. https://doi.org/10.1002/ange.19891010519.Search in Google Scholar
Jutzi, P.; Kroos, R.; Müller, A.; Bögge, H.; Penk, M. Chem. Ber. 1991, 124, 75–81. https://doi.org/10.1002/cber.19911240112.Search in Google Scholar
Karaghiosoff, K.; Lerner, H.-W.; Wörner, A.; Wiberg, N. Z. Naturforsch. 2002, 57b, 1027–1035.10.1515/znb-2002-0909Search in Google Scholar
Khan, S.; Michel, R.; Dieterich, J. M.; Mata, R. A.; Roesky, H. W.; Demers, J.; Lange, A.; Stalke, D. J. Am. Chem. Soc. 2011, 133, 17889–17894. https://doi.org/10.1021/ja207538g.Search in Google Scholar
Köchner, T.; Riedel, S.; Lehner, A. J.; Scherer, H.; Raabe, I.; Engesser, T. A.; Scholz, F. W.; Gellrich, U.; Eiden, P.; Paz Schmidt, R. A.; Plattner, D. A.; Krossing, I. Angew. Chem. Int. Ed. 2010, 49, 8139–8143. https://doi.org/10.1002/anie.201003031.Search in Google Scholar
Köhler, H.; Michaelis, A. Ber. Dtsch. Chem. Ges. 1877, 10, 807–814. https://doi.org/10.1002/cber.187701001222.Search in Google Scholar
Kollegger, G. M.; Katzenbeisser, U.; Hassler, K.; Krüger, C.; Brauer, D.; Gielen, R. J. Organomet. Chem. 1997, 543, 103–110. https://doi.org/10.1016/s0022-328x(97)00128-9.Search in Google Scholar
Korber, N.; Daniels, J. J. Chem. Soc., Dalton Trans. 1996, 1653–1658. https://doi.org/10.1039/dt9960001653.Search in Google Scholar
Korber, N.; Richter, F. Chem. Commun. 1996, 2023–2024. https://doi.org/10.1039/cc9960002023.Search in Google Scholar
Korber, N.; Daniels, J.; von Schnering, H. G. Angew. Chem. Int. Ed. 1996, 35, 1107–1110. https://doi.org/10.1002/anie.199611071.Search in Google Scholar
Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Search in Google Scholar
Korber, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 339–346. https://doi.org/10.1080/10426509708545639.Search in Google Scholar
Kovács, I.; Baum, G.; Fritz, G.; Fenske, D.; Wiberg, N.; Schuster, H.; Karaghiosoff, K. Z. Anorg. Allg. Chem. 1993, 619, 453–460. https://doi.org/10.1002/zaac.19936190902.Search in Google Scholar
Krossing, I. J. Chem. Soc., Dalton Trans. 2002, 500–512. https://doi.org/10.1039/b103957c.Search in Google Scholar
Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. 2001, 40, 4406–4409. https://doi.org/10.1002/1521-3773(20011203)40:23<4406::aid-anie4406>3.0.co;2-x.10.1002/1521-3773(20011203)40:23<4406::AID-ANIE4406>3.0.CO;2-XSearch in Google Scholar
Krossing, I.; Reisinger, A. Coord. Chem. Rev. 2006, 250, 2721–2744. https://doi.org/10.1016/j.ccr.2005.10.023.Search in Google Scholar
Łapczuk-Krygier, A.; Baranowska, K.; Pikies, J. Acta Crystallogr. E 2008, 64, o2427.10.1107/S1600536808037938Search in Google Scholar
Lerner, H.-W.; Margraf, G.; Kaufmann, L.; Bats, J. W.; Bolte, M.; Wagner, M. Eur. J. Inorg. Chem. 2005, 2005, 1932–1939. https://doi.org/10.1002/ejic.200400970.Search in Google Scholar
Lorbach, A.; Nadj, A.; Tüllmann, S.; Dornhaus, F.; Schödel, F.; Sänger, I.; Margraf, G.; Bats, J. W.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. Inorg. Chem. 2009, 48, 1005–1017. https://doi.org/10.1021/ic8016003.Search in Google Scholar
Ma, J.; Hozaki, A.; Inagaki, S. Inorg. Chem. 2002, 41, 1876–1882. https://doi.org/10.1021/ic0107835.Search in Google Scholar
Martin, C. D.; Weinstein, C. M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Chem. Commun. 2013, 49, 4486. https://doi.org/10.1039/c3cc42041h.Search in Google Scholar
Matern, E.; Fritz, G.; Pikies, J. Z. Anorg. Allg. Chem. 1997, 623, 1769–1773. https://doi.org/10.1002/zaac.19976231118.Search in Google Scholar
Miluykov, V.; Kataev, A.; Sinyashin, O.; Lönnecke, P.; Hey-Hawkins, E. Z. Anorg. Allg. Chem. 2006, 632, 1728–1732. https://doi.org/10.1002/zaac.200600108.Search in Google Scholar
Milyukov, V. A.; Kataev, A. V.; Hey-Hawkins, E.; Sinyashin, O. G. Russ. Chem. Bull. 2007, 56, 298–303. https://doi.org/10.1007/s11172-007-0048-6.Search in Google Scholar
Möller, M. H.; Jeitschko, W. J. Solid State Chem. 1986, 65, 178–189. https://doi.org/10.1016/0022-4596(86)90052-6.Search in Google Scholar
