Startseite Advances in membranes and membrane reactors for the Fischer-Tropsch synthesis process for biofuel production
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Advances in membranes and membrane reactors for the Fischer-Tropsch synthesis process for biofuel production

  • Dalia Liuzzi ORCID logo , Ekain Fernandez EMAIL logo , Susana Perez , Enrique Ipiñazar , Amaya Arteche , José Luís G. Fierro , Jose Luis Viviente , David Alfredo Pacheco Tanaka und Sergio Rojas EMAIL logo
Veröffentlicht/Copyright: 3. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The biomass-to-liquid (BtL) process is a promising technology to obtain clean, liquid, second-generation biofuels and chemicals. The BtL process, which comprises several steps, is based upon the gasification of biomass and the catalytic transformation of the syngas that is obtained via the Fischer-Tropsch synthesis (FTS) reaction, producing a hydrocarbon pool known as syncrude. The FTS process is a well-established technology, and there are currently very large FTS plants operating worldwide that produce liquid fuels and hydrocarbons from natural gas (NG) (gas-to-liquids, GtL process) and coal (coal-to-liquids, CtL process). Due to the limited availability of local biomass, the size of the BtL plants should be downscaled compared to that of a GtL or CtL plant. Since the feasibility of the XtL (X refers to any energy source that can be converted to liquid, including coal, NG, biomass, municipal solid waste, etc.) processes is strongly influenced by the economies of scale, the viability of small-scale BtL plants can be compromised. An interesting approach to overcome this issue is to increase the productivity of the FTS process by developing reactors and catalysts with higher productivities to generate the desired product fraction. Recently, by integrating membrane reactors with the FTS process the gas feeding and separation unit have been demonstrated in a single reactor. In this review, the most significant achievements in the field of catalytic membrane reactors for the FTS process will be discussed. Different types of membranes and configurations of membrane reactors, including H2O separation and H2-feed distribution, among others, will be analyzed.

Acknowledgments

The authors acknowledge Project ENE2016-77055-C3-3-R from the Ministerio de Economia y Competitividad. In addition, the authors would like to thank the Membrane Technology and Process Intensification Department and the Sustainable Chemistry Department at Tecnalia and the Group of Energy and Sustainable Chemistry at CSIC.

References

Aoki K, Kusakabe K, Morooka S. Separation of gases with an A-type zeolite membrane. Ind Eng Chem Res 2000; 39: 2245–2251.10.1021/ie990902cSuche in Google Scholar

Arratibel Plazaola A, Pacheco Tanaka DA, Van Sint Annaland M, Gallucci F. Recent advances in Pd-based membranes for membrane reactors. Molecules 2017; 22: 51.10.3390/molecules22010051Suche in Google Scholar

Atkinson D. Fischer-Tropsch reactors for biofuels production: new technology needed! Biofuels Bioprod Biorefin 2010; 4: 12–16.10.1002/bbb.201Suche in Google Scholar

Bartholomew CH. Mechanisms of catalyst deactivation. Appl Catal A Gen 2001; 212: 17–60.10.1016/S0926-860X(00)00843-7Suche in Google Scholar

Bartholomew CH, Farrauto RJ. Fischer Tropsch synthesis. Hoboken, NJ, USA: John Wiley & Sons Inc., 2006: 398–472.Suche in Google Scholar

Bartholomew CH, Farrauto RJ. Fundamentals of industrial catalytic processes. Hoboken, NJ, USA: John Wiley & Sons, 2011.Suche in Google Scholar

Boyer C, Gazarian J, Lecocq V, Maury S, Forret A, Schweitzer JM, Souchon V. Development of the Fischer-Tropsch process: from the reaction concept to the process book. Oil Gas Sci Technol 2016; 71: 44.10.2516/ogst/2015032Suche in Google Scholar

Bradford MCJ, Te M, Pollack A. Monolith loop catalytic membrane reactor for Fischer-Tropsch synthesis. Appl Catal A Gen 2005; 283: 39–46.10.1016/j.apcata.2004.12.032Suche in Google Scholar

