Home Library & Information Science, Book Studies Disinfection of Mould-contaminated Archival Material by X-ray Irradiation – New Research Results on the Effect on Moulds and Cellulose
Article
Licensed
Unlicensed Requires Authentication

Disinfection of Mould-contaminated Archival Material by X-ray Irradiation – New Research Results on the Effect on Moulds and Cellulose

  • Cornelius Palmbach ORCID logo EMAIL logo , Sebastian Dobrusskin , Mathieu Jacot-Guillarmod , Olivia Raymann , Andreas Buder , Hans Hartmann , Guido Voser , Barbara Mordasini Voser , Gianclaudio Mordasini and Caroline Amberg
Published/Copyright: March 3, 2023

Abstract

This research project examines the effects of X-rays on cellulose and some moulds frequently found on paper. The aim was to identify applications for X-ray irradiation that can be used as a disinfection method for archival material. The question was if X-rays are suitable as an alternative to gamma radiation and if they are less harmful. For this purpose, the minimum X-ray dose required to reduce the microbial count to a harmless level was determined. The material-altering effect was examined on samples treated with X-rays and gamma radiation. Spectrophotometric measurements showed that there is no noticeable colour change with either type of radiation. The determination of the molecular weight distribution, in turn, showed that the molar mass of the cellulose is considerably reduced with both treatment methods. Using mechanical tests, however, it could be demonstrated that this has no significant influence on the tensile strength. The examination of the oxidation behaviour also showed no significant difference between the differently treated samples. The studies demonstrated that both methods have an almost identical effect on cellulose. Thus, X-ray treatment is primarily a supplement to the known disinfection methods and is particularly suitable for objects that would not withstand treatment with alcohol.

Zusammenfassung

In diesem Forschungsprojekt wurden die Auswirkungen von Röntgenstrahlen auf Cellulose und einige häufig auf Papier vorkommende Schimmelpilze untersucht. Ziel der Studie war es, Anwendungen für die Röntgenbestrahlung als Desinfektionsmethode für Archivgut zu identifizieren. Dabei sollte geklärt werden, ob Röntgenstrahlen als Alternative zur Gammastrahlung geeignet, bzw. ob sie weniger schädlich sind. Dazu wurde die minimale Röntgendosis ermittelt, die erforderlich ist, um die Keimzahl auf ein unbedenkliches Maß zu reduzieren. An den mit Röntgen- und Gammastrahlen behandelten Proben wurde die materialverändernde Wirkung untersucht. Spektrophotometrische Messungen zeigten, dass bei beiden Strahlungsarten keine nennenswerte Farbveränderung auftritt. Allerdings wird die molare Masse der Cellulose durch beide Behandlungsmethoden deutlich reduziert. Mechanische Tests ergaben jedoch, dass dies keinen signifikanten Einfluss auf die Zugfestigkeit der Papierproben hat. Auch im Oxidationsverhalten gab es keinen signifikanten Unterschied zwischen den verschieden behandelten Proben. Die Untersuchungen zeigen also, dass beide Methoden eine nahezu identische Wirkung auf die Cellulose haben. Die Röntgenbehandlung ist in erster Linie eine Ergänzung zu den bekannten Desinfektionsmethoden und eignet sich besonders für Objekte, die für eine Behandlung mit Alkohol nicht geeignet sind.

