Startseite Enhancement of Schiff base biological efficacy by metal coordination and introduction of metallic compounds as anticovid candidates: a simple overview
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancement of Schiff base biological efficacy by metal coordination and introduction of metallic compounds as anticovid candidates: a simple overview

  • Jan Mohammad Mir

    Dr Jan Mohammad Mir is currently working as an Asst. Professor at the Islamic University of Science and Technology, Awantipora, J&K. He bagged his Ph.D. from R.D. University, Jabalpur in 2015 and is about to complete his D.Sc. degree from the same university. His postdoctoral research mainly involves the molecular modelling and medicinal implications of metal based gasotransmitters. Currently, he is seeking the role of NO, CO and H2S in minimizing the COVID-19 associated severity. He has been a good academician and a researcher. He guided so many research projects entailed with M.Phil. and M.Sc. students. As a young researcher his scientific contributions have got more than 400 citations till now. As per the available details, he has published more than fifty research papers of current scientific temper in various reputed journals covering most of the world famous publishers. He has complied more than seven books and several book chapters till now. Dr Mir has served as editor as well as reviewer of so many esteemed journals.

    ORCID logo EMAIL logo
    , Sheikh Abdul Majid

    Sheikh Abdul Majid has been working as an Asst. Professor at the Islamic University of Science and Technology, Awantipora since 2014. He has completed DRDE and DRDO funded projects. He is currently teaching postgraduate as well as undergraduate courses in the university and also guided project work for a number of students at postgraduate level. He has published more than 14 research papers and 4 books in various reputable journals.

    und Aabid Hussain Shalla

    Aabid Hussain Shalla is currently working as Sr. Asst. Professor at the Islamic University of Science and Technology, Awantipora. He has completed UGC funded project. He is teaching postgraduate as well as undergraduate courses in the university and also guided project work for number of students at postgraduate level. He has published more than 24 research papers and books in various reputable journals.

Veröffentlicht/Copyright: 21. Januar 2021

Abstract

In the prevailing apocalyptic times of coronavirus disease (COVID-19), the whole scientific community is busy in designing anticovid drug or vaccine. Under such a fascination, Schiff bases or azomethine compounds are continuously interrogated for antimicrobial properties. These compounds represent interesting molecular scaffolds of huge medicinal and industrial relevance. In order to update the current literature support of such facts this article introduces the synthetic chemistry, mechanism of formation of a Schiff base, followed by biological efficacy and finally a suitable discussion on the mechanism of respective bioactivity. In most of the studies revealing the biological evaluation of azomethine functionalized frameworks, fascinated results have been recorded in case of azomethine-metal complexes as compared with the free ligands. Also, the CH=N or C=N form of organic ligands have indicated marvellous results. Therefore, in connection with the biological relevance and microbicidal implications of such metallic compounds, this works reviews the current update of microorganism fighting efficacy of azomethine metal complexes along with the introduction of some metallodrugs as excellent candidates having COVID-19 defending potentiality.


Corresponding author: Jan Mohammad Mir, Department of Chemistry, Islamic University of Science and Technology, Awantipora, Pulwama, J & K, 192122, India, E-mail:

About the authors

Jan Mohammad Mir

Dr Jan Mohammad Mir is currently working as an Asst. Professor at the Islamic University of Science and Technology, Awantipora, J&K. He bagged his Ph.D. from R.D. University, Jabalpur in 2015 and is about to complete his D.Sc. degree from the same university. His postdoctoral research mainly involves the molecular modelling and medicinal implications of metal based gasotransmitters. Currently, he is seeking the role of NO, CO and H2S in minimizing the COVID-19 associated severity. He has been a good academician and a researcher. He guided so many research projects entailed with M.Phil. and M.Sc. students. As a young researcher his scientific contributions have got more than 400 citations till now. As per the available details, he has published more than fifty research papers of current scientific temper in various reputed journals covering most of the world famous publishers. He has complied more than seven books and several book chapters till now. Dr Mir has served as editor as well as reviewer of so many esteemed journals.

Sheikh Abdul Majid

Sheikh Abdul Majid has been working as an Asst. Professor at the Islamic University of Science and Technology, Awantipora since 2014. He has completed DRDE and DRDO funded projects. He is currently teaching postgraduate as well as undergraduate courses in the university and also guided project work for a number of students at postgraduate level. He has published more than 14 research papers and 4 books in various reputable journals.

Aabid Hussain Shalla

Aabid Hussain Shalla is currently working as Sr. Asst. Professor at the Islamic University of Science and Technology, Awantipora. He has completed UGC funded project. He is teaching postgraduate as well as undergraduate courses in the university and also guided project work for number of students at postgraduate level. He has published more than 24 research papers and books in various reputable journals.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdel-Rahman, L. H.; El-Khatib, R. M.; Nassr, L. A. E.; Abu-Dief, A. M.; Lashin, F. E. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe (II) Schiff base amino acid complexes. Spectrochim. Acta A 2013, 111, 266–276; https://doi.org/10.1016/j.saa.2013.03.061.Suche in Google Scholar PubMed

Abdel-Rahman, L. H.; Ismail, N. M.; Ismael, M.; Abu-Dief, A. M.; Ahmed, E. A. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand. J. Mol. Struct. 2017, 1134, 851–862; https://doi.org/10.1016/j.molstruc.2017.01.036.Suche in Google Scholar

Abdulkarem, A. A. Synthesis and antibacterial studies of metal complexes of Cu(ii), Ni(ii) and Co(ii) with tetradentate ligand. J. Biophys. Chem. 2017, 8.10.4236/jbpc.2017.82002Suche in Google Scholar

Aboul-Fadl, T.; Mohammed, F. A. H.; Hassan, E. A. S. Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (inh). Arch. Pharm. Res. 2003, 26, 778–784; https://doi.org/10.1007/bf02980020.Suche in Google Scholar PubMed

