Startseite Crystal structures of non-centrosymmetric fluorouranylates Na3[UO2F5] and CaRb4[UO2F4]3⋅3H2O
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crystal structures of non-centrosymmetric fluorouranylates Na3[UO2F5] and CaRb4[UO2F4]3⋅3H2O

  • Viktor N. Serezhkin ORCID logo EMAIL logo , Mikhail S. Grigoriev ORCID logo , Marina V. Sukacheva , Anton V. Savchenkov ORCID logo und Larisa B. Serezhkina ORCID logo
Veröffentlicht/Copyright: 14. August 2025
Radiochimica Acta
Aus der Zeitschrift Radiochimica Acta

Abstract

The structure of Na3[UO2F5] (I) and CaRb4[UO2F4]3⋅3H2O (II) crystals was studied using X-ray diffraction analysis. The uranium-containing structural units are pentagonal bipyramids [UO2F5]3−, which are isolated from each other in I and linked by bridging fluorine atoms into trinuclear complexes of the composition [(UO2)3F12]6− in II. The latter one fills the existing gap in the crystal chemistry of uranyl fluorides and oxofluorides by representing the first example of a trinuclear complex, while di-, tetra- and pentanuclear complexes have been observed before. The first compound has been known for more than half a century, although here we present the first report on its crystal structure. The crystal chemical formulae of the uranium-containing complexes in I and II are AM 1 5 and A3M 2 3M 1 9, where A = UO22+, М2 and М1 = F. In both structures, the uranyl-containing complexes are linked into 3D frameworks by R–F and R–O coordination bonds with outer-sphere R cations (R = Na, Rb or Ca). As both compounds I and II turned out to be non-centrosymmetric their ability to generate the second harmonic was theoretically predicted based on parameters of Voronoi–Dirichlet polyhedra. Experimental verification of the obtained values is of undoubted interest.


Corresponding author: Viktor N. Serezhkin, Inorganic Chemistry Department, Samara National Research University, 34 Moskovskoye shosse, Samara, 443086, Russian Federation, E-mail:

Funding source: Russian Science Foundation

Award Identifier / Grant number: 20-73-10250

Funding source: Ministry of Science and Higher Education of the Russian Federation

Award Identifier / Grant number: FSSS-2024-0016

Acknowledgements

X-ray diffraction experiments were performed at the Center for Shared Use of Physical Methods of Investigation at the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The study was funded by a grant of the Russian Science Foundation (project number 20-73-10250, https://rscf.ru/en/project/20-73-10250/). Estimation of nonlinear optical activity was performed within the State assignment for scientific research to Samara University (project FSSS-2024-0016).

  7. Data availability: Not applicable.

References

1. Decoteau, E. A.; Raghavan, A.; Cahill, C. L. Structural, Spectroscopic, and Computational Analysis of Halogen- and Hydrogen-Bonding Effects Within a Series of Uranyl Fluorides with 4-Halopyridinium. Inorg. Chem. 2024, 63(5), 2495–2504. https://doi.org/10.1021/acs.inorgchem.3c03699.Suche in Google Scholar PubMed

2. Nazarchuk, E. V.; Siidra, O. I.; Charkin, D. O.; Tagirova, Y. G. A New Uranyl Silicate Sheet Derived from Phosphuranylite Topology in the Structure of Cs4[(UO2)5(SiO3OH)2O2F4]. Z. Kristallogr. - Cryst. Mater. 2024, 239 (5–6), 177–182; https://doi.org/10.1515/zkri-2023-0038.Suche in Google Scholar

3. Graubner, T.; Karttunen, A. J.; Kraus, F. A Dinuclear Uranium Complex [UO2F2(NH3)2(μ-F)2]2− from Reaction of Tlf and UO2F2 in Liquid Anhydrous Ammonia and Fluoride Ion Affinities for Some Uranyl(VI) Species [UO2Fx]2−x and [UO2Fx(NH3)5−x]2−x. Eur. J. Inorg. Chem. 2023, 26(28), e202300387. https://doi.org/10.1002/ejic.202300387.Suche in Google Scholar

4. Thuéry, P.; Harrowfield, J. Varying Structure-Directing Anions in Uranyl Ion Complexes with Ni(2,2′ : 6′,2′′-Terpyridine-4′-Carboxylate)2. Eur. J. Inorg. Chem. 2022, 2022 (13), e202200011; https://doi.org/10.1002/ejic.202200011.Suche in Google Scholar

5. Hu, K.-Q.; Zeng, L.-W.; Kong, X.-H.; Huang, Z.-W.; Yu, J.-P.; Mei, L.; Chai, Z.-F.; Shi, W.-Q. Viologen-Based Uranyl Coordination Polymers: Anion-Induced Structural Diversity and the Potential as a Fluorescent Probe. Eur. J. Inorg. Chem. 2021, 2021(48), 5077–5084. https://doi.org/10.1002/ejic.202100819.Suche in Google Scholar

