SAPO-34 zeotype membrane for gas sweetening
-
I Gusti B. N. Makertihartha
, Kevin S. Kencana, Theodorus R. Dwiputra
, Khoiruddin Khoiruddin, Graecia Lugito
, Rino R. Mukti
und I Gede Wenten
Abstract
Membranes are considered promising tools for gas sweetening due to their lower footprint (i.e., area and energy requirement, considering elimination of solvent/absorbent and its associated regeneration procedures), and ease of scale-up. Performing membrane gas separation is strongly dependent on membrane materials. With a 0.38-nm pore size, the SAPO-34 membrane surpasses the upper bond limit for CO2/CH4 separation. However, preparing defect-free and high-performance zeolite membranes is quite challenging. This paper reviews gas transport and separation mechanisms in SAPO-34 membranes, and it discusses prospective approaches for obtaining membranes with defect-free selective layers and hence high separation performance. Highlights, as well as the authors’ perspectives on the future development of SAPO-34 membranes in the field of gas separation, are pointed out.
Funding source: Indonesian Ministry of Research and Technology
Award Identifier / Grant number: World Class Research Program
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research is funded by the Indonesian Ministry of Research and Technology under World Class Research Program.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Aoki, K., Kusakabe, K., and Morooka, S. (1998). Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J. Membr. Sci. 141: 197–205, https://doi.org/10.1016/s0376-7388(97)00300-1.Suche in Google Scholar
Aryanti, P.T.P., Sianipar, M., Zunita, M., and Wenten, I.G. (2017). Modified membrane with antibacterial properties. Membr. Water Treat 8: 463–481. https://doi.org/10.12989/mwt.2017.8.5.463.Suche in Google Scholar
Asaeda, M., and Yamasaki, S. (2001). Separation of inorganic/organic gas mixtures by porous silica membranes. Separ. Purif. Technol. 25: 151–159, https://doi.org/10.1016/s1383-5866(01)00099-5.Suche in Google Scholar
Avila, A.M., Funke, H.H., Zhang, Y., Falconer, J.L., and Noble, R.D. (2009). Concentration polarization in SAPO-34 membranes at high pressures. J. Membr. Sci. 335: 32–36, https://doi.org/10.1016/j.memsci.2009.02.028.Suche in Google Scholar
Bai, L., Chang, N., Li, M., Wang, Y., Nan, G., Zhang, Y., Hu, D., Zeng, G., and Wei, W. (2017). Ultrafast synthesis of thin SAPO-34 zeolite membrane by oil-bath heating. Microporous Mesoporous Mater. 241: 392–399, https://doi.org/10.1016/j.micromeso.2016.12.019.Suche in Google Scholar
Baker, R.W. (2002). Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41: 1393–1411, https://doi.org/10.1021/ie0108088.Suche in Google Scholar
Bakker, W.J.W., Kapteijn, F., Poppe, J., and Moulijn, J.A. (1996). Permeation characteristics of a metal-supported silicalite-1 zeolite membrane. J. Membr. Sci. 117: 57–78, https://doi.org/10.1016/0376-7388(96)00035-x.Suche in Google Scholar
Belhaj Messaoud, S., Takagaki, A., Sugawara, T., Kikuchi, R., and Oyama, ST. (2015). Mixed matrix membranes using SAPO-34/polyetherimide for carbon dioxide/methane separation. Separ. Purif. Technol. 148: 38–48, https://doi.org/10.1016/j.seppur.2015.04.017.Suche in Google Scholar
van den Bergh, J., Mittelmeijer-Hazeleger, M., and Kapteijn, F. (2010). Modeling permeation of CO2/CH4, N2/CH4, and CO2/air mixtures across a DD3R zeolite membrane. J. Phys. Chem. C 114: 9379–9389, https://doi.org/10.1021/jp101075h.Suche in Google Scholar
Bernal, M.., Coronas, J., Menéndez, M., and Santamarı́a, J. (2002). Characterization of zeolite membranes by temperature programmed permeation and step desorption. J. Membr. Sci. 195: 125–138, https://doi.org/10.1016/s0376-7388(01)00557-9.Suche in Google Scholar
Bonilla, G., Vlachos, D.G., and Tsapatsis, M. (2001). Simulations and experiments on the growth and microstructure of zeolite MFI films and membranes made by secondary growth. Microporous Mesoporous Mater. 42: 191–203, https://doi.org/10.1016/s1387-1811(00)00317-6.Suche in Google Scholar
Burggraaf, A.J. (1996). Chapter 2 Important characteristics of inorganic membranes. Membr. Sci. Technol. 4: 21–34, https://doi.org/10.1016/s0927-5193(96)80005-2.Suche in Google Scholar
Cakal, U., Yilmaz, L., and Kalipcilar, H. (2012). Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes. J. Membr. Sci. 417–418: 45–51, https://doi.org/10.1016/j.memsci.2012.06.011.Suche in Google Scholar