Résumé

Ce projet de recherche a étudié l’effet de rayons X durs sur la cellulose et sur les spores de moisissures fréquents sur le papier, l’objectif étant de déterminer le potentiel des rayons X pour désinfecter des fonds d’archives infestés par des moisissures. Il s’agissait principalement d’analyser dans quelle mesure les rayons X constituent une solution de rechange aux rayons gamma, notamment en termes de préservation des matériaux. L’étude a ainsi défini le dosage minimal de rayons X pour réduire le nombre des germes à un niveau inoffensif. L’effet de transformation des matériaux soumis à ce dosage minimal a ensuite été examiné à l’aide d’échantillons de cellulose de coton exposés à des rayons X et gamma. La spectrométrie a permis de constater que les deux types de rayons ne provoquent pas de changements de couleur perceptibles à l’œil nu. La distribution de la masse moléculaire a montré pour sa part que les deux méthodes de traitement réduisent considérablement le poids moyen de la masse des molécules de cellulose. Des essais subséquents ont toutefois permis de prouver que cette réduction n'a pas d’impact sur la résistance à la traction. Par ailleurs, les essais réalisés pour étudier le comportement à l'oxydation permettent de conclure que les propriétés des deux échantillons ne présentent pas de différences significatives. L’effet des deux méthodes sur la cellulose est pratiquement identique. Le traitement aux rayons X est ainsi à prendre au sens d’une méthode de désinfection complémentaire par rapport aux méthodes éprouvées, notamment pour les objets qui ne résisteraient pas à un traitement à l’alcool.


Corresponding author: Cornelius Palmbach, Bern University of Applied Sciences – Bern Academy of the Arts, Fellerstrasse 11, 3027 Bern, Switzerland, E-mail:

Funding source: Innosuisse - Swiss Innovation Agency

Award Identifier / Grant number: 18652.1 PFES-ES

Acknowledgements

Our sincere thanks go to Dr. Paul Raschle (former head of the microbiological laboratory at EMPA, Zurich) for his expert advice, Dr. Giovanna Di Pietro (HKB) and Marcus Jacob (Historisches Museum Basel) for their preliminary work and the preparation of the project proposal, Synergy Health Däniken AG for the irradiation of the samples and the financial support, docusave AG for the vacuum freeze-drying of the samples and the financial support, Swissatest Testmaterialien AG for conducting the microbiological study, Prof. Dr. Antje Potthast and Dr. Sonja Schiehser (Institute for Chemistry of Renewable Resources at the University of Natural Resources and Life Sciences, Vienna BOKU) for determining the molecular weight distribution and Dr. Agnes Blüher (Swiss National Library in Bern) for providing the Bansa-Hofer folding device.

  1. Research funding: The research project was co-financed by Innosuisse - Swiss Innovation Agency (No. 18652.1 PFES-ES).

  2. Research project: Röntgenbestrahlung zur Desinfektion von cellulose-/papierhaltigen Archiv-und Kulturgütern (www.hkb.bfh.ch), 2017–2019, Bern University of Applied Sciences (BFH), Department Bern Academy of the Arts (HKB), Institute Materiality in Art and Culture (IMIKUK), project management: Cornelius Palmbach, responsibility: Sebastian Dobrusskin, team: Dr. Mathieu Jacot-Guillarmod, Olivia Raymann, implementation partners: Synergy Health Däniken AG (www.steris-ast.com), docusave AG (www.docusave.ch).

  3. Author contributions: Irradiation of the samples was performed at Synergy Health Däniken AG under the guidance of Hans Hartmann. The microbiological study was performed in the laboratory of Swissatest Testmaterialien AG under the guidance of Caroline Amberg. Vacuum freeze-drying was performed at docusave AG under the guidance of Guido Voser with assistance from Barbara Mordasini Voser and Gianclaudio Mordasini. Spectrophotometric measurements and tensile strength tests were performed in the laboratory at HKB by Cornelius Palmbach. Chemiluminescence measurements were performed in the laboratory at HKB by Dr. Andreas Buder. Sebastian Dobrusskin, head of the specialisation Graphics, written materials and photography of the degree programme Conservation and Restoration at HKB, provided continuous expert advice for the project. Dr. Mathieu Jacot-Guillarmod and Olivia Raymann made an important contribution to the success of the project with their research on the physical fundamentals of X-rays and gamma radiation as well as on alternative disinfection methods. Image credits: Figures 1–7 and 10 by Cornelius Palmbach, Figures 8 and 9 by Andreas Buder.

Appendix

List of materials

Whatman® filter paper no. 1 (WHA1001931, Sigma Aldrich): To determine the MD, the longitudinal and transverse edges of a piece of paper were moistened with water using a brush, causing the edges to become wavy. The CD and the MD can then be distinguished based on the pronounced waviness: the edge where the corrugation is less pronounced runs parallel to the MD (Teschner 2017, 906ff).