Brandberg Å, Hjortsberg H, Saevbark B, Ekbom T, Hjerpe C-J, Landaelv I. BioMeeT – planning of biomass based methanol energy combine – Trollhättan region – Final report. Ecotraffic R&D AB. Available at: https://www.osti.gov/etdeweb/servlets/purl/20086721 (accessed: October 2019), 2000.Suche in Google Scholar

Bridgwater AV. The technical and economic feasibility of biomass gasification for power generation. Fuel 1995; 74: 631–653.10.1016/0016-2361(95)00001-LSuche in Google Scholar

Carballo JMG, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, Fierro JLG. Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis. J Catal 2011; 284: 102–108.10.1016/j.jcat.2011.09.008Suche in Google Scholar

Dahmen N, Dinjus E, Kolb T, Arnold U, Leibold H, Stahl R. State of the art of the bioliq® process for synthetic biofuels production. Environ Prog Sustain Energy 2012; 31: 176–181.10.1002/ep.10624Suche in Google Scholar

De Klerk A. Environmentally friendly refining: Fischer-Tropsch versus crude oil. Green Chem 2007; 9: 560–565.10.1039/B614187KSuche in Google Scholar

De Klerk A. Fischer-Tropsch fuels refinery design. Energy Environ Sci 2011; 4: 1177–1205.10.1039/c0ee00692kSuche in Google Scholar

De Klerk A, Maitlis PM. What can we do with Fischer-Tropsch products? Greener Fischer-Tropsch Processes for Fuels and Feedstocks. Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013: 81–105.10.1002/9783527656837.ch4Suche in Google Scholar

Den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, De Jong KP. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. J Am Chem Soc 2009; 131: 7197–7203.10.1021/ja901006xSuche in Google Scholar

Deshmukh SR, Tonkovich ALY, Jarosch KT, Schrader L, Fitzgerald SP, Kilanowski DR, Lerou JJ, Mazanec TJ. Scale-up of microchannel reactors for Fischer−Tropsch synthesis. Ind Eng Chem Res 2010; 49: 10883–10888.10.1021/ie100518uSuche in Google Scholar

Deshmukh SR, Tonkovich ALY, McDaniel JS, Schrader LD, Burton CD, Jarosch KT, Simpson AM, Kilanowski DR, LeViness S. Enabling cellulosic diesel with microchannel technology. Biofuels 2011; 2: 315–324.10.4155/bfs.11.17Suche in Google Scholar

Dry ME. The Fischer-Tropsch process: 1950–2000. Catal Today 2002; 71: 227–241.10.1016/S0920-5861(01)00453-9Suche in Google Scholar

Eichenauer W. FA Lewis: The Palladium Hydrogen System. Academic Press, London and New York 1967. 178 Seiten, 87 Abbildungen. Preis: 45 s. Ber Bunsen Phys Chem 1967; 71: 1160–1161.10.1002/bbpc.19670710933Suche in Google Scholar

Ekbom T, Lindblom M, Berglin N, Ahlvik P. Technical and commercial feasibility study of black liquor gasification with methanol/DME production as motor fuels for automotive uses – BLGMF. Nykomb Synergetics AB, Chemrec, Volvo, Ecotraffic, OKQ8, STFi, 2003.Suche in Google Scholar

Elekaei H, Forghani AA, Rahimpour MR. A comparative study of two H2-redistribution strategies along the FT reactor using H2-permselective membrane. Int J Energy Res 2011; 35: 321–335.10.1002/er.1693Suche in Google Scholar

Espinoza RL, Du Toit E, Santamaria J, Menendez M, Coronas J, Irusta S. Use of membranes in Fischer-Tropsch reactors. Stud Surf Sci Catal 2000; 130: 389–394.10.1016/S0167-2991(00)80988-XSuche in Google Scholar

Espinoza RL, Santamaria JM, Menendez MA, Coronas J, Irusta S. Production of hydrocarbons, Google Patents, 2002.Suche in Google Scholar

