Startseite Stone Consolidation by Bacterial Carbonatogenesis: Evaluation of in situ Applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stone Consolidation by Bacterial Carbonatogenesis: Evaluation of in situ Applications

  • Carlos Rodriguez-Navarro EMAIL logo , Fadwa Jroundi und Maria Teresa Gonzalez-Muñoz
Veröffentlicht/Copyright: 4. Februar 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Precipitation of calcium carbonate minerals by bacteria, the so-called bacterial carbonatogenesis, is a promising method for the consolidation of decayed stone. Despite extensive laboratory testing that has demonstrated the efficacy of this method, little is, however, known regarding the medium- and/or long-term performance of this bacterial conservation treatment once applied in situ, on stone buildings. Here, we report on the evaluation of the performance of bacterial consolidation treatments applied in three different historical buildings placed in an urban environment and built using a highly porous, easily decayed calcarenite stone. Peeling tape tests show a significant long-lasting (up to four years) strength improvement following treatment with either a Myxococcus xanthus bacterial culture or a sterile nutritional solution that selectively activates the carbonatogenic bacteria inhabiting the stone. Total color changes, measured before and after treatment using a spectrophotometer, are systematically below the acceptable value of ΔE ≤ 5. Culture-dependent analysis of the microbiota shows that 100% of the culturable bacteria collected before and after treatment is carbonatogenic, and the total count of fungi spores remains constant or diminishes, while the population of acid-producing bacteria decreases over time after treatment application. Culture-independent microbial analyses show that no deleterious microbiota develops after treatment, being carbonate-producing Proteobacteria, Firmicutes and Actinobacteria the most abundant phyla both before and after treatment. Overall these results show that the in situ application of the bacterial consolidation method shows no detrimental side effects and is highly effective in the medium- and long-term.

Acknowledgments

This work was financially supported by the Spanish Government (Grant CGL2012-35992), the Junta de Andalucía (Research Groups RNM-179 and BIO-103, and Projects P11-RNM-7550 and P08-RNM-3943), and the Instituto FCICOP de Conservación y Restauración de Bienes Culturales (ICON-FCICOP). We thank the Centro de Instrumentación Científica (CIC; University of Granada) for assistance with SEM-EDS analyses. We thank E. Ruiz-Agudo for her help with the mapping of lithotypes and weathering forms of the Hospital Real, and J. Gallego Roca for kindly providing the blueprints of this building. We also thank the personnel of Tarma S.L. for their help during treatments application at the Capilla Real.

References

1. StrzelczykAB. Stone. In: RoseAH, editor. Microbial biodeterioration. London: Academic Press, 1981:6180.Suche in Google Scholar

2. DoehneE, PriceC. Stone conservation: an overview of current research, 2nd ed. Los Angeles, CA: The Getty Conservation Institute, 2010.Suche in Google Scholar

3. SebastianE, Rodriguez-NavarroC. Alteración y conservación de materiales pétreos ornamentales: antecedentes y estado actual de conocimientos. Ingeniería Civil1995;96:16778.Suche in Google Scholar

4. Rodriguez-NavarroC, DoehneE. Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landforms1999;24:191209.Suche in Google Scholar

5. Rodriguez-NavarroC, SebastianE. Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ1996;187:7991.Suche in Google Scholar

6. Saiz-JimenezC. Biodeterioration of stone in historic buildings and monuments. In: LlewellynGC, editor. Biodeterioration research, vol. 4. New York: Plenum Press, 1994:587604.Suche in Google Scholar

7. WarscheidT, BraamsJ. Biodeterioration of stone: a review. Int Biodeter Biodegrad2000;46:34368.Suche in Google Scholar

8. WinklerEM. Stone in architecture. Berlin: Springer-Verlag, 1994.Suche in Google Scholar

9. SmithBG, WhalleyB, FassinaV. Elusive solution to monumental decay. New Sci1988;118:4953.Suche in Google Scholar

10. LazzariniL, TabassoML. Il restauro della pietra. Padova: Cedam, 1986.Suche in Google Scholar

11. HorieCV. Materials for conservation: organic consolidants, adhesives and coatings. London: Butterworths, 1987.Suche in Google Scholar

12. ChelazziD, PoggiG, JaidarY, ToccafondiN, GiorgiR, BaglioniP. Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci2013;392:429.Suche in Google Scholar

13. GiorgiR, BaglioniM, BertiD, BaglioniP. New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Acc Chem Res2010;43:695704.Suche in Google Scholar