Moy, R. J. Electrochem. Soc. 1986, 133, 855–858. https://doi.org/10.1149/1.2108748.Search in Google Scholar
Mujica, C.; Weber, D.; von Schnering, H. G. Z. Naturforsch. B Chem. Sci. 1986, 41b, 991–999. https://doi.org/10.1515/znb-1986-0811.Search in Google Scholar
Niecke, E.; Rüger, R.; Krebs, B. Angew. Chem. Int. Ed. 2006, 94, 553–554. https://doi.org/10.1002/ange.19820940725.Search in Google Scholar
Noblet, P.; Dransfeld, A.; Fischer, R.; Flock, M.; Hassler, K. J. Organomet. Chem. 2011, 696, 652–660. https://doi.org/10.1016/j.jorganchem.2010.09.040.Search in Google Scholar
Noblet, P.; Cappello, V.; Tekautz, G.; Baumgartner, J.; Hassler, K. Eur. J. Inorg. Chem. 2011, 2011, 101–109. https://doi.org/10.1002/ejic.201000749.Search in Google Scholar
Oppenheim, A. Allgemeine Deutsche Biographie, Band 3; Duncker & Humblot: Leipzig (Germany), 1876; p 236.Search in Google Scholar
Patel, D.; Tuna, F.; McInnes, E. J. L.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2013, 52, 13334–13337. https://doi.org/10.1002/anie.201306492.Search in Google Scholar
Peruzzini, M.; Stoppioni, P. J. Organomet. Chem. 1985, 288, C44–C46. https://doi.org/10.1016/0022-328x(85)80133-9.Search in Google Scholar
Power, M. B.; Barron, A. R. Angew. Chem. Int. Ed. 1991, 30, 1353–1354. https://doi.org/10.1002/anie.199113531.Search in Google Scholar
Prabusankar, G.; Doddi, A.; Gemel, C.; Winter, M.; Fischer, R. A. Inorg. Chem. 2010, 49, 7976–7980. https://doi.org/10.1021/ic1010743.Search in Google Scholar PubMed
Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770–12779. https://doi.org/10.1002/chem.200800987.Search in Google Scholar PubMed
Riedel, R.; Hausen, H.-D.; Fluck, E. Angew. Chem. Int. Ed. 1985, 97, 1050. https://doi.org/10.1002/ange.19850971211.Search in Google Scholar
Robertson, A. P. M.; Gray, P. A.; Burford, N. Angew. Chem. Int. Ed. 2014, 53, 6050–6069. https://doi.org/10.1002/anie.201307658.Search in Google Scholar PubMed
Romanenko, V. D.; Rudzevich, V. L.; Rusanov, E. B.; Chernega, A. N.; Senio, A.; Sotiropoulos, J.-M.; Pfister-Guillouzo, G.; Sanchez, M. J. Chem. Soc., Chem. Commun. 1995, 6, 1383–1385. https://doi.org/10.1039/c39950001383.Search in Google Scholar
Rotter, C.; Schuster, M.; Karaghiosoff, K. Inorg. Chem. 2009, 48, 7531–7533. https://doi.org/10.1021/ic901149m.Search in Google Scholar PubMed
Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T. F. Angew. Chem. Int. Ed. 2011, 123, 3712–3754. https://doi.org/10.1002/ange.201001630.Search in Google Scholar
Scheer, M.; Balázs, G.; Seitz, A. Chem. Rev. 2010, 110, 4236–4256. https://doi.org/10.1021/cr100010e.Search in Google Scholar PubMed
Schisler, A.; Lönnecke, P.; Gelbrich, T.; Hey-Hawkins, E. Dalton Trans. 2004, 2895–2898. https://doi.org/10.1039/b407736a.Search in Google Scholar PubMed
Schisler, A.; Lönnecke, P.; Hey-Hawkins, E. Inorg. Chem. 2005, 44, 461–464. https://doi.org/10.1021/ic048844x.Search in Google Scholar PubMed
Schmidbaur, H.; Bauer, A. Phosphorus, Sulfur, Silicon Relat. Elem. 1995, 102, 217–219. https://doi.org/10.1080/10426509508042560.Search in Google Scholar
Schrödel, H.-P.; Nöth, H.; Schmidt-Amelunxen, M.; Schoeller, W. W.; Schmidpeter, A. Chem. Ber. 1997, 130, 1801–1805. https://doi.org/10.1002/cber.19971301215.Search in Google Scholar
Sidiropoulos, A.; Osborne, B.; Simonov, A. N.; Dange, D.; Bond, A. M.; Stasch, A.; Jones, C. Dalton Trans. 2014, 43, 14858–14864. https://doi.org/10.1039/c4dt02074j.Search in Google Scholar
Siegl, H.; Krumlacher, W.; Hassler, K. Monatsh. Chem./Chem. Mon. 1999, 130, 139–145. https://doi.org/10.1007/s007060050170.Search in Google Scholar
Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 1517–1521. https://doi.org/10.1016/s0277-5387(00)83446-4.Search in Google Scholar
Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 2629–2637. https://doi.org/10.1016/s0277-5387(00)81313-3.Search in Google Scholar