Fernandez E, Medrano JA, Melendez J, Parco M, Viviente JL, van Sint Annaland M, Gallucci F, Tanaka DAP. Preparation and characterization of metallic supported thin Pd–Ag membranes for hydrogen separation. Chem Eng J 2016; 305: 182–190.10.1016/j.cej.2015.09.119Suche in Google Scholar

Fischer F, Tropsch H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff-Chem 1923; 4: 276–285.Suche in Google Scholar

Fischer N, Clapham B, Feltes T, van Steen E, Claeys M. Size-dependent phase transformation of catalytically active nanoparticles captured in situ. Angew Chem Int Ed 2014; 53: 1342–1345.10.1002/anie.201306899Suche in Google Scholar PubMed

Flach B, Lieberz S, Rondon M, Williams B, Teiken C. EU biofuels annual 2015 NL5028. Washington, DC: Global Agricultural Information Network, 2015.Suche in Google Scholar

Forghani AA, Elekaei H, Rahimpour MR. Enhancement of gasoline production in a novel hydrogen-permselective membrane reactor in Fischer-Tropsch synthesis of GTL technology. Int J Hydrogen Energy 2009; 34: 3965–3976.10.1016/j.ijhydene.2009.02.038Suche in Google Scholar

Foscolo PU. The unique project – integration of gasifier with gas cleaning and conditioning system. Sweden: International Seminar on Gasification, 2012.Suche in Google Scholar

Fritsch D, Randjelovic I, Keil F. Application of a forced-flow catalytic membrane reactor for the dimerisation of isobutene. Catal Today 2004; 98: 295–308.10.1016/j.cattod.2004.07.043Suche in Google Scholar

Gallucci F, Fernandez E, Corengia P, van Sint Annaland M. Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 2013; 92: 40–66.10.1016/j.ces.2013.01.008Suche in Google Scholar

Gallucci F, Annaland MVS, Gallucci K, Foscolo PU. Bioenergy – intensified biomass utilization. In: Gallucci F, Van Sint Annaland M, editors. Process intensification for sustainable energy conversion. Chichester, UK: John Wiley & Sons, 2015: 3839–3386.10.1002/9781118449394Suche in Google Scholar

Ghareghashi A, Ghader S, Hashemipour H. Theoretical analysis of oxidative coupling of methane and Fischer Tropsch synthesis in two consecutive reactors: comparison of fixed bed and membrane reactor. J Ind Eng Chem 2013a; 19: 1811–1826.10.1016/j.jiec.2013.02.025Suche in Google Scholar

Ghareghashi A, Ghader S, Hashemipour H, Moghadam HR. A comparison of co-current and counter-current modes for Fischer-Tropsch synthesis in two consecutive reactors of oxidative coupling of methane and Fischer-Tropsch. J Nat Gas Sci Eng 2013b; 14: 1–16.10.1016/j.jngse.2013.04.002Suche in Google Scholar

Gill SS, Tsolakis A, Dearn KD, Rodríguez-Fernández J. Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Prog Energy Combust Sci 2011; 37: 503–523.10.1016/j.pecs.2010.09.001Suche in Google Scholar

González Carballo JM, Finocchio E, García S, Rojas S, Ojeda M, Busca G, Fierro JLG. Support effects on the structure and performance of ruthenium catalysts for the Fischer-Tropsch synthesis. Catal Sci Technol 2011; 1: 1013–1023.10.1039/c1cy00136aSuche in Google Scholar

Gorbe J, Lasobras J, Francés E, Herguido J, Menéndez M, Kumakiri I, Kita H. Preliminary study on the feasibility of using a zeolite A membrane in a membrane reactor for methanol production. Separat Purific Technol 2018; 200: 164–168.10.1016/j.seppur.2018.02.036Suche in Google Scholar

Guettel R, Kunz U, Turek T. Reactors for Fischer-Tropsch synthesis. Chem Eng Technol 2008; 31: 746–754.10.1002/ceat.200800023Suche in Google Scholar

Guillou L, Léonard S, Le Courtois V, Payen E, Vanhove D. Membrane reactors for Fischer-Tropsch synthesis, Proc. ICCMR-6, July 6–9, Lahnstein. 2004.Suche in Google Scholar