Rag paper: Cut-off, unprinted margins of the pages of an 18th-century book.

Instrumentation

X-ray radiation unit Rhodotron TT-1000 (IBA SA): Electron beam accelerator with tantalum target (Abs et al. 2004), photon energy: 7 MeV, power: 700 kW, increments: 2.8–2.9 kGy.

Gamma radiation unit (Nordion, Canada): Radiation is provided by bars made of the radioisotope cobalt-60. Photon energy: 1.17 MeV and 1.33 MeV, power: 3.5 MCi, increments: 3.4–3.5 kGy.

Dosimeter Alanine TapeTab (Harwell Dosimeters LTD): Alanine strip dosimeters read out using an electron spin resonance (ESR) spectrometer. The dosimeters were handled according to ISO 9001, ISO 13485, ISO 11137 and 21CFR Part 820 (FDA c GMP).

Spectrophotometer Spectrolino™ (Gretag Macbeth AG), colorimetry: CIE-L*a*b*, illumination: D65 (approximated daylight, colour temperature: 6504 K), observer angle: 10° normal observer, evaluable values: spectrum R (remission in the wavelength range 380–730 nm in 10 nm steps).

SEC-MALLS/RI instrumentation: The Agilent GPC system consisted of a MALLS (Dawn DSP 488 nm, Wyatt Corp.) and refractive index detector (Shodex RI-71) with automatic injection on four serial columns. DMAc/LiCl (0.9%, m/V, filtered through 0.02 µm) was used as the eluant. MWD and related polymer-relevant parameters were calculated by software programs ASTRA 4.73 and Grams, based on a refractive index increment of 0.140 mL/g for cellulose in DMAc/LiCl (0.9%, m/V) at 488 nm. GPC parameters: flow: 1.00 mL/min; columns: four, Agilent PL gel, mixed A-LS, 20 µm, one pre-column, 7.5 × 300 mm; injection volume: 100 µL; run time: 45 min.

Chemiluminescence measuring device CL1.0 V.5 (ACL Instruments AG)

Bansa-Hofer folding device: The device consists of an inclined plane tilted at 20° to the horizontal and a 500 g cylindrical mass. After 30 cm, the strip-shaped sample clamped in a loop protrudes through a slot from below into the rolling path. After releasing the locking mechanism, the mass rolls down from the upper end of the inclined plane across the paper loop. Thereby, the loop is pressed flat with always identical force, providing the sample with a defined fold.

Tensile tester zwickiLine Z2.5/TN1S (Zwick Roell AG): Tests were performed following the DIN 53112 standard (meanwhile replaced by the DIN EN ISO 1924-2 standard). Initial force: 5 N/m, test speed: 20 mm/min.

References

Abs, M., Y. Jongen, E. Poncelet, and J. L. Bol. 2004. “The IBA Rhodotron TT1000: A Very High Power E-Beam Accelerator.” Radiation Physics and Chemistry 71: 285–8, https://doi.org/10.1016/j.radphyschem.2004.03.061.Search in Google Scholar

Adamo, M., M. Giovannotti, G. Magaudda, M. Plossi-Zappalà, F. Rocchetti, and G. Rossi. 1998. “Effect of Gamma Rays on Pure Cellulose Paper as a Model for the Study of a Treatment of “Biological Recovery” of Biodeteriorated Books.” Restaurator 19 (1): 41–59, https://doi.org/10.1515/rest.1998.19.1.41.Search in Google Scholar

Adamo, M., M. Brizzi, G. Magaudda, G. Martinelli, M. Plossi-Zappala, F. Rocchetti, and F. Savagnone. 2001. “Gamma Radiation Treatment of Paper in Different Environmental Conditions: Chemical, Physical and Microbiological Analysis.” Restaurator 22 (2): 107–31, https://doi.org/10.1515/rest.2001.107.Search in Google Scholar