Abu-Dief, A. M.; Mohamed, I. M. A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Seuf Univ. J. Appl. 2015, 4, 119–113; https://doi.org/10.1016/j.bjbas.2015.05.004.Suche in Google Scholar PubMed PubMed Central

Al Zoubi, W. Solvent extraction of metal ions by use of Schiff bases. J. Coord. Chem. 2013, 66, 2264–2289; https://doi.org/10.1080/00958972.2013.803536.Suche in Google Scholar

Al Zoubi, W.; Al‐Hamdani, A. A. S.; Ahmed, S. D.; Basheer, H. M.; Al‐Luhaibi, R. S. A.; Dib, A.; Ko, Y. G. Synthesis, characterization, and antioxidant activities of imine compounds. J. Phys. Org. Chem. 2019, 32, e3916; https://doi.org/10.1002/poc.4004.Suche in Google Scholar

Al Zoubi, W.; Al‐Hamdani, A. A. S.; Ahmed, S. D.; Ko, Y. G. Synthesis, characterization, and biological activity of Schiff bases metal complexes. J. Phys. Org. Chem. 2018, 31, e3752; https://doi.org/10.1002/poc.3752.Suche in Google Scholar

Al Zoubi, W.; Al‐Hamdani, A. A. S.; Kaseem, M. Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl. Organomet. Chem. 2016, 30, 810–817; https://doi.org/10.1002/aoc.3506.Suche in Google Scholar

Al Zoubi, W.; Kamil, M. P.; Fatimah, S.; Nashrah, N.; Ko, Y. G. Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Prog. Mater. Sci. 2020a, 112, 100663; https://doi.org/10.1016/j.pmatsci.2020.100663.Suche in Google Scholar

Al Zoubi, W.; Kim, M. J.; Kim, Y. G.; Ko, Y. G. Dual-functional crosslinked polymer-inorganic materials for robust electrochemical performance and antibacterial activity. Chem. Eng. J. 2020b, 392, 123654; https://doi.org/10.1016/j.cej.2019.123654.Suche in Google Scholar

Alexander, J.; Tinkov, A.; Strand, A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients 2020, 12(8), 2358; https://doi.org/10.3390/nu12082358.Suche in Google Scholar

Ali, M. A.; Mirza, A. H.; Butcher, R. J.; Tarafder, M. T. H.; Keat, T. B.; Ali, A. M. Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex. J. Inorg. Biochem. 2002, 92, 141–148; https://doi.org/10.1016/s0162-0134(02)00559-7.Suche in Google Scholar

Alpaslan, G.; Boyacioglu, B.; Demir, N.; Tümer, Y.; Yapar, G.; Yıldırım, N.; Yıldız, M.; Ünver, H. Synthesis, characterization, biological activity and theoretical studies of a 2-amino-6-methoxybenzothiazole-based fluorescent Schiff base. J. Mol. Struct. 2019, 1180, 170–178; https://doi.org/10.1016/j.molstruc.2018.11.065.Suche in Google Scholar

Amali, I. B.; Kesavan, M. P.; Vijayakumar, V.; Gandhi, N. I.; Rajesh, J.; Rajagopal, G. Structural analysis, antimicrobial and cytotoxic studies on new metal(II) complexes containing N2O2 donor Schiff base ligand. J. Mol. Struct. 2019, 1183, 342–350.10.1016/j.molstruc.2019.02.005Suche in Google Scholar

Amina, M.; Tariq, M. Structural investigation of some novel synthesized Schiff base transition metal complexes derived from drug together with antimicrobial study. Pak. J. Pharm. Sci. 2019, 32, 963–967.Suche in Google Scholar

Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H. S.; Vikraman, D. In vitro cytotoxicity activity of novel Schiff base ligand–lanthanide complexes. Sci. Rep. 2018, 8, 3054; https://doi.org/10.1038/s41598-018-21366-1.Suche in Google Scholar PubMed PubMed Central

Anjaneyulu, Y.; Rao, R. P. Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu(II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Org. Chem. 1986, 16, 257–272; https://doi.org/10.1080/00945718608057530.Suche in Google Scholar

Anjani, S.; Indrajit, T. Synthesis of pyrazolines, isoxazolines and aminopyrimidines as biological potent agents. Indian J. Chem. 2006, 45B, 517–522.Suche in Google Scholar

Arulmurugan, S.; Kavitha, H. P.; Venkatraman, B. R. Biological, activities of Schiff base and its complexes: a review. Rasayan J. Chem. 2010, 3, 385–410.Suche in Google Scholar

Assefa, W.; Raju, V. J. T.; Chebude, Y.; Retta, N. Dinuclear metal complexes derived from a bis-chelating heterocyclic ligand. Bull. Chem. Soc. Ethiop. 2009, 23, 187–196; https://doi.org/10.4314/bcse.v23i2.44960.Suche in Google Scholar

Atta, A. M.; Shaker, N. O.; Maysour, N. E. Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog. Org. Coat. 2006, 56, 100–110; https://doi.org/10.1016/j.porgcoat.2005.12.004.Suche in Google Scholar

Avaji, P. G.; Kumar, C. H. V.; Patil, S. A.; Shivananda, K. N.; Nagaraju, C. Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur. J. Med. Chem. 2009, 44, 3552–3559; https://doi.org/10.1016/j.ejmech.2009.03.032.Suche in Google Scholar PubMed

Balasubramanian, K. P.; Chinnusamy, V.; Karvembu, R.; Natarajan, K. Ruthenium(II) complexes containing triphenylphosphine/triphenylarsine and bidentate Schiff bases derived from 2-hydroxy-1-naphthaldehyde and primary amines. Trans. Met. Chem. 2004, 29, 644–648; https://doi.org/10.1007/s11243-004-4993-8.Suche in Google Scholar