Hofbauer H, Knoef H. Success stories in biomass gasification. Handbook on biomass gasification. In: Knoef H, editor. BTG Biomass Technology Group BV. Enschede, The Netherlands. 2005: 115–161.Suche in Google Scholar

Hashim SM, Mohamed AR, Bhatia S. Catalytic inorganic membrane reactors: present research and future prospects. Rev Chem Eng 2011; 27: 157–178.10.1515/REVCE.2011.005Suche in Google Scholar

Henis JMS, Tripodi MK. Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 1981; 8: 233–246.10.1007/978-1-4613-3371-5_6Suche in Google Scholar

Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J Catal 2006; 243: 199–211.10.1016/j.jcat.2006.07.012Suche in Google Scholar

Hsieh HP. Inorganic membrane reactors. Catal Rev 1991; 33: 1–2, 1–70.10.1080/01614949108020296Suche in Google Scholar

Iglesia E, Soled SL, Fiato RA. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 1992; 137: 212–224.10.1016/0021-9517(92)90150-GSuche in Google Scholar

Ismail AF, David LIB. A review on the latest development of carbon membranes for gas separation. J Membr Sci 2001; 193: 1–18.10.1016/S0376-7388(01)00510-5Suche in Google Scholar

Jarosch K, Yang B, Fitzgerald S, Taha R, Mazanec T, Tonkovich A. Reduced complexity in the representation of Fischer-Tropsch chemistry. Prepr Pap Am Chem Soc Div Fuel Chem 2008; 53: 1–2.Suche in Google Scholar

Jess A, Kern C. Modeling of multi-tubular reactors for Fischer-Tropsch synthesis. Chem Eng Technol 2009; 32: 1164–1175.10.1002/ceat.200900131Suche in Google Scholar

Kaidi (n.d.). Available at: http://www.kaidi.fi/english.Suche in Google Scholar

Khassin AA. Catalytic membrane reactor for conversion of syngas to liquid hydrocarbons. Energeia 2005; 16: 1–3.Suche in Google Scholar

Khassin AA, Sipatrov AG, Yurieva TM, Chermashentseva GK, Rudina NA, Parmon VN. Performance of a catalytic membrane reactor for the Fischer-Tropsch synthesis. Catal Today 2005; 105: 362–366.10.1016/j.cattod.2005.06.031Suche in Google Scholar

Kosinov N, Gascon J, Kapteijn F, Hensen EJM. Recent developments in zeolite membranes for gas separation. J Membr Sci 2016; 499: 65–79.10.1016/j.memsci.2015.10.049Suche in Google Scholar

Lappas AA, Iatridis DK, Vasalos IA. Production of liquid biofuels in a fluid catalytic cracking pilot-plant unit using waxes produced from a biomass-to-liquid (BTL) process. Ind Eng Chem Res 2011; 50: 531–538.10.1021/ie100200uSuche in Google Scholar

Lin Y-C, Lee W-J, Wu T-S, Wang C-T. Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test. Fuel 2006; 85: 2516–2523.10.1016/j.fuel.2006.04.023Suche in Google Scholar

Liuzzi D, Pérez Alonso F, Fierro JLG, Rojas S, van Wijk F, Roghair I, Annaland MVS, Fernandez E, Viviente J, Tanaka DAP. Catalytic membrane reactor for the production of biofuels. Catal Today 2016a; 268: 37–45.10.1016/j.cattod.2015.11.014Suche in Google Scholar

Liuzzi D, Pérez Alonso F, García García FJ, Calle Vallejo F, Fierro JLG, Rojas S. Identifying the time-dependent predominance regimes of step and terrace sites for the Fischer-Tropsch synthesis on ruthenium based catalysts. Catal Sci Technol 2016b; 6: 6495–6503.10.1039/C6CY00476HSuche in Google Scholar

Llosa Tanco MA, Pacheco Tanaka DA. Recent advances on carbon molecular sieve membranes (CMSMs) and reactors. Processes 2016; 4: 29.10.3390/pr4030029Suche in Google Scholar

