Startseite Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China

  • Zhongyi Jiang , Liangyin Chu , Xuemei Wu , Zhi Wang , Xiaobin Jiang , Xiaojie Ju , Xuehua Ruan und Gaohong He EMAIL logo
Veröffentlicht/Copyright: 23. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

During the past two decades, research on membrane and membrane-based separation process has developed rapidly in water treatment, gas separation, biomedicine, biotechnology, chemical manufacturing and separation process integration. In China, remarkable progresses on membrane preparation, process development and industrial application have been made with the burgeoning of the domestic economy. This review highlights the recent development of advanced membranes in China, such as smart membranes for molecular-recognizable separation, ion exchange membrane for chemical productions, antifouling membrane for liquid separation, high-performance gas separation membranes and the high-efficiency hybrid membrane separation process design, etc. Additionally, the applications of advanced membranes, relevant devices and process design strategy in chemical engineering related fields are discussed in detail. Finally, perspectives on the future research directions, key challenges and issues in membrane separation are concluded.

References

Abdulla A, Laney K, Padilla M, Sundaresan S, Benziger J. Efficiency of hydrogen recovery from reformate with a polymer electrolyte hydrogen pump. AIChE J 2011; 57: 1767–1779.10.1002/aic.12406Suche in Google Scholar

Afonso CAM, Crespo JG. Recent advances in chiral resolution through membrane-based approaches. Angew Chem Int Ed 2004; 43: 5293–5295.10.1002/anie.200460037Suche in Google Scholar PubMed

Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination 2012; 287: 2–18.10.1016/j.desal.2011.08.027Suche in Google Scholar

Barbir F, Görgün H. Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack. J Appl Electrochem 2007; 37: 359–365.10.1007/s10800-006-9266-0Suche in Google Scholar

Benziger J, Nehlsen J. A polymer electrolyte hydrogen pump hydrogenation reactor. Ind Eng Chem Res 2010; 49: 11052–11060.10.1021/ie100631aSuche in Google Scholar

Benziger J, Nehlsen J, Blackwell D, Brennan T, Itescu J. Water flow in the gas diffusion layer of PEM fuel cells. J Memb Sci 2005; 261: 98–106.10.1016/j.memsci.2005.03.049Suche in Google Scholar

Cao XC, Qiao ZH, Wang Z, Zhao S, Li PY, Wang JX, Wang SC. Enhanced performance of mixed matrix membrane by incorporating a highly compatible covalent organic framework into poly(vinylamine) for hydrogen purification. Int J Hydrogen Energy 2016; 41: 9167–9174.10.1016/j.ijhydene.2016.01.137Suche in Google Scholar

Chabanon E, Mangin D, Charcosset C. Membranes and crystallization processes: state of the art and prospects. J Membr Sci 2016; 509: 57–67.10.1016/j.memsci.2016.02.051Suche in Google Scholar

Chen Y, Deng Q, Xiao J, Nie H, Wu L, Zhou W, Huang B. Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties. Polymer 2007; 48: 7604–7613.10.1016/j.polymer.2007.10.043Suche in Google Scholar

Chen W, Su Y, Peng J, Dong Y, Zhao X, Jiang Z. Engineering a robust, versatile amphiphilic membrane surface through forced surface segregation for ultralow flux-decline. Adv Funct Mater 2011; 21: 191–198.10.1002/adfm.201001384Suche in Google Scholar

Chen W, He G, Ge F, Xiao W, Benziger J, Wu X. Effects of hydrophobicity of diffusion layer on the electroreduction of biomass derivatives in polymer electrolyte membrane reactors. ChemSusChem 2015a; 8: 288–300.10.1002/cssc.201402302Suche in Google Scholar PubMed

Chen B, Ruan X, Xiao W, Jiang X, He G. Synergy of CO2 removal and light hydrocarbon recovery from oil-field associated gas by dual-membrane process. J Natural Gas Sci Eng 2015b; 26: 1254–1263.10.1016/j.jngse.2015.08.028Suche in Google Scholar

Chen B, Ruan X, Jiang X, Xiao W, He G. Dual-Membrane module and its optimal flow pattern for H2/CO2 separation. Ind. Eng. Chem. Res. 2016; 55: 1064–1075.10.1021/acs.iecr.5b04384Suche in Google Scholar