Adamo, M., G. Magaudda, P. T. Nisini, and G. Tronelli. 2003. “Susceptibility of Cellulose to Attack by Cellulolytic Microfungi after Gamma Irradiation and Ageing.” Restaurator 24 (3): 145–51, https://doi.org/10.1515/rest.2003.145.Search in Google Scholar

Adamo, M., G. Magaudda, and A. Tata. 2004. “Radiation Technology for Cultural Heritage Restoration.” Restaurator 25 (3): 159–70, https://doi.org/10.1515/rest.2004.159.Search in Google Scholar

Adamo, M., G. Magaudda, and S. Omarini. 2007. “Biological Measurement of Damage Occurring to the Inner Structure of Paper after Gamma Irradiation: Preliminary Tests.” Restaurator 28 (1): 39–46.10.1515/REST.2007.39Search in Google Scholar

Arndt, C., W. Fischer-Pache, J. Metzdorf, B. Schubert, and P. Weber. 2010. “Arbeitshilfe: Umgang mit Schimmel in Archiven.” Empfehlungen der Bundeskonferenz der Kommunalarchive beim Deutschen Städtetag: 1–14.Search in Google Scholar

Ausschuss für Biologische Arbeitsstoffe. 2016. “TRBA 460 – Einstufung von Pilzen in Risikogruppen.” Technische Regeln für biologische Arbeitsstoffe 29 (30): 1–55.Search in Google Scholar

Bicchieri, M., M. Monti, G. Piantanida, and A. Sodo. 2016. “Effects of Gamma Irradiation on Deteriorated Paper.” Radiation Physics and Chemistry 125: 21–6, https://doi.org/10.1016/j.radphyschem.2016.03.005.Search in Google Scholar

Butterfield, F. J. 1987. “The Potential Long-term Effects of Gamma Irradiation on Paper.” Studies in Conservation 32 (4): 181–91, https://doi.org/10.2307/1506182.Search in Google Scholar

Calvini, P., and L. Santucci. 1978. “Alcuni Dati Sugli Effetti Dell’irradiazione Gamma Sulla Carta.” Bollettino Dell’Istituto Centrale per La Patologia Del Libro Alfonso Gallo 35: 55–62.Search in Google Scholar

Cornwell, P. B., J. O. Bull, and J. B. Pendlebury. 1966. “PAPER VI – Control of Weevil Populations (Sitophilus Granarius (L.)) with Sterilising and Substerilising Doses of Gamma Radiation.” In The Entomology of Radiation Disinfestation of Grain, edited by P. B. Cornwell, 71–95. Oxford: Pergamon Press.10.1016/B978-1-4831-1255-8.50013-6Search in Google Scholar

Dupont, A. L., and G. Mortha. 2004. “Comparative Evaluation of Size-Exclusion Chromatography and Viscometry for the Characterisation of Cellulose.” Journal of Chromatography A 1026: 129–41, https://doi.org/10.1016/j.chroma.2003.11.002.Search in Google Scholar

Flores, S. C. P. 1976. “Gamma Radiation as Fungicide and its Effects on Paper.” Bulletin of the American Institute for Conservation of Historic and Artistic Works 16 (1): 15–44, https://doi.org/10.1179/019713676806029384.Search in Google Scholar

Gimat, A., S. Schöder, M. Thoury, M. Missori, S. Paris-Lacombe, and A. L. Dupont. 2020. “Short- and Long-Term Effects of X-Ray Synchrotron Radiation on Cotton Paper.” Biomacromolecules 21 (7): 2795–807, https://doi.org/10.1021/acs.biomac.0c00512.Search in Google Scholar

Gimat, A., S. Schöder, M. Thoury, and A. L. Dupont. 2022. “Degradation of Historical Paper Induced by Synchrotron X-Ray Technical Examination.” Cellulose 29 (8): 4347–64, https://doi.org/10.1007/s10570-022-04552-3.Search in Google Scholar