Llosa Tanco MA, Pacheco Tanaka DA, Mendes A. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: effect of the carbonization temperature on the gas permeation properties. Int J Hydrogen Energy 2015a; 40: 3485–3496.10.1016/j.ijhydene.2014.11.025Suche in Google Scholar

Llosa Tanco MAL, Pacheco Tanaka DA, Rodrigues SC, Texeira M, Mendes A. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: preparation, characterization and gas permeation studies. Int J Hydrogen Energy 2015b; 40: 5653–5663.10.1016/j.ijhydene.2015.02.112Suche in Google Scholar

Lødeng R, Hannevold L, Bergem H, Stöcker M. Catalytic hydrotreatment of bio-oils for high-quality fuel production. In: Triantafyllidis KS, Lappas AA, Stöcker M, editors. The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Amsterdam, The Netherlands: Elsevier, 2013: 351–396.10.1016/B978-0-444-56330-9.00011-5Suche in Google Scholar

Lu Y, Lee T. Influence of the feed gas composition on the Fischer-Tropsch synthesis in commercial operations. J Nat Gas Chem 2007; 16: 329–341.10.1016/S1003-9953(08)60001-8Suche in Google Scholar

Maitlis PM, de Klerk A. New directions, challenges, and opportunities. Greener Fischer-Tropsch Processes for Fuels and Feedstocks. Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013: 337–358.10.1002/9783527656837.ch16Suche in Google Scholar

MALTA Project (n.d.). Available at: https://www.maltaproiektua.es/.Suche in Google Scholar

Mardilovich PP, She Y, Ma YH, Rei MH. Defect-free palladium membranes on porous stainless-steel support. AIChe J 1998; 44: 310–322.10.1002/aic.690440209Suche in Google Scholar

Mukkavilli S, Wittmann CV, Tavlarides LL. Carbon deactivation of Fischer-Tropsch ruthenium catalyst. Ind Eng Chem Process Des Dev 1986; 25: 487–494.10.1021/i200033a023Suche in Google Scholar

Müller-Langer F, Gröngröft A, Majer S, O’Keeffe S, Klemm M. Options for biofuel production – status and perspectives. In: Stolten D, Scherer V, editors. Transition to renewable energy systems. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013: 523–553.10.1002/9783527673872.ch26Suche in Google Scholar

Murmura MA, Sheintuch M. Permeance inhibition of Pd-based membranes by competitive adsorption of CO: membrane size effects and first principles predictions. Chem Eng J 2018; 347: 301–312.10.1016/j.cej.2018.04.072Suche in Google Scholar

Nacken M, Ma L, Heidenreich S, Baron GV. Performance of a catalytically activated ceramic hot gas filter for catalytic tar removal from biomass gasification gas. Appl Catal B Environ 2009; 88: 292–298.10.1016/j.apcatb.2008.11.011Suche in Google Scholar

Najafi BF, Kibby CL, Song SX, Chinn D. Membrane reactor with in-situ dehydration and method for using the same. Google Patents, 2009.Suche in Google Scholar

Ogunkoya D, Fang T. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine. Energy Convers Manage 2015; 95: 342–351.10.1016/j.enconman.2015.02.041Suche in Google Scholar

Okamoto K-I, Kawamura S, Yoshino M, Kita H, Hirayama Y, Tanihara N, Kusuki Y. Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Ind Eng Chem Res 1999; 38: 4424–4432.10.1021/ie990209pSuche in Google Scholar

Okazaki J, Tanaka DAP, Tanco MAL, Wakui Y, Mizukami F, Suzuki TM. Hydrogen permeability study of the thin Pd–Ag alloy membranes in the temperature range across the α–β phase transition. J Membr Sci 2006; 282: 370–374.10.1016/j.memsci.2006.05.042Suche in Google Scholar

Peters T, Caravella A. Pd-based membranes: overview and perspectives. Basel, Switzerland: MDPI – Multidisciplinary Digital Publishing Institute, 2019.10.3390/membranes9020025Suche in Google Scholar