Dai Y, Ruan X, Yan Z, Yang K, Yu M, Li H, Zhao W, He G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep Purif Technol 2016; 166: 171–180.10.1016/j.seppur.2016.04.038Suche in Google Scholar

Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Curr Opin Chem Eng 2012; 1: 178–182.10.1016/j.coche.2012.03.005Suche in Google Scholar

Edwie F, Chung T-S. Development of simultaneous membrane distillation-crystallization (SMDC) technology for treatment of saturated brine. Chem Eng Sci 2013; 98: 160–172.10.1016/j.ces.2013.05.008Suche in Google Scholar

Francis L, Ghaffour N, Al-Saadi AS, Amy G. Performance of different hollow fiber membranes for seawater desalination using membrane distillation. Desalin Water Treat 2014; 55: 2786–2791.10.1080/19443994.2014.946723Suche in Google Scholar

Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J. Photoinduced superwetting single-walled carbon nanotube/TiO(2) ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 2014; 8: 6344–6352.10.1021/nn501851aSuche in Google Scholar PubMed

Geng P, Chen G. Magnéli Ti4O7 modified ceramic membrane for electrically-assisted filtration with antifouling property. J Memb Sci 2016; 498: 302–314.10.1016/j.memsci.2015.07.055Suche in Google Scholar

Green SK, Tompsett GA, Kim HJ, Kim WB, Huber GW. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass. ChemSusChem 2012; 5: 2410.10.1002/cssc.201200416Suche in Google Scholar PubMed

Green SK, Lee J, Kim HJ, Tompsett GA, Kim WB, Huber GW. The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chem 2013; 15: 1869–1879.10.1039/c3gc00090gSuche in Google Scholar

He G, Mi Y, Yue PL, Chen G. Theoretical study on concentration polarization in gas separation membrane processes. J Memb Sci 1999; 153: 243–258.10.1016/S0376-7388(98)00257-9Suche in Google Scholar

He G, Yu C, Li B, Ruan X, Zhu X, Wu X. A method to improve the light hydrocarbon efficiency of shallow cold recovery associated gas in oil field. Chinese patent, June 19, 2013, ZL201010591309.4.Suche in Google Scholar

He Y, Wang Z, Dong S, Zhao S, Qiao Z, Cao X, Wang J, Wang S. Polymeric composite membrane fabricated by 2-aminoterephthalic acid chemically cross-linked polyvinylamine for CO2 separation under high temperature. J Memb Sci 2016; 518: 60–71.10.1016/j.memsci.2016.06.039Suche in Google Scholar

Hu B, Wang L, Wu XM, Yang S, Gu JS, Yu HY. Low protein fouling polypropylene membrane prepared by photoinduced reversible addition-fragmentation chain transfer polymerization. J Appl Polym Sci 2012; 123: 3668–3674.10.1002/app.35034Suche in Google Scholar

Hu L, Gao S, Ding X, Wang D, Jiang J, Jin J, Jiang L. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 2015; 9: 4835–4842.10.1021/nn5062854Suche in Google Scholar PubMed

Huang S, Wu X, Chen W, Wang T, Wu Y, He G. A bilateral electrochemical hydrogen pump reactor for 2-propanol dehydrogenation and phenol hydrogenation. Green Chem 2015; 18: 2353–2362.10.1039/C5GC01719JSuche in Google Scholar

Huang S, Wang T, Wu X, Xiao W, Yu M, Chen W, Zhang F, He G. Coupling hydrogen separation with butanone hydrogenation in an electrochemical hydrogen pump with sulfonated poly (phthalazinone ether sulfone ketone) membrane. J Power Sources 2016a; 327: 178–186.10.1016/j.jpowsour.2016.07.025Suche in Google Scholar

Huang S, Wu X, Chen W, Ma L, Liu S, He G. Electrocatalytic dehydrogenation of 2-propanol in electrochemical hydrogen pump reactor. Catal Today 2016b; 276: 128–132.10.1016/j.cattod.2016.02.022Suche in Google Scholar

Ibeh B, Gardner C, Ternan M. Separation of hydrogen from a hydrogen/methane mixture using a PEM fuel cell. Int J Hydrogen Energy 2007; 32: 908–914.10.1016/j.ijhydene.2006.11.017Suche in Google Scholar