Boghaei, D. M.; Askarizadeh, E.; Bezaatpour, A. Synthesis, characterization, spectroscopic and thermodynamic studies of charge transfer interaction of a new water-soluble cobalt(II) Schiff base complex with imidazole derivatives. Spectrochim. Acta A 2008, 69, 624–628; https://doi.org/10.1016/j.saa.2007.05.013.Suche in Google Scholar

Carbonaro, L.; Giacomelli, A.; Senatore, L.; Valli, L. A new synthetic route for transition metal complexes with Schiff bases. Inorg. Chim. Acta 1989, 165, 197–200; https://doi.org/10.1016/s0020-1693(00)83239-9.Suche in Google Scholar

Chakraborty, H.; Paul, N.; Rahman, M. L. Catalytic activities of Schiff base aquo complexes of copper(II) towards hydrolysis of amino acid esters. Trans. Met. Chem. 1994, 19, 524–526; https://doi.org/10.1007/bf00136366.Suche in Google Scholar

Chohan, Z. H.; Scozzafava, A.; Supuran, C. T. Unsymmetrical 1,1′-disubstituted ferrocenes: synthesis of Co(ii), Cu(ii), Ni(ii) and Zn(ii) chelates of ferrocenyl-1-thiadiazolo-1′-tetrazole, -1-thiadiazolo-1′-triazole and -1-tetrazolo-1′-triazole with antimicrobial properties. J. Enzyme Inhib. Med. Chem. 2002, 17, 261–266; https://doi.org/10.1080/1475636021000006261.Suche in Google Scholar PubMed

Chohan, Z. H.; Supuran, C. T.; Scozzafava, A. Metal binding and antibacterial activity of ciprofloxacin complexes. J. Enzyme Inhib. Med. Chem. 2005, 20, 303–307; https://doi.org/10.1080/14756360310001624948.Suche in Google Scholar PubMed

Chohan, Z. H.; Wardell, J. L.; Low, J. N.; Meehan, P. R.; Ferguson, G. Tetraethylammonium bromo(1,3-dithiol-2-one-4,5-dithiolato)diethylstannate(1-). Acta Crystallogr. C Cryst. Struct. Commun. 1998, 54, 1401–1403; https://doi.org/10.1107/s0108270198006027.Suche in Google Scholar

Cirri, D.; Pratesi, A.; Messori, T. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs. Expert Opin. Drug Discov. 2020; https://doi.org/10.1080/17460441.2020.1819236.Suche in Google Scholar PubMed

da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende; M. A.; Martins, C. V. B.; de Fátima, A. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1–8; https://doi.org/10.1016/j.jare.2010.05.004.Suche in Google Scholar

Dharmaraj, N.; Viswanathamurthi, P.; Natarajan, K. Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Trans. Met. Chem. 2001, 26, 105–109; https://doi.org/10.1023/a:1007132408648.10.1023/A:1007132408648Suche in Google Scholar

Diab, M. A.; Mohamed, G. G.; Mahmoud, W. H.; El‐Sonbati, A. Z.; Morgan, Sh. M.; Abbas, S. Y. Inner metal complexes of tetradentate Schiff base: synthesis, characterization, biological activity and molecular docking studies. Appl. Organomet. Chem. 2019, 33, e4945; https://doi.org/10.1002/aoc.4945.Suche in Google Scholar

Dinku, W.; Megersa, N.; Raju, V. J. T.; Solomon, T.; Jönsson, J. A.; Retta, N. Studies on transition metal complexes of herbicidal compounds. II: Transition metal complexes of derivatized 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine). Bull. Chem. Soc. Ethiop. 2003, 17, 35–43; https://doi.org/10.4314/bcse.v17i1.61728.Suche in Google Scholar

Dongfang, X. U.; Shuzhi, M. A.; Guangying, D. U.; Qizhuang, H. E.; Dazhi, S. U. N. Synthesis, characterization and anticancer properties of rare earth complexes with Schiff base and o-phenanthroline. J. Rare Earths 2008, 26(5), 643–647.10.1016/S1002-0721(08)60153-2Suche in Google Scholar

Emregül, K. C.; Düzgün, E.; Atakol, O. The application of some polydentate Schiff base compounds containing aminic nitrogens as corrosion inhibitors for mild steel in acidic media. Corrosion Sci. 2006, 48, 3243–3260; https://doi.org/10.1016/j.corsci.2005.11.016.Suche in Google Scholar

Ferrerira, G. C.; Neame, P. J.; Dailey, H. A. Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5′‐phosphate cofactor and a lysine residue in 5‐aminolevulinate synthase. Protein Sci. 1993, 2, 1959–1965.10.1002/pro.5560021117Suche in Google Scholar PubMed PubMed Central

Golcu, A.; Tumer, M.; Demirelli, H.; Wheatley, R. A. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: synthesis, characterization, properties and biological activity. Inorg. Chim. Acta 2005, 358, 1785–1797; https://doi.org/10.1016/j.ica.2004.11.026.Suche in Google Scholar

Gupta, R. R.; Kumar, M.; Gupta, V. Four-membered heterocycles. In Heterocyclic Chemistry; Springer: Berlin, Heidelberg, 1998; pp 357–410.10.1007/978-3-642-72276-9_7Suche in Google Scholar

Jarrahpour, A.; Khalili, D.; Clercq, E. D.; Salmi, C.; Brunel, J. M. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules 2007, 12, 1720–1730; https://doi.org/10.3390/12081720.Suche in Google Scholar PubMed PubMed Central

Kailas, K. H.; Sheetal, J. P.; Anita, P. P.; Apoorva, H. P. Four synthesis methods of Schiff base ligands and preparation of their metal complex with Ir and antimicrobial investigation. World J. Pharm. Sci. 2016, 5, 1055–1063.Suche in Google Scholar