Gonzalez, M. E., A. M. Calvo, and E. Kairiyama. 2002. “Gamma Radiation for Preservation of Biologically Damaged Paper.” Radiation Physics and Chemistry 63: 263–5, https://doi.org/10.1016/s0969-806x(01)00510-2.Search in Google Scholar

Grégoire, O., M. R. Cleland, J. Mittendorfer, M. V. Donckt, and J. Meissner. 2003. “Radiological Safety of Medical Devices Sterilized with X-rays at 7.5 MeV.” Radiation Physics and Chemistry 67: 149–67, https://doi.org/10.1016/s0969-806x(02)00409-7.Search in Google Scholar

Henniges, U., and A. Potthast. 2015. “Charakterisierung von Papier.” In Papier und Wasser: Ein Lehrbuch für Restauratoren, Konservierungswissenschaftler und Papiermacher. 1. Auflage, edited by G. Banik and I. Brückle, 275–318. München: Siegl.Search in Google Scholar

Henniges, U., S. Okubayashi, T. Rosenau, and A. Potthast. 2012. “Irradiation of Cellulosic Pulps: Understanding its Impact on Cellulose Oxidation.” Biomacromolecules 13: 4171–8, https://doi.org/10.1021/bm3014457.Search in Google Scholar

Jerosch, H., B. Lavédrine, and J. C. Cherton. 2002. “Study on the Correlation between SEC and Mechanical Tests of Different Paper Types for Degradation State Evaluation.” Restaurator 23 (4): 222–39, https://doi.org/10.1515/rest.2002.222.Search in Google Scholar

Khan, F., S. R. Ahmad, and E. Kronfli. 2006. “γ-Radiation Induced Changes in the Physical and Chemical Properties of Lignocellulose.” Biomacromolecules 7: 2303–9, https://doi.org/10.1021/bm060168y.Search in Google Scholar

Lemeune, S., H. Jameel, H. M. Chang, and J. F. Kadla. 2004. “Effects of Ozone and Chlorine Dioxide on the Chemical Properties of Cellulose Fibers.” Journal of Applied Polymer Science 93 (3): 1219–23, https://doi.org/10.1002/app.20509.Search in Google Scholar

Magaudda, G. 2004. “The Recovery of Biodeteriorated Books and Archive Documents through Gamma Radiation: Some Considerations on the Results Achieved.” Journal of Cultural Heritage 5 (1): 113–8, https://doi.org/10.1016/j.culher.2003.07.003.Search in Google Scholar

Malinowski, M. 2021. “Using X-Ray Technology to Sterilize Medical Devices.” American Journal of Biomedical Science & Research 12 (3): 272–6, https://doi.org/10.34297/ajbsr.2021.12.001755.Search in Google Scholar

Mantler, M., and J. Klikovits. 2004. “Analysis of Art Objects and Other Delicate Samples: Is XRF Really Nondestructive?” Powder Diffraction 19 (1): 16–9, https://doi.org/10.1154/1.1649962.Search in Google Scholar

Meier, C. 2006. “Schimmelpilze auf Papier: Fungizide Wirkung von Isopropanol und Ethanol.” Papierrestaurierung 7 (1): 22–9.Search in Google Scholar

Meier, C., and K. Petersen. 2006. Schimmelpilze auf Papier – Ein Handbuch für Restauratoren: Biologische Grundlagen, Erkennung, Behandlung und Prävention. Tönning: Der Andere Verlag.Search in Google Scholar

Moise, I. V., M. Virgolici, C. D. Negut, M. Manea, M. Alexandru, L. Trandafir, F. L. Zorila, C. M. Talasman, D. Manea, and S. Nisipeanu. 2012. “Establishing the Irradiation Dose for Paper Decontamination.” Radiation Physics and Chemistry 81 (8): 1045–50, https://doi.org/10.1016/j.radphyschem.2011.11.063.Search in Google Scholar

Negut, C. D., V. Bercu, and O. G. Duliu. 2012. “Defects Induced by Gamma Irradiation in Historical Pigments.” Journal of Cultural Heritage 13 (4): 397–403, https://doi.org/10.1016/j.culher.2012.01.002.Search in Google Scholar