14. HansenE, DoehneE, FidlerJ, LarsonJ, MartinB, MatteiniM, et al. A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Rev Conserv2003;4:1325.Suche in Google Scholar

15. Rodriguez-NavarroC, SuzukiA, Ruiz-AgudoE. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir2013;29:1145770.Suche in Google Scholar

16. PriceC, RossK, WhiteG. A further appraisal of the ‘lime technique’ for limestone consolidation, using a radioactive tracer. Stud Conserv1988;33:17886.Suche in Google Scholar

17. WheelerG. Alkoxysilanes and the consolidation of stone. Los Angeles, CA: The Getty Conservation Institute, 2005.Suche in Google Scholar

18. MosqueraMJ, PozoJ, EsquiviasL. Stress during drying of two stone consolidants applied in monumental conservation. J Sol Gel Sci Technol2003;26:122731.Suche in Google Scholar

19. CastanierS, Le Métayer-LevrelG, OrialG, LoubièreJF, PerthuisotJP. Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In: CiferriO, TianoP, MastromeiG, editors. Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. New York: Plenum, 2000:20116.Suche in Google Scholar

20. Rodriguez-NavarroC, Rodriguez-GallegoM, Ben ChekrounK, Gonzalez-MuñozMT. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environm Microbiol2003;69:218293.Suche in Google Scholar

21. TianoP, BiagiottiL, MastromeiG. Bacterially bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods1999;36:13945.Suche in Google Scholar

22. WebsterA, MayE. Bioremediation of weathered-building stone surfaces. Trends Biotechnol2006;24:25560.Suche in Google Scholar

23. De MuynckW, De BelieN, VerstraeteW. Microbial carbonate precipitation in construction materials: a review. Ecol Eng2010;36:11836.Suche in Google Scholar

24. ZamarreñoDV, InkpenR, MayE. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environm Microbiol2009;75:598190.Suche in Google Scholar

25. Gonzalez-MuñozMT. Bacterial biomineralization applied to the protection consolidation of ornamental stone: current development and perspectives. Coalition2008;15:1218.Suche in Google Scholar

26. Rodriguez-NavarroC, JroundiF, SchiroM, Ruiz-AgudoE, Gonzalez-MuñozMT. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. Appl Environm Microbiol2012;78:401729.Suche in Google Scholar

27. EhrlichHL. Geomicrobiology, 4th ed. New York: Marcel Dekker, 2002.Suche in Google Scholar

28. Jimenez-LopezC, RomanekCS, BazylinskiDA. Magnetite as a prokaryotic biomarker: A review. J Geophys Res Biogeosci2010;115:2156202.Suche in Google Scholar

29. Rodriguez-NavarroC, Jimenez-LopezC, Rodriguez-NavarroA, Gonzalez-MuñozMT, Rodriguez-GallegoM. Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta2007;71:1197213.Suche in Google Scholar

30. González-MuñozMT, Rodriguez-NavarroC, Martínez-RuizF, AriasJM, MerrounML, Rodriguez-GallegoM. Bacterial biomineralization: new insights from myxococcus-induced mineral precipitation. Geol Soc London Sp Pub2011;336:3150.Suche in Google Scholar

31. JroundiF, Gonzalez-MuñozMT, Garcia-BuenoA, Rodriguez-NavarroC. Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomater2014;10:384454.Suche in Google Scholar

32. BoquetE, BoronatA, Ramos-CormenzanaA. Production of calcite (calcium carbonate) crystals by soil bacteria is a common phenomenon. Nature1973;246:5279.Suche in Google Scholar

33. CastanierS, Le Métayer-LevrelG, PerthuisotJP. Ca-carbonates precipitation and limestone genesis – the microbiologist point of view. Sediment Geol1999;126:923.Suche in Google Scholar

34. OrialG, CastanierS, Le Métayer-LevrelG, LoubiereJF. The biomineralization: a new process to protect calcareous stone applied to historic monuments. In: KtoishiH, AraiT, YamanoK, editors. Proceeding of the 2nd international conference on biodeterioration of cultural property. Yokohama: Yamano, 1993:98116.Suche in Google Scholar

35. Rodriguez-NavarroC, Gonzalez-MuñozMT, Jimenez-LopezC, Rodriguez-GallegoM. Bioprotection. In: ReitnerJ, ThielV, editors. Encyclopedia of Geobiology. Berlin: Springer, 2011:1859.Suche in Google Scholar

36. Jimenez-LopezC, Rodriguez-NavarroC, PiñarG, Carrillo-RosúaFJ, Rodriguez-GallegoM, Gonzalez-MuñozMT. Consolidation of degraded ornamental porous limestone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere2007;68:1929-36.Suche in Google Scholar