Camblor, M.A., Corma, A., Díaz-Cabañas, M.-J., and Baerlocher, C. (1998). Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25. J. Phys. Chem. B 102: 44–51, https://doi.org/10.1021/jp972319k.Suche in Google Scholar
Carreon, M., Dahe, G., Feng, J., and Venna, S.R. (2017). Mixed matrix membranes for gas separation applications. In: Carreon, MA. (Ed.), Membrane Gas Separation, World Scientific Series in Membrane Science and Technology: Biological and Biomimetic Applications, Energy and the Environment, 1: 1–57. https://doi.org/10.1142/9789813207714_0001.Suche in Google Scholar
Carreon, M.A., Li, S., Falconer, J.L., and Noble, R.D. (2008a). Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 130: 5412–5413, https://doi.org/10.1021/ja801294f.Suche in Google Scholar
Carreon, M.A., Li, S., Falconer, J.L., and Noble, R.D. (2008b). SAPO-34 seeds and membranes prepared using multiple structure directing agents. Adv. Mater. 20: 729–732, https://doi.org/10.1002/adma.200701280.Suche in Google Scholar
Chaikittisilp, W., Suzuki, Y., Mukti, R.R., Suzuki, T., Sugita, K., Itabashi, K., Shimojima, A., and Okubo, T. (2013). formation of hierarchically organized zeolites by sequential intergrowth. Angew. Chem. Int. Ed. 52: 3355–3359, https://doi.org/10.1002/anie.201209638.Suche in Google Scholar
Chang, N., Tang, H., Bai, L., Zhang, Y., and Zeng, G. (2018). Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes. J. Membr. Sci. 552: 13–21, https://doi.org/10.1016/j.memsci.2018.01.066.Suche in Google Scholar
Chen, Y., Zhang, Y., Zhang, C., Jiang, J., and Gu, X. (2017). Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4. J CO2 Util 18: 30–40, https://doi.org/10.1016/j.jcou.2017.01.005.Suche in Google Scholar
Chew, T.L., and Ahmad, A.L. (2016). Gas permeation properties of modified SAPO-34 zeolite membranes. Procedia Eng 148: 1225–1231, https://doi.org/10.1016/j.proeng.2016.06.471.Suche in Google Scholar
Chew, T.L., Ahmad, A.L., and Bhatia, S. (2011). Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chem. Eng. J. 171: 1053–1059, https://doi.org/10.1016/j.cej.2011.05.001.Suche in Google Scholar
Chew, T.L., Ahmad, A.L., and Bhatia, S. (2012). Microwave heating-synthesized zeolite membrane for CO2/CH4 separation. Desalin Water Treat 47: 139–149, https://doi.org/10.1080/19443994.2012.696796.Suche in Google Scholar
Chew, T.L., Ahmad, A.L., and Bhatia, S. (2014). Development of Ba-SAPO-34 zeolite membrane for separation of CO2 in the binary gas mixtures. J Teknologi 69: 5–10, https://doi.org/10.11113/jt.v69.3387.Suche in Google Scholar
Choi, J., Ghosh, S., King, L., and Tsapatsis, M. (2006). MFI zeolite membranes from a- and randomly oriented monolayers. Adsorption 12: 339–360, https://doi.org/10.1007/s10450-006-0564-y.Suche in Google Scholar
Cui, Y., Kita, H., and Okamoto, K. (2004). Preparation and gas separation performance of zeolite T membrane. J. Mater. Chem. 14: 924, https://doi.org/10.1039/b311881a.Suche in Google Scholar
Do, D.D. (1998). Adsorption Analysis: Equilibria and Kinetics. Series on Chemical Engineering, 2. London: Imperial College Press.10.1142/p111Suche in Google Scholar
Drioli, E., and Curcio, E. (2007). Membrane engineering for process intensification: a perspective. J. Chem. Technol. Biotechnol. 82: 223–227, https://doi.org/10.1002/jctb.1650.Suche in Google Scholar
Duke, M.C., Zhu, B., Doherty, C.M., Hill, M.R., Hill, A.J., and Carreon, M.A. (2016). Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination 377: 128–137, https://doi.org/10.1016/j.desal.2015.09.004.Suche in Google Scholar
Feng, C., Khulbe, K.C., Matsuura, T., Farnood, R., and Ismail, A.F. (2015). Recent progress in zeolite/zeotype membranes. J. Membr. Sci. Res. 1: 49–72. https://doi.org/10.22079/jmsr.2015.13530.Suche in Google Scholar
Funke, H.H., Tokay, B., Zhou, R., Ping, E.W., Zhang, Y., Falconer, J.L., and Noble, R.D. (2012). Spatially resolved gas permeation through SAPO-34 membranes. J. Membr. Sci. 409–410: 212–221, https://doi.org/10.1016/j.memsci.2012.03.058.Suche in Google Scholar
Gilliland, E.R., Baddour, R.F., and Russell, J.L. (1958). Rates of flow through microporous solids. AIChE J. 4: 90–96, https://doi.org/10.1002/aic.690040117.Suche in Google Scholar