Peters TA, Stange M, Veenstra P, Nijmeijer A, Bredesen R. The performance of Pd–Ag alloy membrane films under exposure to trace amounts of H2S. J Membr Sci 2016; 499: 105–115.10.1016/j.memsci.2015.10.031Suche in Google Scholar

Ptasinski KJ. Efficiency of biomass energy: an exergy approach to biofuels, power, and biorefineries. New York: Wiley, 2016.10.1002/9781119118169Suche in Google Scholar

Rabou LPLM, Zwart RWR, Vreugdenhil BJ, Bos L. Tar in biomass producer gas, the Energy research Centre of the Netherlands (ECN) experience: an enduring challenge. Energy Fuels 2009; 23: 6189–6198.10.1021/ef9007032Suche in Google Scholar

Rafati M, Wang L, Dayton DC, Schimmel K, Kabadi V, Shahbazi A. Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: the effects of Fischer-Tropsch catalysts and natural gas co-feeding. Energy Convers Manage 2017; 133: 153–166.10.1016/j.enconman.2016.11.051Suche in Google Scholar

Rahimpour MR, Elekaei H. A comparative study of combination of Fischer-Tropsch synthesis reactors with hydrogen-permselective membrane in GTL technology. Fuel Process Technol 2009; 90: 747–761.10.1016/j.fuproc.2009.02.011Suche in Google Scholar

Rahimpour MR, Mirvakili A, Paymooni K. A novel water perm-selective membrane dual-type reactor concept for Fischer-Tropsch synthesis of GTL (gas to liquid) technology. Energy 2011; 36: 1223–1235.10.1016/j.energy.2010.11.023Suche in Google Scholar

Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S. Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensific 2017; 121: 24–49.10.1016/j.cep.2017.07.021Suche in Google Scholar

Rapagnà S, Jand N, Kiennemann A, Foscolo PU. Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy 2000; 19: 187–197.10.1016/S0961-9534(00)00031-3Suche in Google Scholar

Rohde MP. In-situ H2O removal via hydrophilic membranes during Fischer-Tropsch and other fuel related synthesis reactions. Karlsruhe, Germany: KIT Scientific Publishing, 2011.Suche in Google Scholar

Rohde MP, Unruh D, Schaub G. Membrane application in Fischer−Tropsch synthesis to enhance CO2 hydrogenation. Ind Eng Chem Res 2005a; 44: 9653–9658.10.1021/ie050289zSuche in Google Scholar

Rohde MP, Unruh D, Schaub G. Membrane application in Fischer-Tropsch synthesis reactors – overview of concepts. Catal Today 2005b; 106: 143–148.10.1016/j.cattod.2005.07.124Suche in Google Scholar

Ronde MP, Schaub G, Vente JF, Van Veen HM. Fischer-Tropsch synthesis with in-situ H2O removal by a new hydrophilic membrane – an experimental and modelling study. DGMK, Tagungsbericht, 2006.Suche in Google Scholar

Saeidi S, Amin NAS, Rahimpour MR. Hydrogenation of CO2 to value-added products – a review and potential future developments. J CO2 Utiliz 2014a; 5: 66–81.10.1016/j.jcou.2013.12.005Suche in Google Scholar

Saeidi S, Amiri MT, Amin NAS, Rahimpour MR. Progress in reactors for high-temperature Fischer-Tropsch process: determination place of intensifier reactor perspective. Int J Chem Reactor Eng 2014b; 12: 639–664.10.1515/ijcre-2014-0045Suche in Google Scholar

Saeidi S, Nikoo MK, Mirvakili A, Bahrani S, Amin NAS, Rahimpour MR. Recent advances in reactors for low-temperature Fischer-Tropsch synthesis: process intensification perspective. Rev Chem Eng 2015; 31: 209–238.10.1515/revce-2014-0042Suche in Google Scholar

Salleh WNW, Ismail AF. Carbon membranes for gas separation processes: recent progress and future perspective. J Membr Sci Res 2015; 1: 2–15.Suche in Google Scholar