Kazemi, Z.; Rudbari, H. A.; Sahihi, M.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Gharaghani, S. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: experimental, molecular docking and ONIOM computational study. J. Photochem. Photobiol. B Biol. 2016, 162, 448–462; https://doi.org/10.1016/j.jphotobiol.2016.07.003.Suche in Google Scholar PubMed

Kazemi, Z.; Rudbari, H. A.; Sahihi, M.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Azimi, G.; Gharaghani, S.; Kajani, A. A. Synthesis, characterization and separation of chiral and achiral diastereomers of Schiff base Pd(II) complex: a comparative study of their DNA- and HSA-binding. J. Photochem. Photobiol. B Biol. 2016, 163, 246–260; https://doi.org/10.1016/j.jphotobiol.2016.08.035.Suche in Google Scholar PubMed

Kianfar, A. H.; Keramat, L.; Dostani, M.; Shamsipur, M.; Roushani, M.; Nikpour, F. Synthesis, spectroscopy, electrochemistry and thermal study of Ni(II) and Cu(II) unsymmetrical N2O2 Schiff base complexes. Spectrochim. Acta A 2010, 77, 424–429; https://doi.org/10.1016/j.saa.2010.06.008.Suche in Google Scholar

Kishore, M. D.; Kumar, D. Cadmium and tin complexes of Schiff-base ligands. J. Coord. Chem. 2011, 64, 2130–2156.10.1080/00958972.2011.590193Suche in Google Scholar

Kuamr, K. S.; Varma, C. P.; Reena, V. N.; Aravindakshan, K. K. Synthesis, characterization, cytotoxic, anticancer and antimicrobial studies of novel Schiff base ligand derived from vanillin and its transition metal complexes. J. Pharm. Sci. Res. 2017, 9, 1317–1323.Suche in Google Scholar

Kumar, C. A.; Pandeya, S. N. Synthesis and anticonvulsant activity (chemoshock) of Schiff and Mannich bases of isatin derivatives with 2-amino pyridine (mechanism of action). Int. J. PharmTech Res. 2012, 4, 590–598.Suche in Google Scholar

Kumar, S.; Dhar, D. N.; Saxena, P. N. Applications of metal complexes of Schiff bases—a review. J. Sci. Ind. Res. 2009, 68, 181–187.Suche in Google Scholar

Kumar, K. S.; Ganguly, S.; Veerasamy, R.; Clercq, E. D. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem. 2010, 45, 5474–5479; https://doi.org/10.1016/j.ejmech.2010.07.058.Suche in Google Scholar

Laidler, D. A.; Milner, D. J. Asymmetric synthesis of cyclopropane carboxylates: catalysis of diazoacetate reactions by copper(II) Schiff base complexes derived from α-amino acids. J. Organomet. Chem. 1984, 270, 121–129; https://doi.org/10.1016/0022-328x(84)80341-1.Suche in Google Scholar

Li, L. J.; Wang, C.; Tian, C.; Yang, X. Y.; Hua, X. X.; Du, J. L. Water-soluble platinum(II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Res. Chem. Intermed. 2013, 39(2), 733; https://doi.org/10.1007/s11164-012-0593-y.Suche in Google Scholar

Mahmoud, W. H.; Deghadi, R. G.; El Desssouky, M. M. I.; Mohamed, G. G. Transition metal complexes of nano bidentate organometallic Schiff base: preparation, structure, characterization, biological activity. DFT Mol. Docking Studies 2019, 33(1), e4556; https://doi.org/10.1002/aoc.4556.Suche in Google Scholar

Majid, S. A.; Mir, J. M.; Paul, S.; Akhter, M.; Parray, H.; Ayoub, R.; Shalla, A. H. Experimental and molecular topology-based biological implications of Schiff base complexes: a concise review. Rev. Inorg. Chem. 2019, 39, 113–128; https://doi.org/10.1515/revic-2018-0023.Suche in Google Scholar

Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N. Nickel(II) complexes of ONS donor Schiff base ligands:synthesis, combined DFT- experimental characterization, redox, thermal, and in vitro biological investigation. J. Coord. Chem. 2015, 68(16), 2902–2922; https://doi.org/10.1080/00958972.2015.1064526.Suche in Google Scholar

Maurya, R. C.; Mir, J. M. Medicinal industrial & environmental relevance of metal nitrosyl complexes: a review. Int. J. Sci. Eng. Res. 2014, 5, 305–320.Suche in Google Scholar

Maurya, R. C.; Vishwakarma, P. K.; Mir, J. M.; Rajak, D. K. Oxidoperoxidomolybdenum(VI) complexes involving 4-formyl-3-methyl-1-phenyl-2-pyrazoline-5-one and some b-diketoenolates: synthesis, spectral, thermal, electrochemical and DFT studies. J. Therm. Anal. Calorim. 2016, 124, 57–70; https://doi.org/10.1007/s10973-015-5234-4.Suche in Google Scholar

Mir, J. M.; Jain, N.; Jaget, P. S.; Khan, W.; Vishwakarma, P. K.; Rajak, D. K.; Malik, B. A.; Maurya, R. C. Urinary tract anti-infectious potential of DFT-experimental composite analyzed ruthenium nitrosyl complex of N-dehydroacetic acid-thiosemicarbazide, J. King Saud Univ. Sci. 2019a, 31(1), 89–100; https://doi.org/10.1016/j.jksus.2017.06.006.Suche in Google Scholar

Mir, J. M.; Jain, N.; Jaget, P. S.; Maurya, R. C. Density functionalized [RuII(NO)(Salen)(Cl)] complex: computational photodynamics and in vitro anticancer facets. Photodiagn. Photodyn. Ther. 2017b, 19, 363–374; https://doi.org/10.1016/j.pdpdt.2017.07.006.Suche in Google Scholar PubMed