Hakim, A.N., Khoiruddin, K., Ariono, D., and Wenten, I.G. (2020). Ionic separation in electrodeionization system: mass transfer mechanism and factor affecting separation performance. Separ. Purif. Rev. 49: 294–316, https://doi.org/10.1080/15422119.2019.1608562.Suche in Google Scholar
Handojo, L., Wardani, A.K., Regina, D., Bella, C., Kresnowati, M.T.A.P., and Wenten, I.G. (2019). Electro-membrane processes for organic acid recovery. RSC Adv. 9: 7854–7869, https://doi.org/10.1039/c8ra09227c.Suche in Google Scholar
Hasegawa, Y., Tanaka, T., Watanabe, K., Jeong, B.-H., Kusakabe, K., and Morooka, S. (2002). Separation of CO2-CH4 and CO2-N2 systems using ion-exchanged FAU-type zeolite membranes with different Si/Al ratios. Kor. J. Chem. Eng. 19: 309–313, https://doi.org/10.1007/bf02698420.Suche in Google Scholar
Himeno, S., Tomita, T., Suzuki, K., Nakayama, K., Yajima, K., and Yoshida, S. (2007). Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res. 46: 6989–6997, https://doi.org/10.1021/ie061682n.Suche in Google Scholar
Himma, N.F., Anisah, S., Prasetya, N., and Wenten, I.G. (2016). Advances in preparation, modification, and application of polypropylene membrane. J. Polym. Eng. 36: 329–362, https://doi.org/10.1515/polyeng-2015-0112.Suche in Google Scholar
Himma, N.F., Prasetya, N., Anisah, S., and Wenten, I.G. (2019a). Superhydrophobic membrane: progress in preparation and its separation properties. Rev. Chem. Eng. 35: 211–238, https://doi.org/10.1515/revce-2017-0030.Suche in Google Scholar
Himma, N.F., Wardani, A.K., Prasetya, N., Aryanti, P.T.P., and Wenten, I.G. (2019b). Recent progress and challenges in membrane-based O2/N2 separation. Rev. Chem. Eng. 35: 591–625, https://doi.org/10.1515/revce-2017-0094.Suche in Google Scholar
Hong, M., Li, S., Funke, H.F., Falconer, J.L., and Noble, R.D. (2007). Ion-exchanged SAPO-34 membranes for light gas separations. Microporous Mesoporous Mater. 106: 140–146, https://doi.org/10.1016/j.micromeso.2007.02.037.Suche in Google Scholar
Iarikov, D.D., and Ted Oyama, S. (2011). Review of CO2/CH4 separation membranes. Membr. Sci. Technol. 14: 91–115, https://doi.org/10.1016/b978-0-444-53728-7.00005-7.Suche in Google Scholar
Jabbari, Z., Fatemi, S., and Davoodpour, M. (2014). Comparative study of seeding methods; dip-coating, rubbing and EPD, in SAPO-34 thin film fabrication. Adv. Powder Technol. 25: 321–330, https://doi.org/10.1016/j.apt.2013.05.011.Suche in Google Scholar
Jang, E., Hong, S., Kim, E., Choi, N., Cho, S.J., and Choi, J. (2018). Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation. J. Membr. Sci. 549: 46–59, https://doi.org/10.1016/j.memsci.2017.11.068.Suche in Google Scholar
Jareman, F., Hedlund, J., Creaser, D., and Sterte, J. (2004). Modelling of single gas permeation in real MFI membranes. J. Membr. Sci. 236: 81–89, https://doi.org/10.1016/j.memsci.2004.01.028.Suche in Google Scholar
Julian, H., Sutrisna, P.D., Hakim, A.N., Harsono, H.O., Hugo, Y.A., and Wenten, I.G. (2018). Nano-silica/polysulfone asymmetric mixed-matrix membranes (MMMs) with high CO2 permeance in the application of CO2/N2 separation. Polym. Plast. Technol. Eng. 58: 678–689, https://doi.org/10.1080/03602559.2018.1520253.Suche in Google Scholar
Junaidi, M.U.M., Khoo, C.P., Leo, C.P., and Ahmad, A.L. (2014a). The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous Mesoporous Mater. 192: 52–59, https://doi.org/10.1016/j.micromeso.2013.10.006.Suche in Google Scholar
Junaidi, M.U.M., Leo, C.P., Ahmad, A.L., and Ahmad, N.A. (2015). Fluorocarbon functionalized SAPO-34 zeolite incorporated in asymmetric mixed matrix membranes for carbon dioxide separation in wet gases. Microporous Mesoporous Mater. 206: 23–33, https://doi.org/10.1016/j.micromeso.2014.12.013.Suche in Google Scholar
Junaidi, M.U.M., Leo, C.P., Ahmad, A.L., Kamal, S.N.M., and Chew, T.L. (2014b). Carbon dioxide separation using asymmetric polysulfone mixed matrix membranes incorporated with SAPO-34 zeolite. Fuel Process. Technol. 118: 125–132, https://doi.org/10.1016/j.fuproc.2013.08.009.Suche in Google Scholar
Kalipcilar, H., Bowen, T.C., Noble, R.D., and Falconer, J.L. (2002). Synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports. Chem. Mater. 14: 3458–3464, https://doi.org/10.1021/cm020248i.Suche in Google Scholar