Tebbe, K.-F.; Heinlein, T. Z. Kristallogr. 1982, 160, 285–298. https://doi.org/10.1524/zkri.1982.160.3-4.285.Search in Google Scholar
Tondreau, A. M.; Benkő, Z.; Harmer, J. R.; Grützmacher, H. Chem. Sci. 2014, 5, 1545. https://doi.org/10.1039/c3sc53140f.Search in Google Scholar
Traut, S.; Von Hänisch, C.; Kathagen, H. J. Eur. J. Inorg. Chem. 2009, 2009, 777–783. https://doi.org/10.1002/ejic.200800903.Search in Google Scholar
van IJzendoorn, B.; Mehta, M. Dalton Trans. 2020, 49, 14758–14765. https://doi.org/10.1039/d0dt02890h.Search in Google Scholar PubMed
Von Hänisch, C.; Feierabend, M. Z. Anorg. Allg. Chem. 2013, 639, 788–793. https://doi.org/10.1002/zaac.201200544.Search in Google Scholar
Von Hänisch, C.; Matern, E. Z. Anorg. Allg. Chem. 2005, 631, 1655–1659. https://doi.org/10.1002/zaac.200500092.Search in Google Scholar
Von Hänisch, C.; Traut, S.; Stahl, S. Z. Anorg. Allg. Chem. 2007, 633, 2199–2204. https://doi.org/10.1002/zaac.200700180.Search in Google Scholar
Von Hänisch, C. Z. Anorg. Allg. Chem. 2001, 627, 1414–1416. https://doi.org/10.1002/1521-3749(200107)627:7<1414::aid-zaac1414>3.0.co;2-f.10.1002/1521-3749(200107)627:7<1414::AID-ZAAC1414>3.0.CO;2-FSearch in Google Scholar
von Schnering, H. G.; Hoenle, W. Chem. Rev. 1988, 88, 243–273. https://doi.org/10.1021/cr00083a012.Search in Google Scholar
Von Schnering, H. G.; Fenske, D.; Hönle, W.; Binnewies, M.; Peters, K. Angew. Chem. Int. Ed. 1979, 91, 755–756. https://doi.org/10.1002/ange.19790910928.Search in Google Scholar
Weber, D.; Mujica, C.; von Schnering, H. G. Angew. Chem. Int. Ed. 1982, 94, 869–870.10.1002/ange.19820941116Search in Google Scholar
Weber, L.; Meine, G.; Boese, R.; Niederprüm, N. Z. Naturforsch. B Chem. Sci. 1988, 43b, 1397–1403.Search in Google Scholar
Weigand, J. J.; Holthausen, M.; Fröhlich, R. Angew. Chem. Int. Ed. 2009, 48, 295–298. https://doi.org/10.1002/anie.200804903.Search in Google Scholar
Wiberg, E.; van Ghemen, M.; Müller-Schiedmayer, G. Angew. Chem. Int. Ed. 1963, 75, 814–823. https://doi.org/10.1002/ange.19630751803.Search in Google Scholar
Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. Chem. Ber./Recueil 1997, 130, 135–140. https://doi.org/10.1002/cber.19971300123.Search in Google Scholar
Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Fenske, D.; Baum, G.; Dransfeld, A.; von Ragué Schleyer, P. Eur. J. Inorg. Chem. 1998, 1998, 833–841. https://doi.org/10.1002/(sici)1099-0682(199806)1998:6<833::aid-ejic833>3.0.co;2-1.10.1002/(SICI)1099-0682(199806)1998:6<833::AID-EJIC833>3.0.CO;2-1Search in Google Scholar
Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Nöth, H. Z. Naturforsch. B Chem. Sci. 1998, 53b, 1004–1014. https://doi.org/10.1515/znb-1998-0912.Search in Google Scholar
Wiberg, N.; Wörner, A.; Nöth, H.; Karaghiosoff, K. Organosilicon Chemistry Set: From Molecules to Materials; Auner, N., Weis, J., Eds. Wiley-VCH Verlag GmbH: Weinheim, Germany, 2005; pp 195–201.10.1002/9783527620777.ch25aSearch in Google Scholar
Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem. Int. Ed. 2007, 46, 4511–4513. https://doi.org/10.1002/anie.200701203.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Bicyclic and tricyclic phosphanes with p-block substituents
- Ligand isomerism in Pt(II) complexes – structural aspects
- Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates
- Supercapacitor electrode materials: addressing challenges in mechanism and charge storage
- Techniques in the synthesis of organometallic compounds of Hafnium
Articles in the same Issue
- Frontmatter
- Bicyclic and tricyclic phosphanes with p-block substituents
- Ligand isomerism in Pt(II) complexes – structural aspects
- Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates
- Supercapacitor electrode materials: addressing challenges in mechanism and charge storage
- Techniques in the synthesis of organometallic compounds of Hafnium