Mir, J. M.; Jain, N.; Malik, B. A.; Chourasia, R.; Vishwakarma, P. K.; Rajak, D. K.; Maurya, R. C. Urinary tract infection fighting potential of newly synthesized ruthenium carbonyl complex of N-dehydroacetic acid-N′-o-vanillin-ethylenediamine. Inorg. Chim. Acta 2017a, 467, 80–92; https://doi.org/10.1016/j.ica.2017.07.051.Suche in Google Scholar

Mir, J. M.; Malik, B. A.; Khan, M. W.; Maurya, R. C. Molybdenum dinitrosyl Schiff base complexes of dehydroacetic acid and thiourea derivatives: DFT‐experimental characterization and nosocomial anti‐infectious implications. J. Chin. Chem. Soc. 2019b, 66, 651–659; https://doi.org/10.1002/jccs.201800337.Suche in Google Scholar

Mir, J. M.; Maurya, R. C. A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical implications. Rev. Inorg. Chem. 2018a, 38(4), 193–220; https://doi.org/10.1515/revic-2018-0011.Suche in Google Scholar

Mir, J. M.; Maurya, R. C. A new Ru(II) carbonyl complex of 2-benzoylpyridine: medicinal and material evaluation at the computational–experimental convergence. J. Chinese Adv. Mater. Soc. 2018b, 36, 156–168; https://doi.org/10.1080/22243682.2018.1442743.Suche in Google Scholar

Mir, J. M.; Maurya, R. C. Nitric oxide functionalized molybdenum(0) pyrazolone Schiff base complexes: thermal and biochemical study. RSC Adv. 2018c, 8, 35102–35130; https://doi.org/10.1039/c8ra05956j.Suche in Google Scholar PubMed PubMed Central

Mir, J. M.; Maurya, R. C. NO news is good news for eyes: a mini review. Ann. Ophthalmol. Vis. Sci. 2018d, 1, 1003.Suche in Google Scholar

Mir, J. M.; Maurya, R. C. Physiological and pathophysiological implications of hydrogen sulfide: a persuasion to change the fate of the dangerous molecule. J. Chinese Adv. Mater. Soc. 2018e, 6, 434–458. https://doi.org/10.1080/22243682.2018.1493951.Suche in Google Scholar

Mir, J. M.; Maurya, R. C. Nitric oxide as a therapeutic option for COVID-19 treatment: a concise perspective. New J. Chem. 2020a, in press.10.1039/D0NJ03823GSuche in Google Scholar

Mir, J. M.; Maurya, R. C. Nitric oxide boosters as defensive agents against COVID-19 infection: an opinion. J. Biomol. Struct. Dyn. 2020b; https://doi.org/10.1080/07391102.2020.1852969.Suche in Google Scholar PubMed PubMed Central

Mir, J. M.; Maurya, R. C.; Rajak, D. K.; Malik, B. A.; Jaget, P. S.; Jain, N. A novel Schiff base complex of brain fuel (sugar) coordinated with intelligence mineral (Zn): synthesis, conjoint DFT-experimental evaluation and super oxide dismutation. Karbala Int. J. Modern Sci. 2017c, 3, 153–164; https://doi.org/10.1016/j.kijoms.2017.05.003.Suche in Google Scholar

Mir, J. M.; Maurya, R. C.; Vishwakarma, P. K. Corrosion resistance and thermal behavior of acetylacetonato-oxoperoxomolybdenum(VI) complex of maltol: experimental and DFT studies. Karbala Int. J. Modern Sci. 2017d, 3, 212–223; https://doi.org/10.1016/j.kijoms.2017.08.006.Suche in Google Scholar

Mir, J. M.; Rajak, D. K.; Maurya, R. C. Bacterial sensitivity and SOD behavior of N-pyrone glucosamine Schiff base Fe(III) complex: conjoint experimental-DFT evaluation. J. Coord. Chem. 2017e, 70, 3199–3216; https://doi.org/10.1080/00958972.2017.1374381.Suche in Google Scholar

Mir, J. M.; Rajak, D. K.; Maurya, R. C. Bio-conjugated N-(2-hydroxy-1-naphthaldehyde)-glucosamine Cu (II) complex: bacterial sensitivity and superoxide dismutase-like activity. J. Coord. Chem. 2018a, 71, 2225–2242; https://doi.org/10.1080/00958972.2018.1482488.Suche in Google Scholar

Mir, J. M.; Roy, S.; Vishwakarma, P. K.; Maurya, R. C. cis-Dioxomolybdenum(VI) complex of N-o-hydroxyacetophenonene-isonicotinic acid hydrazide as nosocomial anti-infectious agent: experimental and theoretical study. J. Chinese Adv. Mater. Soc. 2018b, 6, 282–300; https://doi.org/10.1080/22243682.2018.1466727.Suche in Google Scholar

Mir, J. M.; Vishwakarma, P. K.; Maurya, R. C. Conjoint experimental–theoretical evaluation of pyrone-salicylic acid hydrazide copper(II) Schiff base complexes: their synthesis, SOD and electrochemical fronts. J. Chinese Adv. Mater. Soc. 2018c, 6, 55–80; https://doi.org/10.1080/22243682.2017.1407669.Suche in Google Scholar

Mir, J. M.; Vishwakarma, P. K.; Roy, S.; Maurya, R. C. Quinoline and pyrazolone functionalized cis-dioxomolybdenum(VI) complexes: synthesis, hyphenated experimental-DFT studies and bactericidal implications, J. Coord. Chem. 2018d, 71, 3860–3873. https://doi.org/10.1080/00958972.2018.1530767.Suche in Google Scholar

Mishra, R. M.; Pandey, S.; Saxena, R. Homozygous hemoglobin D with alpha thalassemia: case report. Open Hematol. J. 2011, 2, 1–4.Suche in Google Scholar

