Home Library & Information Science, Book Studies Washing, Spraying and Brushing. A Comparison of Paper Deacidification by Magnesium Hydroxide Nanoparticles
Article
Licensed
Unlicensed Requires Authentication

Washing, Spraying and Brushing. A Comparison of Paper Deacidification by Magnesium Hydroxide Nanoparticles

  • Adam Wójciak

    Adam Wójciak, PhD in Technical Science in 1991 (Agricultural Academy of Poznań, Poland) associate professor at the Laboratory of Pulp and Paper Technology in 2009 (Poznań University of Life Sciences). Wójciak’s main research activity is in pulp bleaching, cellulose oxidative treatment, and spectroscopic studies of lignocellulosic materials.

    EMAIL logo
Published/Copyright: February 21, 2015

Abstract

The paper presents the results of studies on the deacidification of model papers (Whatman) using nanodispersions of magnesium hydroxide in 2-propanol. Preliminary experiments showed greater effectiveness of nanodispersion deacidification in comparison with the standard magnesium hydroxide reagent which was applied in the form of micrometric particles. Further analyses compared the effectiveness of deacidification by washing, spraying and brushing. Although all of the tested methods caused an increase in the pH of paper water extracts, the assays of magnesium contents using Atomic Absorption Spectrometry (AAS) and Scanning Electron Microscopy with an Energy Dispersive X-ray spectrometer (SEM-EDX) showed greatest effectiveness of deacidification by washing. Dispersion spraying requires repetition of the operation at least three times in order to provide an effect that would be comparable with that of washing. Brushing seems to be a less effective method of magnesium hydroxide application to paper. When comparing uniformity of magnesium application on the surface of the paper samples (mapping, SEM-EDX), it was found that the deacidifier was distributed more uniformly when sprayed than in the case of washing.

Zusammenfassung

Papierentsäuerung mit Magnesiumhydroxidnanopartikeln: unterschiedliche Anwendungsarten im Vergleich

Dieser Beitrag stellt die Ergebnisse einer Studie vor, in der Modellpapiere (Whatman) mit nanodispergiertem Magnesiumhydroxid in 2-Propanol entsäuert wurden. Vorversuche haben gezeigt, dass die Entsäuerung mit Nanodispersionen effizienter ist als herkömmliche Magnesiumhydroxidreagenzien, die in Form von Mikropartikeln eingesetzt wurden. Weitere Versuche vergleichen die Wirksamkeit der Entsäuerung durch Anwendung mittels Immersion, Sprühen oder Pinselauftrag. Wenngleich alle getesteten Methoden einen Anstieg des Extrakt-pHs verursachten, konnte mittels der Bestimmung des Magnesiumgehalts durch AAS und SEM-EDX gezeigt werden, dass eine Entsäuerung durch Immersion den größten Erfolg hatte. Wenn die Dispersion aufgesprüht wird, muss dieser Vorgang mindestens dreimal wiederholt werden, um einen Effekt zu erzielen, der mit dem Immersionsprozess vergleichbar ist. Der Auftrag mit dem Pinsel erscheint als die am wenigsten effiziente Methode, um Magnesiumhydroxid auf das Papier aufzubringen. Wenn man die Gleichmäßigkeit des Auftrags von Magnesiumverbindungen auf der Oberfläche des Papiers mittels REM-EDS-Kartierung vergleicht, zeigt sich, dass das Entsäuerungsreagenz durch den Sprühprozess gleichmäßiger auf dem Papier verteilt ist als nach der Immersion.

Résumé

Lavage, pulvérisation et brossage. Comparaison de processus de désacidification du papier par des nanoparticules d’hydroxyde de magnésium

L’article présente les résultats d’études sur la désacidification de papiers modèles (Whatman) en utilisant des nano-dispersions d’hydroxyde de magnésium dans du 2-propanol. Des expériences préalables ont montré une plus grande efficacité de la désacidification avec des nano-dispersions en comparaison avec le réactif standard d’hydroxyde de magnésium appliqué sous forme de microparticules. Des analyses supplémentaires ont permis la comparaison de l’efficacité de la désacidification selon son processus d’application: lavage, pulvérisation et brossage. Bien que toutes les méthodes testées entrainent une augmentation du pH des extraits de papier, les dosages de teneurs en magnésium obtenus par AAS et SEM-EDX ont montré une plus grande efficacité de la désacidification lorsqu’elle est réalisée par lavage. La pulvérisation de dispersion nécessite la répétition de l’opération au moins trois fois pour produire un effet qui serait comparable à celui du lavage. Le brossage semble être une méthode moins efficace pour l’application d’hydroxyde de magnésium sur le papier. Apres comparaison de l’uniformité de l’application du magnésium sur la surface des échantillons de papier (cartographie, SEM-EDX), il a été constaté que le composant de désacidification est distribué de manière plus uniforme lors de l’application par pulvérisation que par lavage.