Kapteijn, F., Bakker, W.J.W., van de Graaf, J., Zheng, G., Poppe, J., and Moulijn, J.A. (1995). Permeation and separation behaviour of a silicalite-1 membrane. Catal. Today 25: 213–218, https://doi.org/10.1016/0920-5861(95)00078-t.Suche in Google Scholar
Kapteijn, F., Moulijn, J.A., and Krishna, R. (2000). The generalized Maxwell–Stefan model for diffusion in zeolites:: sorbate molecules with different saturation loadings. Chem. Eng. Sci. 55: 2923–2930, https://doi.org/10.1016/s0009-2509(99)00564-3.Suche in Google Scholar
Kentish, S.E., Scholes, C.A., and Stevens, G.W. (2008). Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat. Chem. Eng. 1: 52–66, https://doi.org/10.2174/2211334710801010052.Suche in Google Scholar
Kgaphola, K., Sigalas, I., and Daramola, M.O. (2017). Synthesis and characterization of nanocomposite SAPO-34/ceramic membrane for post-combustion CO2 capture. Asia Pac. J. Chem. Eng. 12: 894–904, https://doi.org/10.1002/apj.2127.Suche in Google Scholar
Khajavi, S., Sartipi, S., Gascon, J., Jansen, J.C., and Kapteijn, F. (2010). Thermostability of hydroxy sodalite in view of membrane applications. Microporous Mesoporous Mater. 132: 510–517, https://doi.org/10.1016/j.micromeso.2010.03.035.Suche in Google Scholar
Kida, K., Maeta, Y., and Yogo, K. (2018). Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation. Separ. Purif. Technol. 197: 116–121, https://doi.org/10.1016/j.seppur.2017.12.060.Suche in Google Scholar
Kosinov, N., Gascon, J., Kapteijn, F., and Hensen, E.J.M. (2016). Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 499: 65–79, https://doi.org/10.1016/j.memsci.2015.10.049.Suche in Google Scholar
Krishna, R., Baten, J.M., García-pérez, E., and Calero, S. (2006). Incorporating the loading dependence of the Maxwell−Stefan diffusivity in the modeling of CH4 and CO2 permeation across zeolite membranes. Ind. Eng. Chem. Res. 46: 2974–2986, https://doi.org/10.1021/ie060693d.Suche in Google Scholar
Lassinantti Gualtieri, M., Andersson, C., Jareman, F., Hedlund, J., Gualtieri, A.F., Leoni, M., and Meneghini, C. (2007). Crack formation in α-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction. J. Membr. Sci. 290: 95–104, https://doi.org/10.1016/j.memsci.2006.12.018.Suche in Google Scholar
Li, M., Zhang, J., Liu, X., Wang, Y., Liu, C., Hu, D., Zeng, G., Zhang, Y., Wei, W., and Sun, Y. (2016). Synthesis of high performance SAPO-34 zeolite membrane by a novel two-step hydrothermal synthesis+dry gel conversion method. Microporous Mesoporous Mater. 225: 261–271, https://doi.org/10.1016/j.micromeso.2015.11.056.Suche in Google Scholar
Li, S., Alvarado, G., Noble, R.D., and Falconer, J.L. (2005a). Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. J. Membr. Sci. 251: 59–66, https://doi.org/10.1016/j.memsci.2004.10.036.Suche in Google Scholar
Li, S., Martinek, J.G., Falconer, J.L., Noble, R.D., and Gardner, TQ. (2005b). High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind. Eng. Chem. Res. 44: 3220–3228, https://doi.org/10.1021/ie0490177.Suche in Google Scholar
Li, S., Carreon, M.A., Zhang, Y., Funke, H.H., Noble, R.D., and Falconer, J.L. (2010). Scale-up of SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 352: 7–13, https://doi.org/10.1016/j.memsci.2010.01.037.Suche in Google Scholar
Li, S., Falconer, J.L., and Noble, R.D. (2004). SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 241: 121–135, https://doi.org/10.1016/j.memsci.2004.04.027.Suche in Google Scholar
Li, S., Falconer, J.L., and Noble, R.D. (2008). SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous Mesoporous Mater. 110: 310–317, https://doi.org/10.1016/j.micromeso.2007.06.016.Suche in Google Scholar
Li, S., Falconer, J.L., Noble, R.D., and Krishna, R. (2006a). Modeling permeation of CO2/CH4, CO2/N2, and N2/CH4 mixtures across SAPO-34 membrane with the Maxwell−Stefan equations. Ind. Eng. Chem. Res. 46: 3904–3911, https://doi.org/10.1021/ie0610703.Suche in Google Scholar
Li, S., Falconer, J.L.J.L., and Noble, R.D.R.D. (2006b). Improved SAPO-34 membranes for CO2/CH4 separations. Adv. Mater. 18: 2601–2603, https://doi.org/10.1002/adma.200601147.Suche in Google Scholar
Li, S., and Fan, C.Q. (2010). High-flux SAPO-34 membrane for CO2/N2 separation. Ind. Eng. Chem. Res. 49: 4399–4404, https://doi.org/10.1021/ie902082f.Suche in Google Scholar