Ito T, Hioki T, Yamaguchi T, Shinbo T, Nakao S-I, Kimura S. Development of a molecular recognition ion gating membrane and estimation of its pore size control. J Am Chem Soc 2002; 124: 7840–7846.10.1021/ja012648xSuche in Google Scholar PubMed

Jiang X, Lu D, Xiao W, Ruan X, Fang J, He G. Membrane assisted cooling crystallization: process model, nucleation, metastable zone, and crystal size distribution. AIChE J 2016; 62: 829–841.10.1002/aic.15069Suche in Google Scholar

Kim Y-J, Jung J, Lee S, Sohn J. Modeling fouling of hollow fiber membrane using response surface methodology. Desalination Water Treat 2014; 54: 966–972.10.1080/19443994.2014.912593Suche in Google Scholar

Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 2002; 296: 2198.10.1126/science.1071396Suche in Google Scholar PubMed

Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007; 318: 426.10.1126/science.1147241Suche in Google Scholar PubMed PubMed Central

Li L, Wang T, Liu Q, Cao Y, Qiu J. A high CO2 permselective mesoporous silica/carbon composite membrane for CO2 separation. Carbon 2012a; 50: 5186–5195.10.1016/j.carbon.2012.06.060Suche in Google Scholar

Li S, Wang Z, Yu X, Wang J, Wang S. High-performance membranes with multi-permselectivity for CO2 separation. Adv Mater 2012b; 24: 3196–3200.10.1002/adma.201200638Suche in Google Scholar PubMed

Li Y, Wang S, Wu H, Wang J, Jiang Z. Bioadhesion-inspired polymer-inorganic nanohybrid membranes with enhanced CO2 capture properties. J Mater Chem 2012c; 22: 19617–19620.10.1039/c2jm33238hSuche in Google Scholar

Li L, Wang T, Wang N, Zhao X, Cao Y, Qiu J. Preparation and gas separation performance of the Inorganic Nano-Particles Carbon Composite Membranes. 2013 AIChE Annual Meeting, 2–7 Nov: San Francisco, CA, USA, 2013: 171–176.Suche in Google Scholar

Li Y, Su Y, Zhao X, Zhang R, Zhao J, Fan X, Jiang Z. Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property. J Memb Sci 2014a; 455: 15–23.10.1016/j.memsci.2013.12.060Suche in Google Scholar

Li Y, Xin Q, Wu H, Guo R, Tian Z, Liu Y, Wang S, He G, Pan F, Jiang Z. Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy Environ Sci 2014b; 7: 1489–1499.10.1039/c3ee43163kSuche in Google Scholar

Li C, Zhang X, Hao X, Wang M, Ding C, Wang Z, Wang Y, Guan G, Abudula A. Efficient recovery of high-purity aniline from aqueous solutions using pervaporation-fractional condensation system. AIChE J 2015a; 61: 4445–4455.10.1002/aic.15006Suche in Google Scholar

Li P, Wang Z, Liu Y, Zhao S, Wang J, Wang S. A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances. J Memb Sci 2015b; 476: 243–255.10.1016/j.memsci.2014.11.050Suche in Google Scholar

Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, Wu H. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl Mater Interfaces 2015c; 7: 5528–5537.10.1021/acsami.5b00106Suche in Google Scholar PubMed

Li X, Jiang Z, Wu Y, Zhang H, Cheng Y, Guo R, Wu H. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. J Memb Sci 2015d; 495: 72–80.10.1016/j.memsci.2015.07.065Suche in Google Scholar

Li X, Ma L, Zhang H, Wang S, Jiang Z, Guo R, Wu H, Cao X, Yang J, Wang B. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. J Memb Sci 2015e; 479: 1–10.10.1016/j.memsci.2015.01.014Suche in Google Scholar

Li X, Wang M, Wang S, Li Y, Jiang Z, Guo R, Wu H, Cao X, Yang J, Wang B. Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. J Memb Sci 2015f; 474: 156–166.10.1016/j.memsci.2014.10.003Suche in Google Scholar

Li Y, Li X, Wu H, Xin Q, Wang S, Liu Y, Tian Z, Zhou T, Jiang Z, Tian H, Cao X, Wang B. Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO2 separation. J Memb Sci 2015g; 493: 460–469.10.1016/j.memsci.2015.06.046Suche in Google Scholar