Funding statement: Research funding: This work has been realized with the financial support of National Science Center (Poland) grant No DEC-2012/05/B/HS2/03999.

About the author

Adam Wójciak

Adam Wójciak, PhD in Technical Science in 1991 (Agricultural Academy of Poznań, Poland) associate professor at the Laboratory of Pulp and Paper Technology in 2009 (Poznań University of Life Sciences). Wójciak’s main research activity is in pulp bleaching, cellulose oxidative treatment, and spectroscopic studies of lignocellulosic materials.

Acknowledgments

The author gratefully acknowledges G. Trykowski (PhD) and A. Kmieciak (MSc) from Nicolaus Copernicus University (Toruń, Poland) for all the support with the microscopic measurements.

References

Anders, M., Becker, E. O.: Deacidifying agent for organic material, useful in conservation of e.g. historical archive or book, contains dispersion of nanoparticles of alkaline metal compound, e.g. alkaline earth compound, in organic solvent. Patent DE 19921616 A1, 2000.Search in Google Scholar

Baglioni, P., Dei, L, Giorgi, R., Schettino, C. V.: Basic suspensions, its preparation and processes for paper deacidification, US patent US20050042380 A1, 2005.Search in Google Scholar

Baglioni, P., Chelazzi, D., Giorg, R., Poggi, G.: Colloid and materials science for the conservation of cultural heritage: Cleaning, consolidation, and deacidification. Langmuir29 (2013): 51105122.10.1021/la304456nSearch in Google Scholar

Baty, J. W., Maitland, C. L., Minter, W., Hubbe, M. A., Jordan-Mowery, S. K.: Deacidification for the conservation and preservation of paper-based works: A review. BioResources5 (2010): 19552023.10.15376/biores.5.3.1955-2023Search in Google Scholar

Blee, A., Matisons, J. G.: Nanoparticles and the conservation of cultural heritage. Materials Forum-Parkville Australia 32J. M.Cairney, S. P.Ringer, R.Wuhrer (eds.), North Melbourne, VIC: Institute of Materials Engineering Australasia Ltd, 2008: 121128.Search in Google Scholar

Brown, D. G., Abbot, J.: Magnesium as a stabilizer for peroxide bleaching of mechanical pulp. Appita47 (1994): 211220.Search in Google Scholar

Colodette, J. L., Rothenberg, S., Dence, C. W.: Factors affecting hydrogen peroxide stability in brightening of mechanical pulps. Part 3. Hydrogen peroxide stability in the presence of magnesium and combinations of stabilizers. Journal of Pulp and Paper Science2 (1989): J45J50.Search in Google Scholar

Giorgi, R., Bozzi, C., Dei, L., Gabbiani, C., Ninham, B. W., Baglioni, P.: Nanoparticles of Mg(OH)2: Synthesis and application to paper conservation. Langmuir21 (2005): 84958501.10.1021/la050564mSearch in Google Scholar

Giorgi, R., Dei, L., Ceccato, M., Schettino, C., Baglioni, P.: nanotechnologies for conservation of cultural heritage: Paper and canvas deacidification. Langmuir18 (2002): 81988203.10.1021/la025964dSearch in Google Scholar

Griffiths, P., Abbot, J.: Magnesium oxide as a base for peroxide bleaching of radiate pine TMP. In: Appita Conference Proceedings, 1993: 5154.Search in Google Scholar

Järrehult, B., Samuelson, O.: Influence of metal compounds on the oxygen-alkali treatment of kraft pulp and cellobitol. Nordic Pulp and Paper Journal3 (1993): 307336.10.3183/npprj-1993-08-03-p307-318Search in Google Scholar

Johnson, D. A., Park, S., Genco, J. M., Gibson, A., Wajer, M., Branch, B.: Hydrogen peroxide bleaching of TMP using Mg(OH)2. In: TAPPI Pulping Conference Proceedings. San Diego, 2002.Search in Google Scholar

Konuklar, M., SaçakM.: A new method for paper conservation: Triple mixture of methyl cellulose, carboxymethyl cellulose and nano-micro calcium hydroxide particles. Hacettepe Journal of Biology and Chemistry39 (2011): 403411.Search in Google Scholar

Kozielec, T.: Badanie efektywności odkwaszania papierów metodą Bookkeeper. Cz. I. Obserwacje mikroskopowe [Investigation of the effectiveness of Bookkeeper deacidification treatment on paper. Part 1. Microscopic examinations.]Przegląd paperniczy65 (2009): 1218.Search in Google Scholar

Lapierre, L., Berr, R., Bouchard, J.: The effects of the order of the chemical addition on the peroxide bleaching of an oxygen-delignified softwood pulp. Holzforschung54 (2000): 279286.10.1515/HF.2000.047Search in Google Scholar

Lichtblau, D., Anders, M.: Designing non-aqueous treatments to counteract ink corrosion. In: Iron Gall Inks: On Manufacture Characterization, Degradation and Stabilization, J.Kolar, M.Strlič (eds.), Ljubljana, Slovenia: National and University Library, 2006: 195214.Search in Google Scholar