Li, S., Zong, Z., Zhou, S.J., Huang, Y., Song, Z., Feng, X., Zhou, R., Meyer, H.S., Yu, M., and Carreon, M.A. (2015). SAPO-34 Membranes for N2/CH4 separation: preparation, characterization, separation performance and economic evaluation. J. Membr. Sci. 487: 141–151, https://doi.org/10.1016/j.memsci.2015.03.078.Suche in Google Scholar
Li, Y., Chung, T.-S., and Kulprathipanja, S. (2007). Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE J. 53: 610–616, https://doi.org/10.1002/aic.11109.Suche in Google Scholar
Lightfoot, E.N., Bassingthwaighte, J.B., and Grabowski, E.F. (1976). Hydrodynamic models for diffusion in microporous membranes. Ann. Biomed. Eng. 4: 78–90, https://doi.org/10.1007/bf02363560.Suche in Google Scholar
Lin, Y., and Duke, M.C. (2013). Recent progress in polycrystalline zeolite membrane research. Curr Opin Chem Eng 2: 209–216, https://doi.org/10.1016/j.coche.2013.03.002.Suche in Google Scholar
Lito, P.F., Cardoso, S.P., Rodrigues, A.E., and Silva, C.M. (2015). Kinetic modeling of pure and multicomponent gas permeation through microporous membranes: diffusion mechanisms and influence of isotherm type. Separ. Purif. Rev. 44: 287–307, https://doi.org/10.1080/15422119.2014.908918.Suche in Google Scholar
Liu, B., Zhou, R., Bu, N., Wang, Q., Zhong, S., Wang, B., and Hidetoshi, K. (2017). Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation. J. Membr. Sci. 524: 12–19, https://doi.org/10.1016/j.memsci.2016.11.004.Suche in Google Scholar
Liu, X., Du, S., and Zhang, B. (2013). The seeded growth of dense and thin SAPO-34 membranes on porous α-Al2O3 substrates under microwave irradiation. Mater. Lett. 91: 195–197, https://doi.org/10.1016/j.matlet.2012.09.076.Suche in Google Scholar
Lixiong, Z., Mengdong, J., and Enze, M. (1997). Synthesis of SAPO-34/ceramic composite membranes. Stud. Surf. Sci. Catal. 105: 2211–2216, https://doi.org/10.1016/s0167-2991(97)80692-1.Suche in Google Scholar
Maghsoudi, H., and Soltanieh, M. (2014). Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. J. Membr. Sci. 470: 159–165, https://doi.org/10.1016/j.memsci.2014.07.025.Suche in Google Scholar
Maghsoudi, H., Soltanieh, M., Bozorgzadeh, H., and Mohamadalizadeh, A. (2013). Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption 19: 1045–1053, https://doi.org/10.1007/s10450-013-9528-1.Suche in Google Scholar
Makertihartha, I.G.B.N., Dharmawijaya, P.T., Zunita, M., and Wenten, IG. (2017). Post combustion CO2 capture using zeolite membrane. AIP Conf. Proc. 1818: 20074, https://doi.org/10.1063/1.4979941.Suche in Google Scholar
Makertihartha, I.G.B.N., Kencana, K.S., Dwiputra, T.R., Khoiruddin, K., Mukti, R.R., and Wenten, I.G. (2020). Silica supported SAPO-34 membranes for CO2/N2 separation. Microporous Mesoporous Mater. 298: 110068, https://doi.org/10.1016/j.micromeso.2020.110068.Suche in Google Scholar
Mannan, H.A., Mukhtar, H., Murugesan, T., Nasir, R., Mohshim, D.F., and Mushtaq, A. (2013). Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol. 36: 1838–1846, https://doi.org/10.1002/ceat.201300342.Suche in Google Scholar
McLeary, E.E., Jansen, J.C., and Kapteijn, F. (2006). Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater. 90: 198–220, https://doi.org/10.1016/j.micromeso.2005.10.050.Suche in Google Scholar
Mirfendereski, S.M. (2019). Development of a multi-step hybrid method to synthesize highly-permeable and well-oriented SAPO-34 membranes for CO2 removal applications. Chem. Eng. Sci. 208: 115157, https://doi.org/10.1016/j.ces.2019.115157.Suche in Google Scholar
Mohammadi Demochali, M., Ghoreyshi, A.A., and Najafpour, G. (2011). Development of a multicomponent mass transport model for predicting CO2 separation behavior from its mixture with natural gas and hydrogen using zeolite membranes. Desalin Water Treat 34: 190–196, https://doi.org/10.5004/dwt.2011.2798.Suche in Google Scholar
Mohammadi, T., Asarehpour, S., and Samei, M. (2012). Effects of synthesis temperature and support material on CO2 and CH4 permeation through SAPO-34 membranes. Separ. Sci. Technol. 47: 2320–2330. https://doi.org/10.1080/01496395.2012.677924.Suche in Google Scholar
Mukti, R.R., Jentys, A., and Lercher, J.A. (2007). Orientation of alkyl-substituted aromatic molecules during sorption in the pores of H/ZSM-5 zeolites. J. Phys. Chem. C 111: 3973–3980, https://doi.org/10.1021/jp066715r.Suche in Google Scholar