Salomón MA, Coronas J, Menéndez M, Santamaría J. Synthesis of MTBE in zeolite membrane reactors. Appl Catal A Gen 2000; 200: 201–210.10.1016/S0926-860X(00)00640-2Suche in Google Scholar

Steynberg AP, Dry ME. Fischer-Tropsch technology. Amsterdam: Elsevier, 2004.10.1016/S0167-2991(04)80459-2Suche in Google Scholar

Storsæter S, Borg Ø, Blekkan EA, Holmen A. Study of the effect of water on Fischer-Tropsch synthesis over supported cobalt catalysts. J Catal 2005; 231: 405–419.10.1016/j.jcat.2005.01.036Suche in Google Scholar

Swain PK, Das LM, Naik SN. Biomass to liquid: a prospective challenge to research and development in 21st century. Renew Sustain Energy Rev 2011; 15: 4917–4933.10.1016/j.rser.2011.07.061Suche in Google Scholar

Teixeira M, Campo MC, Tanaka DAP, Tanco MAL, Magen C, Mendes A. Composite phenolic resin-based carbon molecular sieve membranes for gas separation. Carbon 2011; 49: 4348–4358.10.1016/j.carbon.2011.06.012Suche in Google Scholar

Teixeira M, Campo M, Tanaka DA, Tanco MA, Magen C, Mendes A. Carbon–Al2O3–Ag composite molecular sieve membranes for gas separation. Chem Eng Res Design 2012; 90: 2338–2345.10.1016/j.cherd.2012.05.016Suche in Google Scholar

Tosti S, Basile A, Bettinali L, Borgognoni F, Gallucci F, Rizzello C. Design and process study of Pd membrane reactors. Int J Hydrogen Energy 2008; 33: 5098–5105.10.1016/j.ijhydene.2008.05.031Suche in Google Scholar

Triantafyllidis K, Lappas A, Stöcker M, Elsevier BV, editors. The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Amsterdam, The Netherlands: Newnes, 2013.Suche in Google Scholar

Tsakoumis NE, Walmsley JC, Rønning M, van Beek W, Rytter E, Holmen A. Evaluation of reoxidation thresholds for γ-Al2O3-supported cobalt catalysts under Fischer-Tropsch synthesis conditions. J Am Chem Soc 2017; 139: 3706–3715.10.1021/jacs.6b11872Suche in Google Scholar PubMed

Unruh D, Pabst K, Schaub G. Fischer−Tropsch synfuels from biomass: maximizing carbon efficiency and hydrocarbon yield. Energy Fuels 2010; 24: 2634–2641.10.1021/ef9009185Suche in Google Scholar

Velocys – Biorefineries (n.d.). Available at: https://www.velocys.com/projects/bayou-fuels/.Suche in Google Scholar

Wolf M, Kotzé H, Fischer N, Claeys M. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment. Faraday Discuss 2017; 197: 243–268.10.1039/C6FD00200ESuche in Google Scholar PubMed

Xu L, Rungta M, Brayden MK, Martinez MV, Stears BA, Barbay GA, Koros WJ. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J Membr Sci 2012; 423: 314–323.10.1016/j.memsci.2012.08.028Suche in Google Scholar

Xu J, Yang Y, Li Y-W. Recent development in converting coal to clean fuels in China. Fuel 2015; 152: 122–130.10.1016/j.fuel.2014.11.059Suche in Google Scholar

Yun S, Oyama ST. Correlations in palladium membranes for hydrogen separation: a review. J Membr Sci 2011; 375: 28–45.10.1016/j.memsci.2011.03.057Suche in Google Scholar

Zennaro R, Ricci M, Bua L, Querci C, Carnelli L, d’Arminio Monforte A. Syngas: the basis of Fischer-Tropsch. Greener Fischer-Tropsch Processes for Fuels and Feedstocks. Weinheim, German: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013: 17–51.10.1002/9783527656837.ch2Suche in Google Scholar

Received: 2019-10-02
Accepted: 2020-02-23
Published Online: 2020-04-03
Published in Print: 2022-01-27

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revce-2019-0067/html
Button zum nach oben scrollen