Lidén, J., Öhman, L. O.: Redox stabilization of iron and manganese in the +II oxidation state by magnesium precipitates and some anionic polymers. Implications for the use of oxygen-based bleaching chemicals. Journal of Pulp and Paper Science5 (1997): J193J199.Search in Google Scholar

Malešič, J., Kolar, J., Strlič, M., Kočar, D., Fromageot, D., Lemaire, J., Haillant, O.: Photo-induced degradation of cellulose. Polymer Degradation and Stability89 (2005): 6469.10.1016/j.polymdegradstab.2005.01.003Search in Google Scholar

Ni, Y.: A review of recent technological advances in the brightening of high-yield pulps. The Canadian Journal of Chemical Engineering8 (2005): 610637.Search in Google Scholar

Poggi, G., Baglioni, P., Gorgi, R.: Alkaline earth hydroxide nanoparticles for the inhibition of metal gall ink corrosion. Restaurator32 (2011): 247273.10.1515/rest.2011.012Search in Google Scholar

Poggi, G., Giorgi, R., Toccafondi, N., Katzur, V., Baglioni, P.: Hydroxide nanoparticles for deacidification and concomitant inhibition of metal-gall ink corrosion of paper. Langmuir26 (2010): 1908419090.10.1021/la1030944Search in Google Scholar

PorckH. J.: Mass Deacidification: An Update of Possibilities and Limitations. Washington, DC (eds.): The European Commission on Preservation and Access, Amsterdam, and The Commission on Preservation and Access, 1996: 157.Search in Google Scholar

Reissland, B., Gulik, R., de la Chapelle, A.: Non-aqueous prototype treatment agents for ink-corroded papers: Evaluation of undesirable side effects. In: Iron Gall Inks: On Manufacture Characterization, Degradation and Stabilization, J.Kolar, M.Strlič (eds.), Ljubljana, Slovenia: National and University Library, 2006: 215246.Search in Google Scholar

Sequeira, S., Casanova, C., Cabrita, E.: Deacidification of paper using dispersions of Ca(OH)2 nanoparticles in isopropanol. Study of efficiency. Journal of Cultural Heritage7 (2006): 264272.10.1016/j.culher.2006.04.004Search in Google Scholar

Sobucki, W.: Odkwaszanie zabytkowych i niezabytkowych papierów [Deacidification of historic and non-historic papers.]Przegląd paperniczy55 (1999): 749752.Search in Google Scholar

Stefanis, E., Panayiotou, C.: Protection of lignocellulosic and cellulosic paper by deacidification with dispersions of micro- and nano-particles of Ca(OH)2 and Mg(OH)2 in alcohols. Restaurator28 (2007): 185200.10.1515/REST.2007.185Search in Google Scholar

Stefanis, E., Panayiotou, C.: Study of the photochemical stability of paper deacidified with dispersions of Ca(OH)2 and Mg(OH)2 nanoparticles in alcohols. Restaurator29 (2008): 125138.10.1515/rest.2008.007Search in Google Scholar

Stefanis, E., Panayiotou, C.: Deacidification of documents containing iron gall ink with dispersions of Ca(OH)2 and Mg(OH)2 nanoparticles. Restaurator31 (2010): 1940.10.1515/rest.2010.002Search in Google Scholar

Title of Source Strlič, M., KolarJ.: Evaluating and enhancing paper stability: Needs and recent trends. : Cultural heritage research: A Pan-European challenge. In: Proceedings of the 5th EC conference, Cracow, Poland, May 16–18, 2002, 7985.Search in Google Scholar

TAPPI T 509 om-02: Hydrogen ion concentration (pH) of paper extracts (cold extraction method), 2006.Search in Google Scholar

Wójciak, A., Kasprzyk, H., Khmelinskii, I. V., Krawczyk, A., Oliveira, A. S., Ferreira, L. F. V., Weselucha-Birczynska, A., Sikorski, M.: Direct characterization of hydrogen peroxide bleached thermomechanical pulp using spectroscopic methods. Journal of Physical Chemistry A: Chemistry111(42) (2007): 1053010536.10.1021/jp074169bSearch in Google Scholar

Materials and suppliers

  1. magnesium hydroxide nanoparticles (99.8% trace metal basis, Aldrich, No 632309)

  2. magnesium hydroxide (p.f.a. 99%, Fluka, No 63087)

  3. 2-propanol (No. 10300982, Honeywell)

  4. Whatman 3Chr MM with grammage of 180, thickness of 0.35 mm, composed of 98% α-cellulose made from cotton fibres

Received: 2014-5-6
Accepted: 2014-10-27
Published Online: 2015-2-21
Published in Print: 2015-3-1

©2015 by De Gruyter

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/res-2014-0010/pdf
Scroll to top button