Li Y, Xin Q, Wang S, Tian Z, Wu H, Liu Y, Jiang Z. Trapping bound water within a polymer electrolyte membrane of calcium phosphotungstate for efficient CO2 capture. Chem Commun 2015h; 51: 1901–1904.10.1039/C4CC09021GSuche in Google Scholar PubMed

Li B, He G, Jiang X, Dai Y, Ruan X. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery. Front Chem Sci Eng 2016a; 10: 255–264.10.1007/s11705-016-1567-1Suche in Google Scholar

Li H, Tuo L, Yang K, Jeong H-K, Dai Y, He G, Zhao W. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. J Memb Sci 2016b; 511: 130–142.10.1016/j.memsci.2016.03.050Suche in Google Scholar

Liao J, Wang Z, Gao C, Li S, Qiao Z, Wang M, Zhao S, Xie X, Wang J, Wang S. Fabrication of high-performance facilitated transport membranes for CO2 separation. Chem Sci 2014; 5: 2843.10.1039/C3SC53334DSuche in Google Scholar

Liao J, Wang Z, Gao C, Wang M, Yan K, Xie X, Zhao S, Wang J, Wang S. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation. J Mater Chem A 2015; 3: 16746–16761.10.1039/C5TA03238ESuche in Google Scholar

Liao J, Wang Z, Wang M, Gao C, Zhao S, Wang J, Wang S. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane. J Memb Sci 2016; 511: 9–19.10.1016/j.memsci.2016.03.037Suche in Google Scholar

Liu Q, Wang T, Liang C, Zhang B, Liu S, Cao Y, Qiu J. Zeolite married to carbon: a new family of membrane materials with excellent gas separation performance. Chem Mater 2006a; 18: 6283–6288.10.1021/cm061807eSuche in Google Scholar

Liu Q, Wang T, Qiu J, Cao Y. A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation. Chem Commun 2006b; 11: 1230–1232.10.1039/b516519aSuche in Google Scholar PubMed

Liu Q, Wang T, Guo H, Liang C, Liu S, Zhang Z, Cao Y, Su DS, Qiu J. Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation. Microp Mesop Mater 2009; 120: 460–466.10.1016/j.micromeso.2008.12.029Suche in Google Scholar

Liu Y, Zhang S, Wang G. The preparation of antifouling ultrafiltration membrane by surface grafting zwitterionic polymer onto poly(arylene ether sulfone) containing hydroxyl groups membrane. Desalination 2013a; 316: 127–136.10.1016/j.desal.2013.02.004Suche in Google Scholar

Liu Z, Luo F, Ju XJ, Xie R, Sun YM, Wang W, Chu LY. Gating membranes for water treatment: detection and removal of trace Pb2+ ions based on molecular recognition and polymer phase transition. J Mater Chem A 2013b; 1: 9659–9671.10.1039/c3ta12006fSuche in Google Scholar

Liu Y, Peng D, He G, Wang S, Li Y, Wu H, Jiang Z. Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix. ACS Appl Mater Interfaces 2014; 6: 13051–13060.10.1021/am502936xSuche in Google Scholar PubMed

Liu Z, Wang W, Xie R, Ju XJ, Chu LY. Stimuli-responsive smart gating membranes. Chem Soc Rev 2016; 45: 460–475.10.1039/C5CS00692ASuche in Google Scholar PubMed

Lu D, Li P, Xiao W, He G, Jiang X. Simultaneous recovery and crystallization control of saline organic wastewater by membrane distillation crystallization. AIChE J. 2017; 63: 2187–2197.10.1002/aic.15581Suche in Google Scholar

Nakoa K, Date A, Akbarzadeh A. A research on water desalination using membrane distillation. Desalination Water Treat 2014; 56: 2618–2630.10.1080/19443994.2014.972731Suche in Google Scholar

Ni L, Meng J, Li X, Zhang Y. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J Membrane Sci. 2014; 451: 205–215.10.1016/j.memsci.2013.09.040Suche in Google Scholar

Onda K, Araki T, Ichihara K, Nagahama M. Treatment of low concentration hydrogen by electrochemical pump or proton exchange membrane fuel cell. J Power Sources 2009; 188: 1–7.10.1016/j.jpowsour.2008.11.135Suche in Google Scholar