Nishiyama, N., Gora, L., Teplyakov, V., Kapteijn, F., and Moulijn, J.A. (2001). Evaluation of reproducible high flux silicalite-1 membranes: gas permeation and separation characterization. Separ. Purif. Technol. 22–23: 295–307, https://doi.org/10.1016/s1383-5866(00)00152-0.Suche in Google Scholar
Ohta, Y., Takaba, H., and Nakao, S.-i. (2007). A combinatorial dynamic Monte Carlo approach to finding a suitable zeolite membrane structure for CO2/N2 separation. Microporous Mesoporous Mater. 101: 319–323, https://doi.org/10.1016/j.micromeso.2006.12.030.Suche in Google Scholar
Payra, P., and Prabir, K.D. (2003). Zeolites: a primer. In: ScottAuerbach, M., Carrada, K.A., and Dutta, P.K. (Eds.), Handb Zeolite Sci Technol, pp. 1–19.10.1201/9780203911167.pt1Suche in Google Scholar
Peng, C., Liu, Z., Horimoto, A., Anand, C., Yamada, H., Ohara, K., Sukenaga, S., Ando, M., Shibata, H., Takewaki, T., Mukti, R.R., Okubo, T., and Wakihara, T. (2018). Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method. Microporous Mesoporous Mater. 255: 192–199, https://doi.org/10.1016/j.micromeso.2017.07.042.Suche in Google Scholar
Peydayesh, M., Asarehpour, S., Mohammadi, T., and Bakhtiari, O. (2013). Preparation and characterization of SAPO-34 – Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chem. Eng. Res. Des. 91: 1335–1342, https://doi.org/10.1016/j.cherd.2013.01.022.Suche in Google Scholar
Ping, E.W., Zhou, R., Funke, H.H., Falconer, J.L., and Noble, R.D. (2012). Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations. J. Membr. Sci.: 770–775, https://doi.org/10.1016/j.memsci.2012.05.068.Suche in Google Scholar
Poling, B.E., Prausnitz, J.M., and O’Connell, J.P. (2001). The Properties of Gasses and Liquids, 5th ed.Suche in Google Scholar
Poshusta, J.C., Noble, R.D., and Falconer, J.L. (1999). Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J. Membr. Sci. 160: 115–125, https://doi.org/10.1016/s0376-7388(99)00073-3.Suche in Google Scholar
Poshusta, J.C., Noble, R.D., and Falconer, J.L. (2001). Characterization of SAPO-34 membranes by water adsorption. J. Membr. Sci. 186: 25–40, https://doi.org/10.1016/s0376-7388(00)00666-9.Suche in Google Scholar
Poshusta, J.C., Tuan, VA., Falconer, J.L., and Noble, R.D. (1998). Synthesis and permeation properties of SAPO-34 tubular membranes. Ind. Eng. Chem. Res. 37: 3924–3929, https://doi.org/10.1021/ie980240b.Suche in Google Scholar
Poshusta, J.C., Tuan, V.A., Pape, E.A., Noble, RD., and Falconer, J.L. (2000). Separation of light gas mixtures using SAPO-34 membranes. AIChE J. 46: 779–789, https://doi.org/10.1002/aic.690460412.Suche in Google Scholar
Prasetya, N., Himma, N.F., Sutrisna, P.D., Wenten, I.G., and Ladewig, B.P. (2019). A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chem. Eng. J.: 123575, https://doi.org/10.1016/j.cej.2019.123575.Suche in Google Scholar
Rehman, R.U., Song, Q., Peng, L., Wu, Z., and Gu, X. (2020). A facile coating to intact SAPO-34 membranes for wet CO2/CH4 mixture separation. Chem. Eng. Res. Des. 153: 37–48, https://doi.org/10.1016/j.cherd.2019.10.032.Suche in Google Scholar
Robeson, L.M. (2008). The upper bound revisited. J. Membr. Sci. 320: 390–400, https://doi.org/10.1016/j.memsci.2008.04.030.Suche in Google Scholar
Romero, J., Gijiu, C., Sanchez, J., and Rios, G.M. (2004). A unified approach of gas, liquid and supercritical solvent transport through microporous membranes. Chem. Eng. Sci. 59: 1569–1576, https://doi.org/10.1016/j.ces.2004.01.021.Suche in Google Scholar
Ruthven, D.M. (1984). Principles of adsorption and adsorption processes. New York: John Wiley & Sons.Suche in Google Scholar
Sanders, D.F., Smith, Z.P., Guo, R., Robeson, L.M., McGrath, J.E., Paul, D.R., and Freeman, B.D. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54: 4729–4761, https://doi.org/10.1016/j.polymer.2013.05.075.Suche in Google Scholar
Shah, M.S., Tsapatsis, M., and Siepmann, J.I. (2017). Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes. Chem. Rev. 117: 9755–9803, https://doi.org/10.1021/acs.chemrev.7b00095.Suche in Google Scholar
Shi, H. (2014). Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation. New J. Chem. 38: 5276–5278, https://doi.org/10.1039/c4nj01405g.Suche in Google Scholar
Shi, H. (2015). Organic template-free synthesis of SAPO-34 molecular sieve membranes for CO2–CH4 separation. RSC Adv. 5: 38330–38333, https://doi.org/10.1039/c5ra04848f.Suche in Google Scholar