6. Serezhkin, V. N.; Grigoriev, M. S.; Sukacheva, M. V.; Losev, V.Yu.; Serezhkina, L. B. Alkaline Metal Fluorooxalatouranilates: Structures and Selected Properties. Russ. J. Inorg. Chem. 2024, 69(2), 178–187. https://doi.org/10.1134/S0036023623602866.Suche in Google Scholar

7. Serezhkin, V. N.; Grigoriev, M. S.; Sukacheva, M. V.; Serezhkina, L. B. New Barium Fluorosuccinato and Fluoroglutarato Uranylates. Russ. J. Phys. Chem. 2023, 97(4), 695–701. https://doi.org/10.1134/S0036024423040271.Suche in Google Scholar

8. Rutkauskaite, R.; Zhang, X.; Woodward, A. W.; Liu, Y.; Herrera, G.; Purkis, J.; Woodall, S. D.; Sarsfield, M.; Schreckenbach, G.; Natrajan, L. S.; Arnold, P. L. The Effect of Ancillary Ligands on Hydrocarbon C–H Bond Functionalization by Uranyl Photocatalysts. Chem. Sci. 2024, 15(18), 6965–6978. https://doi.org/10.1039/D4SC01310G.Suche in Google Scholar

9. Andreev, G.; Budantseva, N.; Fedoseev, A. Interaction with Simple Monopyridinecarboxylic Ligands Revealing Unexpected Structural Types of Uranyl Halides. Inorg. Chem. 2020, 59(21), 15583–15586. https://doi.org/10.1021/acs.inorgchem.0c02718.Suche in Google Scholar PubMed

10. Serezhkin, V. N.; Grigoriev, М. S.; Sukacheva, М. V.; Pushkin, D. V.; Serezhkina, L. B. Lithium, Sodium, and Strontium Fluoroglutaratouranylates: Structure and Some Properties. Radiochemistry 2024, 66(2), 125–133. https://doi.org/10.1134/S1066362224020012.Suche in Google Scholar

11. Felder, J. B.; Smith, M.; zur Loye, H.-C. [Co(H2O)6]3[U2O4F7]2: a Model System for Understanding the Formation of Dimensionally Reduced Materials. Cryst. Growth Des. 2018, 18(2), 1236–1244. https://doi.org/10.1021/acs.cgd.7b01780.Suche in Google Scholar

12. Ok, K. M.; Doran, M. B.; O’Hare, D. [N(CH3)4][(UO2)2F5]: a New Organically Templated Open-Framework Uranium Oxide Fluoride (MUF-2). J. Mater. Chem. 2006, 16 (33), 3366–3368; https://doi.org/10.1039/B609525A.Suche in Google Scholar

13. I.I. Chernyaev, Complex Compounds of Uranium, Israel Program for Scientific Translations, Jerusalem, 1966.Suche in Google Scholar

14. Davidovich, R. L.; Zemskova, L. A. Reaction of Uranyl Fluoride with Sodium Fluoride in Aqueous Solution. Russ. Chem. Bull. 1978, 27(8), 1492–1497. https://doi.org/10.1007/BF00925027.Suche in Google Scholar

15. Dao, N. Q. Physico-Chemical Studies of Uranyl Fluoride Complexes. Inorg. Chim. Acta 1984, 95(3), 165–178. https://doi.org/10.1016/S0020-1693(00)87613-6.Suche in Google Scholar

16. Davidovich, R. L.; Goreshnik, E. A. Structural Chemistry of Fluoride Complexes of Uranyl. Struct. Chem. 2023, 34(1), 265–284. https://doi.org/10.1007/s11224-022-02095-8.Suche in Google Scholar

17. Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B. Features of Uranium Stereochemistry in Uranyl Oxofluorides. Radiochemistry 2022, 64(4), 491–501. https://doi.org/10.1134/S1066362222040038.Suche in Google Scholar

18. Savchenkov, A. V.; Vologzhanina, A. V.; Serezhkina, L. B.; Pushkin, D. V.; Stefanovich, S.Yu.; Serezhkin, V. N. Synthesis, Structure, and Nonlinear Optical Activity of K, Rb, and Cs Tris(Crotonato)Uranylates(VI). Z. anorg. allg. Chem. 2015, 641(6), 1182–1187. https://doi.org/10.1002/zaac.201400575.Suche in Google Scholar

19. Klepov, V. V.; Serezhkina, L. B.; Vologzhanina, A. V.; Pushkin, D. V.; Sergeeva, O. A.; Stefanovich, S. Y.; Serezhkin, V. N. Tris(Acrylato)Uranylates as a Scaffold for NLO Materials. Inorg. Chem. Commun. 2014, 46, 5–8. https://doi.org/10.1016/j.inoche.2014.04.024.Suche in Google Scholar

20. Klepov, V. V.; Serezhkina, L. B.; Grigoriev, M. S.; Shimin, N. A.; Stefanovich, S.Yu.; Serezhkin, V. N. Morphotropy in Alkaline Uranyl Methacrylate Complexes. Polyhedron 2017, 133, 40–47. https://doi.org/10.1016/j.poly.2017.04.041.Suche in Google Scholar