Otero, D. A., M. Luiza, P. de Souza Medeiros Barbosa, M. F. G. Boaratti, and S. I. Borrely. 2009. “Radiation Effects on the Integrity of Paper.” Radiation Physics and Chemistry 78 (7): 489–92, https://doi.org/10.1016/j.radphyschem.2009.03.032.Search in Google Scholar

Pasternack, L., A. K. I. Hall, N. McCall, and P. McGuiggan. 2019. “‘An Evaluation of Damage to a Variety of Paper Due to Gamma Irradiation Followed by Natural Aging’ (Poster).” In 47th AIC Annual Meeting: New Tools, Techniques, and Tactics in Conservation & Collection Care, 13.–15.05.2019, Unsasville, CT, USA. Washington DC: AIC.Search in Google Scholar

Phillips, G. O., and J. C. ArthurJr. 1985. “Effects of High-Energy Radiation on Physical and Chemical Properties of Purified Fibrous Cellulose.” In Cellulose Chemistry and its Applications, edited by T. P. Nevell and S. H. Zeronian, 290–311. Chichester: Ellis Horwood Ltd.Search in Google Scholar

Potthast, A., S. Radosta, B. Saake, S. Lebioda, T. Heinze, U. Henniges, A. Isogai, A. Koschella, K. Paul, T. Rosenau, S. Schiehser, H. Sixta, M. Strlič, G. Strobin, W. Vorwerg, and H. Wetzel. 2015. “Comparison Testing of Methods for Gel Permeation Chromatography of Cellulose: Coming Closer to a Standard Protocol.” Cellulose 22 (3): 1591–613, https://doi.org/10.1007/s10570-015-0586-2.Search in Google Scholar

Samson, R. A. 2004. Introduction to Food- and Airborne Fungi, 7th ed. Ad Utrecht: Centraalbureau voor Schimmelcultures.Search in Google Scholar

Samuels, G. J. 1996. “Trichoderma: A Review of Biology and Systematics of the Genus.” Mycological Research 100 (8): 923–35, https://doi.org/10.1016/s0953-7562(96)80043-8.Search in Google Scholar

Sequeira, S. O., A. J. L. Phillips, E. J. Cabrita, and M. F. Macedo. 2017. “Ethanol as an Antifungal Treatment for Paper: Short-Term and Long-Term Effects.” Studies in Conservation 62 (1): 33–42, https://doi.org/10.1080/00393630.2015.1137428.Search in Google Scholar

Strlič, M., and J. Kolar, eds. 2005. Ageing and Stabilisation of Paper. Ljubljana: National and University Library Ljubljana.Search in Google Scholar

Strlič, M., J. Kolar, B. Pihlar, J. Rychlý, and L. Matisová-Rychlá. 2000. “Chemiluminescence during Thermal and Thermo-Oxidative Degradation of Cellulose.” European Polymer Journal 36 (11): 2351–8, https://doi.org/10.1016/s0014-3057(00)00011-2.Search in Google Scholar

Takács, E., L. Wojnárovits, J. Borsa, C. M. Földváry, P. L. Hargittai, and O. Zöld. 1999. “Effect of γ-irradiation on Cotton-Cellulose.” Radiation Physics and Chemistry 55 (5–6): 663–6, https://doi.org/10.1016/s0969-806x(99)00245-5.Search in Google Scholar

Teschner, H. 2017. Druck- und Medientechnik – Informationen gestalten, produzieren, verarbeiten, Vol. 14. Aufl. Konstanz: Christiani.Search in Google Scholar

Zou, X., N. Gurnagul, T. Uesaka, and J. Bouchard. 1994. “Accelerated Aging of Papers of Pure Cellulose: Mechanism of Cellulose Degradation and Paper Embrittlement.” Polymer Degradation and Stability 43 (3): 393–402, https://doi.org/10.1016/0141-3910(94)90011-6.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/res-2022-0016).


Published Online: 2023-03-03
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/res-2022-0016/html
Scroll to top button