Sianipar, M., Kim, S.H., Khoiruddin, K., Iskandar, F., and Wenten, I.G. (2017). Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 7: 51175–51198, https://doi.org/10.1039/c7ra08570b.Suche in Google Scholar
Sips, R. (1948). On the structure of a catalyst surface. J. Chem. Phys. 16: 490–495, https://doi.org/10.1063/1.1746922.Suche in Google Scholar
Smith, L., Cheetham, A.K., Morris, R.E., Marchese, L., Thomas, J.M., Wright, P.A., and Chen, J. (1996). On the nature of water bound to a solid acid catalyst. Science 271: 799, https://doi.org/10.1126/science.271.5250.799.Suche in Google Scholar
Song, S., Gao, F., Zhang, Y., Li, X., Zhou, M., Wang, B., and Zhou, R. (2019). Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations. Separ. Purif. Technol. 209: 946–954, https://doi.org/10.1016/j.seppur.2018.09.016.Suche in Google Scholar
Sun, Q., Wang, N., Guo, G., Chen, X., and Yu, J. (2015). Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance, 1978. J. Mater. Chem. 3: 3–9, https://doi.org/10.1039/c5ta04642d.Suche in Google Scholar
Szostak, R. (1989). Molecular Sieves-principles of Synthesis and Identification. The Netherlands: Springer Netherlands.10.1007/978-94-010-9529-7Suche in Google Scholar
Talesh, S.S.A., Fatemi, S., Hashemi, S.J., and Ghasemi, M. (2010). Effect of Si/Al ratio on CO2-CH4 adsorption and selectivity in synthesized SAPO-34. Separ. Sci. Technol. 45: 1295–1301, https://doi.org/10.1080/01496391003684414.Suche in Google Scholar
Tang, H., Bai, L., Wang, M., Zhang, Y., Li, M., Wang, M., Kong, L., Xu, N., Zhang, Y., and Rao, P. (2019). Fast synthesis of thin high silica SSZ-13 zeolite membrane using oil-bath heating. Int. J. Hydrogen Energy 44: 23107–23119, https://doi.org/10.1016/j.ijhydene.2019.07.038.Suche in Google Scholar
Tian, Y., Fan, L., Wang, Z., Qiu, S., and Zhu, G. (2009). Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture. J. Mater. Chem. 19: 7698–7703, https://doi.org/10.1039/b907237c.Suche in Google Scholar
Venna, S.R., and Carreon, M.A. (2011). Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir 27: 2888–2894, https://doi.org/10.1021/la105037n.Suche in Google Scholar
Watanabe, Y., Koiwai, A., Takeuchi, H., Hyodo, S.A., and Noda, S. (1993). Multinuclear NMR studies on the thermal stability of SAPO-34. J. Catal. 143: 430–436, https://doi.org/10.1006/jcat.1993.1287.Suche in Google Scholar
Wenten, I.G., Dharmawijaya, P.T., Aryanti, P.T.P., Mukti, R.R., and Khoiruddin, K. (2017). LTA zeolite membranes: current progress and challenges in pervaporation. RSC Adv. 7: 29520–29539, https://doi.org/10.1039/c7ra03341a.Suche in Google Scholar
Wenten, I.G., Friatnasary, D.L., Khoiruddin, K., Setiadi, T., and Boopathy, R. (2020a). Extractive membrane bioreactor (EMBR): recent advances and applications. Bioresour. Technol. 297: 122424, https://doi.org/10.1016/j.biortech.2019.122424.Suche in Google Scholar
Wenten, I.G., Khoiruddin, K., Aryanti, P.T.P., and Hakim, A.N. (2016). Scale-up strategies for membrane-based desalination processes: a review. J Membr Sci Res 2: 42–58, https://doi.org/10.1016/s0958-2118(00)86634-3.Suche in Google Scholar
Wenten, I.G., Khoiruddin, K., Aryanti, P.T.P., Victoria, A.V., and Tanukusuma, G. (2020b). Membrane-based zero-sludge palm oil mill plant. Rev. Chem. Eng. 36: 237–264, https://doi.org/10.1515/revce-2017-0117.Suche in Google Scholar
White, J.C., Dutta, P.K., Shqau, K., and Verweij, H. (2010). Synthesis of ultrathin zeolite y membranes and their application for separation of carbon dioxide and nitrogen gases. Langmuir 26: 10287–10293, https://doi.org/10.1021/la100463j.Suche in Google Scholar
Widodo, S., Ariono, D., Khoiruddin, K., Hakim, A.N., and Wenten, I.G. (2018). Recent advances in waste lube oils processing technologies. Environ. Prog. Sustain. Energy 37: 1867–1881, https://doi.org/10.1002/ep.13011.Suche in Google Scholar
Woodcock, D.A., Lightfoot, P., Villaescusa, L.A., Díaz-Cabañas, M.-J., Camblor, M.A., and Engberg, D. (1999). Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: A neutron powder diffraction study. Chem. Mater. 11: 2508–2514, https://doi.org/10.1021/cm991047q.Suche in Google Scholar
Wu, T., Diaz, M.C., Zheng, Y., Zhou, R., Funke, H.H., Falconer, J.L., and Noble, R.D. (2015). Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. J. Membr. Sci. 473: 201–209, https://doi.org/10.1016/j.memsci.2014.09.021.Suche in Google Scholar