Mishra, L.; Singh, V. K. Co (ll), Ni (ll) and Cu (lI) and Zn (lI) complexes with Schiff bases derived from 2-aminobenzimidazoles and pyrazolycarboxaldehyde. Indian J. Chem. 1993, 32, 446.Suche in Google Scholar

Mladenova, R.; Ignatova, M.; Manolova, N.; Petrova, T.; Rashkov, I.; Jeffamines, E. D. Preparation, characterization and biological activity of Schiff base compounds derived from 8-hydroxyquinoline-2-carboxaldehyde. Eur. Polym. J. 2002, 38, 989–999; https://doi.org/10.1016/s0014-3057(01)00260-9.Suche in Google Scholar

Mohamed, G. G.; Abd El-Wahab, Z. H. Mixed ligand complexes of bis(phenylimine) Schiff base ligands incorporating pyridinium moiety: synthesis, characterization and antibacterial activity. Spectrochim. Acta A 2005, 61, 1059–1068; https://doi.org/10.1016/j.saa.2004.06.021.Suche in Google Scholar PubMed

Mohamed, G. G.; Mahmoud, W. H.; Diab, M. A.; El-Sonbati, A. Z.; Abbas, S. Y. Synthesis, characterization, theoretical study and biological activity of Schiff base nanomaterial analogues. J. Mol. Struct. 2019, 1181, 645–659; https://doi.org/10.1016/j.molstruc.2019.01.007.Suche in Google Scholar

Mohamed, G. G.; Omar, M. M.; Ibrahim, A. A. Spectroscopic and thermal characterization. Eur. J. Med. Chem. 2009, 44, 4801–4812; https://doi.org/10.1016/j.ejmech.2009.07.028.Suche in Google Scholar PubMed

More, M. S.; Joshi, P. G.; Mishra, Y. K.; Khanna, P. K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater. Today Chem. 2019, 14, 100195; https://doi.org/10.1016/j.mtchem.2019.100195.Suche in Google Scholar

Mounika, K.; Pragathi, A.; Gyanakumari, C. Synthesis, characterization and biological activity of a schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J. Sci. Res. 2010, 2, 513; https://doi.org/10.3329/jsr.v2i3.4899.Suche in Google Scholar

Nair, R.; Shah, A.; Baluja, S.; Chandas, S. Synthesis and antibacterial activity of some Schiff base complexes. J. Serb. Chem. Soc. 2006, 71, 733–744; https://doi.org/10.2298/jsc0607733n.Suche in Google Scholar

Nejo, A. A.; Kolawole, G. A.; Nejo, A. O. Synthesis, characterization, antibacterial, and thermal studies of unsymmetrical Schiff-base complexes of cobalt(II). J. Coord. Chem. 2010, 63, 4398–410; https://doi.org/10.1080/00958972.2010.532871.Suche in Google Scholar

Nishinaga, A.; Yamada, T.; Fujisawa, H.; Ishizaki, K.; Ihara, H.; Matsuura, T. Catalysis of cobalt-Schiff base complexes in oxygenation of alkenes: on the mechanism of ketonization. J. Mol. Catal. 1988, 48, 249–264; https://doi.org/10.1016/0304-5102(88)85009-0.Suche in Google Scholar

Nithya, P.; Helena, S.; Simpson, J.; Malaichamy, I.; Aathi, M.; Subbiah, G. New cobalt (II) and nickel (II) complexes of benzyl carbazate Schiff bases: syntheses, crystal structures, in vitro DNA and HSA binding studies. J. Photochem. Photobiol. B Biol. 2016, 165, 220–231; https://doi.org/10.1016/j.jphotobiol.2016.10.024.Suche in Google Scholar PubMed

Nithya, P.; Simpson, J.; Govindarajan, S. Template synthesis, structural variation, thermal behavior and antimicrobial screening of Mn (II), Co (II) and Ni (II) complexes of Schiff base ligands derived from benzyl carbazate and three isomers of acetylpyridine. Inorg. Chim. Acta 2017, 467, 180–193; https://doi.org/10.1016/j.ica.2017.07.059.Suche in Google Scholar

Okabe, M.; Sun, R. C.; Zenchoff, G. B. Synthesis of 1-(2,3-dideoxy-2-fluoro-.beta.-D-threo-pentofuranosyl)cytosine (F-ddC). A promising agent for the treatment of acquired immune deficiency syndrome. J. Org. Chem. 1991, 56, 4392–4397; https://doi.org/10.1021/jo00014a013.Suche in Google Scholar

Omidi, S.; Kakanejadifard, A. A review on biological activities of Schiff base, hydrazone, and oxime derivatives of curcumin. RSC Adv. 2020, 10, 30186–30202; https://doi.org/10.1039/d0ra05720g.Suche in Google Scholar PubMed PubMed Central

Panneerselvam, P.; Nair, R. R.; Vijayalakshmi, G.; Subramanian, E. H.; Sridhar, S. K. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur. J. Med. Chem. 2005, 40, 225–229; https://doi.org/10.1016/j.ejmech.2004.09.003.Suche in Google Scholar PubMed

Paul, P. Ruthenium, osmium and rhodium complexes of polypyridyl ligands: metal-promoted activities, stereochemical aspects and electrochemical properties. J. Chem. Sci. 2002, 114, 269–276; https://doi.org/10.1007/bf02703819.Suche in Google Scholar

Pervez, H.; Manzoor, N.; Yaqub, M.; Khan, A.; Khan, K. M.; Nasim, F. H.; Choudhary, M. I. Synthesis and urease inhibitory properties of some new N4-substituted 5-nitroisatin-3-thiosemicarbazones. Lett. Drug Des. Discov. 2010, 7, 102–108; https://doi.org/10.2174/157018010790225840.Suche in Google Scholar