37. Jimenez-LopezC, JroundiF, PascoliniC, Rodriguez-NavarroC, PiñarG, Rodriguez-GallegoM, et al. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeter Biodegrad2008;62:35263.Suche in Google Scholar

38. Gonzalez-MuñozMT, Rodriguez-NavarroC, Jimenez-LopezC, Rodriguez-GallegoM. Method and product for protecting and reinforcing construction and ornamental materials. Spanish patent WO 2008/009771 A1; 2008.Suche in Google Scholar

39. JroundiF, Fernandez-VivasA, Rodriguez-NavarroC, BedmarEJ, Gonzalez-MuñozMT. Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol2010;60:3954.Suche in Google Scholar

40. EttenauerJ, PiñarG, SterlingerK, Gonzalez-MuñozF, JroundiF. Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bio-consolidation treatments. Sci Total Environm2011;409:533752.Suche in Google Scholar

41. Rodriguez-NavarroC. Causas y mecanismos de alteración de los materiales calcáreos de las catedrales de Granada y Jaén. PhD Thesis. Granada: University of Granada; 1994.Suche in Google Scholar

42. JroundiF, Gonzalez-MuñozMT, Rodriguez-NavarroC, Martin-PeinadoB, Martin-PeinadoJ. Conservation of carbonate stone by means of bacterial carbonatogenesis: evaluation of in situ treatments. In: KouiM, KoutsoukosP, ZezzaF, editors. Proceedings of the 8th international symposium on the conservation of monuments in the Mediterranean basin. Patras: Technical Chamber of Greece, 2013:15971.Suche in Google Scholar

43. DráckýM, LesákJ, RescicS, SlízkováZ, TianoP, ValachJ. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater Struc2012;45:50520.Suche in Google Scholar

44. BenaventeD, Martinez-VerdúF, BernabeuA, VigueiraV, FortR, García del CuraMA, et al. Influence of surface roughness on color changes in building stones. Color Res Appl2003;28:34351.Suche in Google Scholar

45. HughR, LeifsonE. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative rods. J Bacteriol1953;66:246.Suche in Google Scholar

46. SorianoS, WalkerN. Isolation of ammonia-oxidizing autotrophic bacteria. J Bacteriol1968;31:4937.Suche in Google Scholar

47. AleenMIH, AalexanderM. Cell-free nitrification by nitrobacter. J Bacteriol1958;76:51014.Suche in Google Scholar

48. JohnsonW, PeckHD. Coupling of phosphorylation and carbon dioxide fixation in extracts of thiobacillus thioparus. J Bacteriol1965;89:104150.Suche in Google Scholar

49. Schabereiter-GurtnerC, PiñarG, LubitzW, RöllekeS. An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol Methods2001;45:7787.Suche in Google Scholar

50. Le Métayer-LevrelG, CastanierS, OrialG, LoubièreJF, PerthuisotJP. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geol1999;126:2534.Suche in Google Scholar

51. SasseHR, SnethlageR. Methods for the evaluation of stone conservation treatments. In: BaerNS, SnethlageR, editors. Saving our architectural heritage: the conservation of historic stone structures. New York: John Wiley & Sons, 1997:22343.Suche in Google Scholar

52. AdolpheJP, LoubièreJF, ParadasJ, SoleilhavoupF. Procédé de traitement biologique d’une surface artificielle. European patent 90400G97.0; 1990.Suche in Google Scholar

53. UrziC, Garcia-VallesM, VendrellM, PerniceA. Biomineralization processes on rock and monument surfaces observed in field and laboratory conditions. Geomicrobiol J1999;16:3954.Suche in Google Scholar

54. Ortega-MoralesBO. Cyanobacterial diversity and ecology on historic monuments in Latin America. Rev Latinoam Microbiol2006;48:18895.Suche in Google Scholar

55. GaylardeCC, RodríguezCH, Navarro-NoyaYE, Ortega-MoralesB. Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Curr Microbiol2012;64:8592.Suche in Google Scholar

56. YanF, GeQ, LiQ, YuM, ZhuX, PanJ. Analysis of microbial community on the surface of the historic stone and nearby rock samples in Yungang Grottoes. Acta Microbiol Sinica2012;52:62936.Suche in Google Scholar

Published Online: 2015-2-4
Published in Print: 2015-2-1

©2015 by Birkhäuser Verlag

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rbm-2015-0002/html
Button zum nach oben scrollen