21. Serezhkin, V. N.; Savchenkov, A. V.; Klepov, V. V.; Stefanovich, S.Yu.; Pushkin, D. V.; Serezhkina, L. B. Relationship Between the Structure and Nonlinear Optical Properties of R[UO2L3] and R3[UO2L3]4 Crystals (L—Carboxylate Ion). Russ. J. Inorg. Chem. 2018, 63 (5), 647–654; https://doi.org/10.1134/S0036023618050145.Suche in Google Scholar

22. Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. Crystal Space Analysis by Means of Voronoi–Dirichlet Polyhedra. Acta Cryst. A 1995, 51 (6), 909–916; https://doi.org/10.1107/S0108767395006799.Suche in Google Scholar

23. Bruker. SAINT-Plus, 2012.Suche in Google Scholar

24. Bruker. SADABS, 2008.Suche in Google Scholar

25. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Cryst. 2015, 48(1), 3–10. https://doi.org/10.1107/S1600576714022985.Suche in Google Scholar PubMed PubMed Central

26. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A 2015, 71 (1), 3–8; https://doi.org/10.1107/S2053273314026370.Suche in Google Scholar PubMed PubMed Central

27. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71 (1), 3–8; https://doi.org/10.1107/S2053229614024218.Suche in Google Scholar PubMed PubMed Central

28. Serezhkin, V. N.; Mikhailov, Yu. N.; Buslaev, Yu. A. The Method of Intersecting Spheres for Determination of Coordination Numbers of Atoms in Crystal Structures. Rus. J. Inorg. Chem. 1997, 42(12), 1871–1910.Suche in Google Scholar

29. Serezhkin, V. N.; Serezhkina, L. B.; Shevchenko, A. P.; Pushkin, D. V. A New Method for Analyzing Intermolecular Interactions in the Structure of Crystals: Saturated Hydrocarbons. Russ. J. Phys. Chem. 2005, 79(6), 918–928.Suche in Google Scholar

30. Serezhkin, V. N.; Shevchenko, A. P.; Serezhkina, L. B. New Method of Analysis of Intermolecular Contacts in the Crystal Structure: Pi-Complexes. Russ. J. Coord. Chem. 2005, 31(7), 467–476; https://doi.org/10.1007/s11173-005-0121-3.Suche in Google Scholar

31. Serezhkin, V. N.; Vologzhanina, A. V.; Serezhkina, L. B.; Smirnova, E. S.; Grachova, E. V.; Ostrova, P. V.; Antipin, M.Yu Crystallochemical Formula as a Tool for Describing Metal–Ligand Complexes – a Pyridine-2,6-Dicarboxylate Example. Acta Cryst. B 2009, 65 (1), 45–53; https://doi.org/10.1107/S0108768108038846.Suche in Google Scholar PubMed

32. Serezhkin, V. N.; Medvedkov, Y. A.; Serezhkina, L. B.; Pushkin, D. V. Crystal-Chemical Role of Malonate Ions in the Structure of Coordination Polymers. Russ. J. Phys. Chem. 2015, 89 (6), 1018–1027; https://doi.org/10.1134/S0036024415060254.Suche in Google Scholar

33. Medvedkov, Y. A.; Serezhkina, L. B.; Serezhkin, V. N. The Crystal-Chemical Role of Alkylmalonate Ions in the Structure of Coordination Polymers. Russ. J. Phys. Chem. 2016, 90 (4), 803–808; https://doi.org/10.1134/S0036024416040191.Suche in Google Scholar

34. Serezhkin, V. N.; Rogaleva, E. F.; Shilova, M.Yu.; Novikov, S. A.; Serezhkina, L. B. Role of Succinate Ions in the Polymorphism of Coordination Polymers of f-Metals. Russ. J. Phys. Chem. 2018, 92 (8), 1535–1541; https://doi.org/10.1134/S0036024418080228.Suche in Google Scholar

35. Savchenkov, A. V.; Uhanov, A. S.; Grigoriev, M. S.; Fedoseev, A. M.; Pushkin, D. V.; Serezhkina, L. B.; Serezhkin, V. N. Halogen Bonding in Uranyl and Neptunyl Trichloroacetates with Alkali Metals and Improved Crystal Chemical Formulae for Coordination Compounds. Dalton Trans. 2021, 50(12), 4210–4218. https://doi.org/10.1039/D0DT04083E.Suche in Google Scholar PubMed

36. Plachinda, P. A.; Dolgikh, V. A.; Stefanovich, S.Yu.; Berdonosov, P. S. Nonlinear-Optical Susceptibility of Hilgardite-like Borates M2B5O9X (M = Pb, Ca, Sr, Ba; X = Cl, Br). Solid State Sci. 2005, 7 (10), 1194–1200; https://doi.org/10.1016/j.solidstatesciences.2005.05.006.Suche in Google Scholar

Received: 2025-05-20
Accepted: 2025-08-08
Published Online: 2025-08-14

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0050/html
Button zum nach oben scrollen