Xiao, J., and Wei, J. (1992). Diffusion mechanism of hydrocarbons in zeolites—I. Theory. Chem Eng Sci 47: 1123–1141, https://doi.org/10.1016/0009-2509(92)80236-6.Suche in Google Scholar
Xu, X., Bao, Y., Song, C., Yang, W., Liu, J., and Lin, L. (2004). Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous Mesoporous Mater. 75: 173–181, https://doi.org/10.1016/j.micromeso.2004.07.019.Suche in Google Scholar
Ye, P., Korelskiy, D., Grahn, M., and Hedlund, J. (2015). Cryogenic air separation at low pressure using MFI membranes. J. Membr. Sci. 487: 135–140, https://doi.org/10.1016/j.memsci.2015.03.063.Suche in Google Scholar
Yoshioka, T., Nakanishi, E., Tsuru, T., and Asaeda, M. (2001). Experimental studies of gas permeation through microporous silica membranes. AIChE J. 47: 2052–2063, https://doi.org/10.1002/aic.690470916.Suche in Google Scholar
Yu, M., and Noble, R.D. (2011). Falconer JL. Zeolite membranes: microstructure characterization and permeation mechanisms. Acc. Chem. Res. 44: 1196–1206, https://doi.org/10.1021/ar200083e.Suche in Google Scholar
Zhang, Y., Avila, A.M., Tokay, B., Funke, H.H., Falconer, J.L., and Noble, R.D. (2010a). Blocking defects in SAPO-34 membranes with cyclodextrin. J. Membr. Sci. 358: 7–12, https://doi.org/10.1016/j.memsci.2010.04.006.Suche in Google Scholar
Zhang, Y., Li, M., and Sun, Y. (2013). Synthesis of ion-exchanged SAPO-34 zeolite membrane for CO2/CH4 separation 13th Top Conf Gas Util 2013-Top Conf 2013 AIChE Spring Meet 9th Glob Congr Process Saf, pp. 212–214.Suche in Google Scholar
Zhang, Y., Tokay, B., Funke, H.H., Falconer, J.L., and Noble, RD. (2010b). Template removal from SAPO-34 crystals and membranes. J. Membr. Sci. 363: 29–35, https://doi.org/10.1016/j.memsci.2010.06.054.Suche in Google Scholar
Zhang, Y., Wang, M., Liu, S., Qiu, H., Wang, M., Xu, N., Gao, L., and Zhang, Y. (2019). Mild template removal of SAPO-34 zeolite membranes in wet ozone environment. Separ. Purif. Technol. 228: 115758, https://doi.org/10.1016/j.seppur.2019.115758.Suche in Google Scholar
Zheng, Y., Hu, N., Wang, H., Bu, N., Zhang, F., and Zhou, R. (2015). Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. J. Membr. Sci. 475: 303–310, https://doi.org/10.1016/j.memsci.2014.10.048.Suche in Google Scholar
Zhou, L., Yang, J., Li, G., Wang, J., Zhang, Y., Lu, J., and Yin, D. (2014). Highly H2 permeable SAPO-34 membranes by steam-assisted conversion seeding. Int. J. Hydrogen Energy 39: 14949–14954, https://doi.org/10.1016/j.ijhydene.2014.06.159.Suche in Google Scholar
Zhou, R., Ping, E.W., Funke, H.H., Falconer, J.L., and Noble, R.D. (2013). Improving SAPO-34 membrane synthesis. J. Membr. Sci. 444: 384–393, https://doi.org/10.1016/j.memsci.2013.05.048.Suche in Google Scholar
Zhu, M., Liang, L., Wang, H., Liu, Y., Wu, T., Zhang, F., Li, Y., Kumakiri, I., Chen, X., and Kita, H. (2019). Influences of acid post-treatment on high silica SSZ-13 zeolite membrane. Ind. Eng. Chem. Res. 58: 14037–14043, https://doi.org/10.1021/acs.iecr.9b01250.Suche in Google Scholar
Zhu, W., Hrabanek, P., Gora, L., Kapteijn, F., and Moulijn, JA. (2006). Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind. Eng. Chem. Res. 45: 767–776, https://doi.org/10.1021/ie0507427.Suche in Google Scholar
Zones, S.I., Hwang, S.-J., and Davis, M.E. (2001). Studies of the synthesis of SSZ-25 zeolite in a “mixed-template” system. Chem. Eur J. 7: 1990–2001, https://doi.org/10.1002/1521-3765(20010504)7:9<1990::aid-chem1990>3.0.co;2-g.10.1002/1521-3765(20010504)7:9<1990::AID-CHEM1990>3.0.CO;2-GSuche in Google Scholar
Zong, Z., and Carreon, M.A. (2017). Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation. J. Membr. Sci. 524: 117–123https://doi.org/10.1016/j.memsci.2016.11.011.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Immersed boundary method for multiphase transport phenomena
- How dimensional analysis allows to go beyond Metzner–Otto concept for non-Newtonian fluids
- SAPO-34 zeotype membrane for gas sweetening
- A critical review on the effects of antibiotics on anammox process in wastewater
Artikel in diesem Heft
- Frontmatter
- Reviews
- Immersed boundary method for multiphase transport phenomena
- How dimensional analysis allows to go beyond Metzner–Otto concept for non-Newtonian fluids
- SAPO-34 zeotype membrane for gas sweetening
- A critical review on the effects of antibiotics on anammox process in wastewater