Prashanthi, Y.; Kiranmai, K.; Subhashini, N. J. P. Synthesis potentiometric and antimicrobial studies on metal complexes of isoxazole Schiff bases. Spectrochim. Acta A 2008, 70, 30–35; https://doi.org/10.1016/j.saa.2007.07.028.Suche in Google Scholar PubMed

Radecka-Paryzek, W.; Pospieszna-Markiewicz, I.; Kubicki, M. Self-assembled two-dimensional salicylaldimine lanthanum(III) nitrate coordination polymer. Inorg. Chim. Acta 2007, 360, 488–496; https://doi.org/10.1016/j.ica.2006.07.071.Suche in Google Scholar

Rajavel, R.; Senthil, M.; Anitha, C. Synthesis, physical characterization and biological activity of some Schiff base complexes. E-J. Chem. 2008, 5, 620–626; https://doi.org/10.1155/2008/583487.Suche in Google Scholar

Rajesh, J.; Kesavan, M. P.; Ayyanaar, S.; Karthikeyan, K.; Rajagopal, G.; Athappan, P. DNA interaction and cleavage studies of ancillary chiral ligand and N,N‐donor ligands coordinated platinum(II) complexes. Appl. Organomet. Chem. 2017, 31, e3868; https://doi.org/10.1002/aoc.3868.Suche in Google Scholar

Raman, N.; Sobha, S.; Thamaraichelvan, A. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents. Spectrochim. Acta A 2011, 78, 888–898; https://doi.org/10.1016/j.saa.2010.12.056.Suche in Google Scholar PubMed

Rani, C. V.; Kesavan, M. P.; Kumar, G. G. V.; Jeyaraj, M. J. D.; Rajesh, J.; Rajagopal, G. Synthesis, physicochemical characterization and structural studies of new Schiff base ligand and its metal (II) complexes: in silico molecular docking analysis, antimicrobial activity and cytotoxicity. Appl. Organomet. Chem. 2018, 32, e4538.10.1002/aoc.4538Suche in Google Scholar

Rosu, T.; Pahontu, E.; Maxim, C.; Georgescu, R.; Stanica, N.; Gulea, A. Some new Cu (II) complexes containing an ON donor Schiff base: synthesis, characterization and antibacterial activity. Polyhedron 2011, 30, 154–162; https://doi.org/10.1016/j.poly.2010.10.001.Suche in Google Scholar

Sahin, M.; Kocak, N.; Arslan, U.; Sahin, O.; Yilmaz, M. Bis-Schiff base derivatives of 2,5-dihydroxybenzaldehyde: synthesis, characterization and antimicrobial activity of their Cu(II), Co(II) and Zn(II) complexes. J. Macromol. Sci. 2013, 50, 821–827; https://doi.org/10.1080/10601325.2013.802154.Suche in Google Scholar

Sandhanamalar, D.; Vedanayaki, S.; Rajavel, R. Synthesis, characterization, electrochemical and antimicrobial activity of macrocyclic binuclear Cu(ii), Ni(ii) and VO(ii) Schiff base complexes. Chem. Sci. Trans. 2013, 2, 529–537.10.7598/cst2013.332Suche in Google Scholar

Sathe, B. S.; Jayachandran, E.; Jagtap, V. A.; Sreenivasa, G. M. Synthesis and antibacterial, antifungal activity of novel analogs of fluoro benzothiazole Schiff bases. J. Chem. Pharm. Sci. 2010, 3, 216–217.Suche in Google Scholar

Sathiyaraj, S.; Sampath, K.; Butcher, R. J.; Pallepogu, R.; Jayabalakrishnan, C. Designing, structural elucidation, comparison of DNA binding, cleavage, radical scavenging activity and anticancer activity of copper (I) complex with 5-dimethyl-2-phenyl-4-[(pyridin-2-ylmethylene)-amino]-1, 2-dihydro-pyrazol-3-one Schiff base ligand. Eur. J. Med. Chem. 2013, 64, 81–89; https://doi.org/10.1016/j.ejmech.2013.03.047.Suche in Google Scholar PubMed

Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Ann. Chem. Pharm. 1864, 131, 118–119; https://doi.org/10.1002/jlac.18641310113.Suche in Google Scholar

Shoaib, K.; Rehman, W.; Mohammad, B.; Ali, S. Proteomics and bioinformatics synthesis, characterization and biological applications of transition metal complexes of [NO] donor Schiff bases. J. Proteomics Bioinform. 2013, 6, 153–157.10.4172/jpb.1000274Suche in Google Scholar

Shokrollahi, A.; Ghaedi, M.; Alipour, S.; Kianfar, A. Spectrophotometric study of complexation between a series of salophens and some transition metal ions in DMF solvent. Eur. J. Chem. 2011, 2, 324–330; https://doi.org/10.5155/eurjchem.2.3.324-330.272.Suche in Google Scholar

Shukla, S.; Srivastava, R. S.; Shrivastava, S. K.; Sodhi, A.; Kumar, P. Synthesis, characterization, in vitro anticancer activity, and docking of Schiff bases of 4-amino-1,2-naphthoquinone. Med. Chem. Res. 2013, 22, 1604–1617; https://doi.org/10.1007/s00044-012-0150-7.Suche in Google Scholar

Singh, R.; Gupta, N.; Fahmi, N. Biochemical aspects of dioxomolybdenum(VI) and manganese(II) complexes. Indian J. Chem. 1999, 38A, 1150–1158.Suche in Google Scholar

Sinha, D.; Tiwari, A. K.; Singh, S.; Shukla, G.; Mishra, P.; Chandra, H.; Mishra, A. K. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur. J. Med. Chem. 2008, 43, 160–165; https://doi.org/10.1016/j.ejmech.2007.03.022.Suche in Google Scholar PubMed