Onsekizoglu Bagci P. Potential of membrane distillation for production of high quality fruit juice concentrate. Crit Rev Food Sci Nutr 2015; 55: 1098–1113.10.1080/10408398.2012.685116Suche in Google Scholar PubMed

Pangarkar BL, Sane MG, Parjane SB, Guddad M. Status of membrane distillation for water and wastewater treatment – a review. Desalination Water Treat 2013; 52: 5199–5218.10.1080/19443994.2013.808422Suche in Google Scholar

Pantoja CE, Nariyoshi YN, Seckler MM. Membrane distillation crystallization applied to brine desalination: a hierarchical design procedure. Ind Eng Chem Res 2015; 54: 2776–2793.10.1021/ie504695pSuche in Google Scholar

Perry KA, Eisman GA, Benicewicz BC. Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane. J Power Sources 2008; 177: 478–484.10.1016/j.jpowsour.2007.11.059Suche in Google Scholar

Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, Wang S. PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE J 2013; 59: 215–228.10.1002/aic.13781Suche in Google Scholar

Qiao Z, Zhao S, Wang J, Wang S, Wang Z, Guiver MD. A highly permeable aligned montmorillonite mixed-matrix membrane for CO2 separation. Angew Chem Int Ed 2016; 55: 9321–9325.10.1002/anie.201603211Suche in Google Scholar

Rohland B, Eberle K, Ströbel R, Scholta J, Garche J. Electrochemical hydrogen compressor. Electrochim Acta 1998; 43: 3841–3846.10.1016/S0013-4686(98)00144-3Suche in Google Scholar

Ruan X, He G, Li B, Yan X, Yan D. Chemical potential analysis for directing the optimal design of gas membrane separation frameworks. Chem Eng Sci 2014; 107: 245–255.10.1016/j.ces.2013.11.046Suche in Google Scholar

Ruan X, Xiao H, Jiang X, Yan X, Dai Y, He G. Graphic synthesis method for multi-technique integration separation sequences of multi-input refinery gases. Sep. Purif. Technol. 2019; 214: 187–195.10.1016/j.seppur.2018.04.082Suche in Google Scholar

Sagle AC, Ju H, Freeman BD, Sharma MM. PEG-based hydrogel membrane coatings. Polymer 2009; 50: 756–766.10.1016/j.polymer.2008.12.019Suche in Google Scholar

Scholes CA, Kentish SE, Stevens GW. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Sep Purif Rev 2009; 38: 1–44.10.1080/15422110802411442Suche in Google Scholar

Sedlak JM, Austin JF, Laconti AB. Hydrogen recovery and purification using the solid polymer electrolyte electrolysis cell. Int J Hydrogen Energy 1981; 6: 45–51.10.1016/0360-3199(81)90096-3Suche in Google Scholar

Shi Q, Ye S, Kristalyn C, Su Y, Jiang Z, Chen Z. Probing molecular-level surface structures of polyethersulfone/pluronic F127 blends using sum-frequency generation vibrational spectroscopy. Langmuir ACS J Surf Colloids 2008; 24: 7939–7946.10.1021/la800570aSuche in Google Scholar PubMed

Song X, Wang L, Tang CY, Wang Z, Gao C. Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination 2015; 369: 1–9.10.1016/j.desal.2015.04.020Suche in Google Scholar

Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Song Y, Li H. Alternative pathways for efficient CO 2 capture by hybrid processes – a review. Renew Sustain Energy Rev 2018; 82: 215–231.10.1016/j.rser.2017.09.040Suche in Google Scholar

Susanto H. Towards practical implementations of membrane distillation. Chem Eng Process Process Intensification 2011; 50: 139–150.10.1016/j.cep.2010.12.008Suche in Google Scholar

Tang N, Han H, Yuan L, Zhang L, Wang X, Cheng P. Preparation of a hydrophobically enhanced antifouling isotactic polypropylene/silicone dioxide flat-sheet membrane via thermally induced phase separation for vacuum membrane distillation. J Appl Polym Sci 2015; 132: 42615.10.1002/app.42615Suche in Google Scholar

Wang YQ, Su YL, Ma XL, Sun Q, Jiang ZY. Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance. J Membrane Sci. 2006a; 283: 440–447.10.1016/j.memsci.2006.07.021Suche in Google Scholar

Wang YQ, Su YL, Sun Q, Ma XL, Jiang ZY. Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. J Membrane Sci. 2006b; 286: 228–236.10.1016/j.memsci.2006.09.040Suche in Google Scholar

Wang L, Cao Y, Zhou M, Ding X, Liu Q, Yuan Q. The gas permeation properties of 6FDA-2, 4, 6-trimethyl-1, 3-phenylenediamine (TMPDA)/1, 3-phenylenediamine (mPDA) copolyimides. Polymer Bulletin 2007; 1: 137–147.10.1007/s00289-007-0841-2Suche in Google Scholar

Wang M, Wang Z, Li S, Zhang C, Wang J, Wang S. A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy Environ Sci 2013; 6: 539–551.10.1039/C2EE23080ASuche in Google Scholar

Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. J Memb Sci 2014; 460: 62–70.10.1016/j.memsci.2014.02.036Suche in Google Scholar

Wang S, Tian Z, Feng J, Wu H, Li Y, Liu Y, Li X, Xin Q, Jiang Z. Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. J Memb Sci 2015a; 473: 310–317.10.1016/j.memsci.2014.09.035Suche in Google Scholar

Wang Z, Xu J, Cheng X, Lau CH, Lu S. Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS Appl Mater Inter 2015b; 7: 9534.10.1021/acsami.5b00894Suche in Google Scholar PubMed

Wang Y, He G, Shao Y, Zhang D, Ruan X, Xiao W, Li X, Wu X, Jiang X. Enhanced performance of superhydrophobic polypropylene membrane with modified antifouling surface for high salinity water treatment. Sep. Purif. Technol. 2019; 214: 11–20.10.1016/j.seppur.2018.02.011Suche in Google Scholar

Wu X, Benziger J, He G. Comparison of Pt and Pd catalysts for hydrogen pump separation from reformate. J Power Sources 2012; 218: 424–434.10.1016/j.jpowsour.2012.07.002Suche in Google Scholar

Wu X, He G, Yu L, Li X. Electrochemical hydrogen pump with SPEEK/CrPSSA semi-interpenetrating polymer network proton exchange membrane for H2/CO2 separation. ACS Sustain Chem Eng 2013; 2: 75–79.10.1021/sc400329sSuche in Google Scholar

Wu H, Li X, Li Y, Wang S, Guo R, Jiang Z, Wu C, Xin Q, Lu X. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J Memb Sci 2014; 465: 78–90.10.1016/j.memsci.2014.04.023Suche in Google Scholar

Wu Y, Zhou J, Zhang B, Zhao D, Li L, Lu Y, Wang T. Fabrication and gas permeation of CMS/C composite membranes based on polyimide and phenolic resin. RSC Adv 2016; 6: 75390–75399.10.1039/C6RA12476CSuche in Google Scholar

Xie R, Chu LY, Deng JG. Membranes and membrane processes for chiral resolution. Chem Soc Rev 2008; 37: 1243–1263.10.1039/b713350bSuche in Google Scholar PubMed

Xin Q, Wu H, Jiang Z, Li Y, Wang S, Li Q, Li X, Lu X, Cao X, Yang J. SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. J Memb Sci 2014; 467: 23–35.10.1016/j.memsci.2014.04.048Suche in Google Scholar

Xin Q, Gao Y, Wu X, Li C, Liu T, Shi Y, Li Y, Jiang Z, Wu H, Cao X. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. J Memb Sci 2015a; 488: 13–29.10.1016/j.memsci.2015.02.047Suche in Google Scholar

Xin Q, Li Z, Li C, Wang S, Jiang Z, Wu H, Zhang Y, Yang J, Cao X. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J Mater Chem A 2015b; 3: 6629–6641.10.1039/C5TA00506JSuche in Google Scholar

Xin Q, Liu T, Li Z, Wang S, Li Y, Li Z, Ouyang J, Jiang Z, Wu H. Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal-organic framework for gas separation. J Memb Sci 2015c; 488: 67–78.10.1016/j.memsci.2015.03.060Suche in Google Scholar