Sinthuja, S. A.; Shaji, Y. C.; Rose, G. L. Synthesis, characterization and evaluation of biological properties of transition metal chelates with schiff base ligands derived from glutaraldehyde with L-leucine. Int. J. Sci. Res. Sci. Technol. 2018, 4, 2395–6011.Suche in Google Scholar

Skalny, A. V.; Rink, L.; Ajsuvakova, O. P.; Aschner, M.; Gritsenko, V. A.; Alekseenko, S. I.; Svistunov, A. A.; Petrakis, D.; Spandidos, D. A.; Aaseth, J.; Tsatsakis, A. Zinc and respiratory tractinfections: perspectives for COVID-19. Int. J. Mol. Med. 2020, 46(1), 17–26; https://doi.org/10.3892/ijmm.2020.4575.Suche in Google Scholar PubMed PubMed Central

Slassi, S.; Aarjane, M.; Yamni, K.; Amine, A. Synthesis, crystal structure, DFT calculations, Hirshfeld surfaces, and antibacterial activities of schiff base based on imidazole. J. Mol. Struct. 2019, 1197, 547–554.10.1016/j.molstruc.2019.07.071Suche in Google Scholar

Sondhi, S. M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorg. Med. Chem. 2006, 14, 3758–3765; https://doi.org/10.1016/j.bmc.2006.01.054.Suche in Google Scholar PubMed

Sönmez, M.; Levent, A.; Şekerci, M. Synthesis and characterization of Cu(II), Co(II), Ni(II), and Zn(II) complexes of a schiff base derived from 1‐amino‐5‐benzoyl‐4‐phenyl‐1H‐pyrimidine‐2‐one and 3‐hydroxysalicylaldehyde. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 2003, 33, 1747–1761; https://doi.org/10.1081/sim-120026545.Suche in Google Scholar

Sriram, D.; Yogeeswari, P.; Myneedu, N. S.; Saraswat, V. Microwave-assisted synthesis and their evaluation of anti-HIV activities. Bioorg. Med. Chem. Lett. 2006, 16, 2127–2129; https://doi.org/10.1016/j.bmcl.2006.01.050.Suche in Google Scholar PubMed

Sundriyal, S.; Sharma, R. K.; Jain, R. Current advances in antifungal targets and drug development. Curr. Med. Chem. 2006, 13, 1321–1335; https://doi.org/10.2174/092986706776873023.Suche in Google Scholar PubMed

Thirunavukkarasu, T.; Sparkes, H. A.; Natarajan, K.; Gnanasoundari, V. G. Synthesis, characterization and biological studies of a novel Cu(II) Schiff base complex. Inorg. Chim. Acta 2018, 473, 255–262; https://doi.org/10.1016/j.ica.2018.01.006.Suche in Google Scholar

Thomas, M.; Kulandaisamy, A.; Manohar, A. Synthesis, spectral, redox and antimicrobial investigation of some Schiff base transition metal complexes. Int. J. Chemtech Res. 2012, 4, 247–257.Suche in Google Scholar

Wang, G.; Chang, J. C. Synthesis and characterization of copper(II) and zinc(II) complexes of schiff bases derived from amino acids and 2, 4-dihydroxybenzaldehyde. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 1991, 21, 897–902; https://doi.org/10.1080/15533179108016850.Suche in Google Scholar

Wei, D.; Li, N.; Lu, G.; Yao, K. Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base. Sci. China Ser. B 2006, 49, 225–229; https://doi.org/10.1007/s11426-006-0225-8.Suche in Google Scholar

Wei, Y.; Song, L.; Jiang, L.; Huang, Z.; Wang, S.; Yuan, Q.; Mu, X.; Zhu, X.; Zhou, S. Aluminum complexes with Schiff base bridged bis (indolyl) ligands: synthesis, structure, and catalytic activity for polymerization of rac-lactide. Dalton Trans. 2019, 48(40), 15290–15299.10.1039/C9DT02724FSuche in Google Scholar

Yang, X. X.; Li, C. M.; Li, Y. F.; Wang, J.; Huang, C. Z. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 2017, 9, 16086–16092; https://doi.org/10.1039/c7nr06520e.Suche in Google Scholar PubMed

Yang, X. B.; Wang, Q.; Huang, Y.; Fu, P. H.; Zhang, J. S.; Zeng, R. Q. Synthesis, DNA interaction and antimicrobial activities of copper (II) complexes with Schiff base ligands derived from kaempferol and polyamines. Inorg. Chem. Commun. 2012, 25, 55–59; https://doi.org/10.1016/j.inoche.2012.08.010.Suche in Google Scholar

Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih, N.; Salimon, J.; Abdullah, B. Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arab. J. Chem. 2017, 10, S1639–S1644; https://doi.org/10.1016/j.arabjc.2013.06.006.Suche in Google Scholar

Zhang, B.; Li, L.; Liu, Y.; Wang, Q. Antiviral mechanism study of gossypol and its Schiff base derivatives based on reactive oxygen species (ROS). RSC Adv. 2016, 6, 87637–87648; https://doi.org/10.1039/c6ra14015g.Suche in Google Scholar

Zhang, X.; Jiao, C.; Wang, J.; Liu, Q.; Li, R.; Yang, P.; Zhang, M. Removal of uranium (VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem. Eng. J. 2012, 198, 412–419; https://doi.org/10.1016/j.cej.2012.05.090.Suche in Google Scholar

Zheng, X. Y.; Yang, P. Crystal structures and anti-gastric cancer activities of two Cd(II)-based coordination polymers constructed from different donor ligands. J. Struct. Chem. 2020, 61, 970–978; https://doi.org/10.1134/s0022476620060189.Suche in Google Scholar

Received: 2020-09-12
Accepted: 2021-01-04
Published Online: 2021-01-21
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revic-2020-0020/pdf
Button zum nach oben scrollen