Xin Q, Ouyang J, Liu T, Li Z, Li Z, Liu Y, Wang S, Wu H, Jiang Z, Cao X. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. ACS Appl Mater Interfaces 2015d; 7: 1065–1077.10.1021/am504742qSuche in Google Scholar PubMed

Xin Q, Zhang Y, Huo T, Ye H, Ding X, Lin L, Zhang Y, Wu H, Jiang Z. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. J Memb Sci 2016a; 508: 84–93.10.1016/j.memsci.2016.02.022Suche in Google Scholar

Xin Q, Zhang Y, Shi Y, Ye H, Lin L, Ding X, Zhang Y, Wu H, Jiang Z. Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. J Memb Sci 2016b; 514: 73–85.10.1016/j.memsci.2016.04.046Suche in Google Scholar

Xu S, Wang J, Zhang K, Wu S, Liu S, Kangli L, Yu B, Gong J. Nucleation behavior of eszopiclone-butyl acetate solutions from metastable zone widths. Chem Eng Sci 2016; 155: 248–257.10.1016/j.ces.2016.08.016Suche in Google Scholar

Yang M, Chu LY, Wang HD, Xie R, Song H, Niu CH. A thermoresponsive membrane for chiral resolution. Adv Funct Mater 2008; 18: 652–663.10.1002/adfm.200700534Suche in Google Scholar

Yang YF, Li Y, Li QL, Wan LS, Xu ZK. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. J Memb Sci 2010; 362: 255–264.10.1016/j.memsci.2010.06.048Suche in Google Scholar

Yuan S, Wang Z, Qiao Z, Wang M, Wang J, Wang S. Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine. J Memb Sci 2011; 378: 425–437.10.1016/j.memsci.2011.05.023Suche in Google Scholar

Yuan J, Huang X, Li P, Li L, Shen J. Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property. Polym Chem 2013; 4: 5074–5085.10.1039/c3py00565hSuche in Google Scholar

Zhang B, Wang T, Wu Y, Liu Q, Liu S, Zhang S, Qiu J. Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Sep Purif Technol 2008; 60: 259–263.10.1016/j.seppur.2007.08.022Suche in Google Scholar

Zhang B, Shen G, Wu Y, Wang T, Qiu J, Xu T, Fu C. Preparation and characterization of carbon membranes derived from poly(phthalazinone ether sulfone) for gas separation. Ind Eng Chem Res 2009; 48: 2886–2890.10.1021/ie8013583Suche in Google Scholar

Zhang B, Wu Y, Lu Y, Wang T, Jian X, Qiu J. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. J Memb Sci 2015; 474: 114–121.10.1016/j.memsci.2014.09.054Suche in Google Scholar

Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 2016; 45: 5888–5924.10.1039/C5CS00579ESuche in Google Scholar PubMed

Zhao J, Wang Z, Wang J, Wang S. High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2 separation. J Memb Sci 2012; 403404: 203–215.10.1016/j.memsci.2012.02.048Suche in Google Scholar

Zhao S, Wang Z, Qiao Z, Wei X, Zhang C, Wang J, Wang S. Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules. J Mater Chem A 2013; 1: 246–249.10.1039/C2TA00247GSuche in Google Scholar

Zhao H, Shi Q, Wu L, Zhang L, Chen H, Gao C. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membrane Sci 2014; 450: 249–256.10.1016/j.memsci.2013.09.014Suche in Google Scholar

Zhao S, Cao X, Ma Z, Wang Z, Qiao Z, Wang J, Wang S. Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal-organic frameworks. Ind Eng Chem Res 2015; 54: 5139–5148.10.1021/ie504786xSuche in Google Scholar

Zhao X, Su Y, Liu Y, Li Y, Jiang Z. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Appl Mater Interfaces 2016; 8: 8247–8256.10.1021/acsami.5b12876Suche in Google Scholar PubMed

Zhu LP, Dong HB, Wei XZ, Yi Z, Zhu BK, Xu YY. Tethering hydrophilic polymer brushes onto PPESK membranes via surface-initiated atom transfer radical polymerization. J Memb Sci 2008; 320: 407–415.10.1016/j.memsci.2008.04.029Suche in Google Scholar

Received: 2017-08-02
Accepted: 2018-08-10
Published Online: 2019-04-23
Published in Print: 2019-12-18

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revce-2017-0066/html?lang=de
Button zum nach oben scrollen