Abstract
The structure of Na3[UO2F5] (I) and CaRb4[UO2F4]3⋅3H2O (II) crystals was studied using X-ray diffraction analysis. The uranium-containing structural units are pentagonal bipyramids [UO2F5]3−, which are isolated from each other in I and linked by bridging fluorine atoms into trinuclear complexes of the composition [(UO2)3F12]6− in II. The latter one fills the existing gap in the crystal chemistry of uranyl fluorides and oxofluorides by representing the first example of a trinuclear complex, while di-, tetra- and pentanuclear complexes have been observed before. The first compound has been known for more than half a century, although here we present the first report on its crystal structure. The crystal chemical formulae of the uranium-containing complexes in I and II are AM 1 5 and A3M 2 3M 1 9, where A = UO22+, М2 and М1 = F−. In both structures, the uranyl-containing complexes are linked into 3D frameworks by R–F and R–O coordination bonds with outer-sphere R cations (R = Na, Rb or Ca). As both compounds I and II turned out to be non-centrosymmetric their ability to generate the second harmonic was theoretically predicted based on parameters of Voronoi–Dirichlet polyhedra. Experimental verification of the obtained values is of undoubted interest.
Funding source: Russian Science Foundation
Award Identifier / Grant number: 20-73-10250
Funding source: Ministry of Science and Higher Education of the Russian Federation
Award Identifier / Grant number: FSSS-2024-0016
Acknowledgements
X-ray diffraction experiments were performed at the Center for Shared Use of Physical Methods of Investigation at the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The study was funded by a grant of the Russian Science Foundation (project number 20-73-10250, https://rscf.ru/en/project/20-73-10250/). Estimation of nonlinear optical activity was performed within the State assignment for scientific research to Samara University (project FSSS-2024-0016).
-
Data availability: Not applicable.
References
1. Decoteau, E. A.; Raghavan, A.; Cahill, C. L. Structural, Spectroscopic, and Computational Analysis of Halogen- and Hydrogen-Bonding Effects Within a Series of Uranyl Fluorides with 4-Halopyridinium. Inorg. Chem. 2024, 63(5), 2495–2504. https://doi.org/10.1021/acs.inorgchem.3c03699.Search in Google Scholar PubMed
2. Nazarchuk, E. V.; Siidra, O. I.; Charkin, D. O.; Tagirova, Y. G. A New Uranyl Silicate Sheet Derived from Phosphuranylite Topology in the Structure of Cs4[(UO2)5(SiO3OH)2O2F4]. Z. Kristallogr. - Cryst. Mater. 2024, 239 (5–6), 177–182; https://doi.org/10.1515/zkri-2023-0038.Search in Google Scholar
3. Graubner, T.; Karttunen, A. J.; Kraus, F. A Dinuclear Uranium Complex [UO2F2(NH3)2(μ-F)2]2− from Reaction of Tlf and UO2F2 in Liquid Anhydrous Ammonia and Fluoride Ion Affinities for Some Uranyl(VI) Species [UO2Fx]2−x and [UO2Fx(NH3)5−x]2−x. Eur. J. Inorg. Chem. 2023, 26(28), e202300387. https://doi.org/10.1002/ejic.202300387.Search in Google Scholar
4. Thuéry, P.; Harrowfield, J. Varying Structure-Directing Anions in Uranyl Ion Complexes with Ni(2,2′ : 6′,2′′-Terpyridine-4′-Carboxylate)2. Eur. J. Inorg. Chem. 2022, 2022 (13), e202200011; https://doi.org/10.1002/ejic.202200011.Search in Google Scholar
5. Hu, K.-Q.; Zeng, L.-W.; Kong, X.-H.; Huang, Z.-W.; Yu, J.-P.; Mei, L.; Chai, Z.-F.; Shi, W.-Q. Viologen-Based Uranyl Coordination Polymers: Anion-Induced Structural Diversity and the Potential as a Fluorescent Probe. Eur. J. Inorg. Chem. 2021, 2021(48), 5077–5084. https://doi.org/10.1002/ejic.202100819.Search in Google Scholar
6. Serezhkin, V. N.; Grigoriev, M. S.; Sukacheva, M. V.; Losev, V.Yu.; Serezhkina, L. B. Alkaline Metal Fluorooxalatouranilates: Structures and Selected Properties. Russ. J. Inorg. Chem. 2024, 69(2), 178–187. https://doi.org/10.1134/S0036023623602866.Search in Google Scholar
7. Serezhkin, V. N.; Grigoriev, M. S.; Sukacheva, M. V.; Serezhkina, L. B. New Barium Fluorosuccinato and Fluoroglutarato Uranylates. Russ. J. Phys. Chem. 2023, 97(4), 695–701. https://doi.org/10.1134/S0036024423040271.Search in Google Scholar
8. Rutkauskaite, R.; Zhang, X.; Woodward, A. W.; Liu, Y.; Herrera, G.; Purkis, J.; Woodall, S. D.; Sarsfield, M.; Schreckenbach, G.; Natrajan, L. S.; Arnold, P. L. The Effect of Ancillary Ligands on Hydrocarbon C–H Bond Functionalization by Uranyl Photocatalysts. Chem. Sci. 2024, 15(18), 6965–6978. https://doi.org/10.1039/D4SC01310G.Search in Google Scholar
9. Andreev, G.; Budantseva, N.; Fedoseev, A. Interaction with Simple Monopyridinecarboxylic Ligands Revealing Unexpected Structural Types of Uranyl Halides. Inorg. Chem. 2020, 59(21), 15583–15586. https://doi.org/10.1021/acs.inorgchem.0c02718.Search in Google Scholar PubMed
10. Serezhkin, V. N.; Grigoriev, М. S.; Sukacheva, М. V.; Pushkin, D. V.; Serezhkina, L. B. Lithium, Sodium, and Strontium Fluoroglutaratouranylates: Structure and Some Properties. Radiochemistry 2024, 66(2), 125–133. https://doi.org/10.1134/S1066362224020012.Search in Google Scholar
11. Felder, J. B.; Smith, M.; zur Loye, H.-C. [Co(H2O)6]3[U2O4F7]2: a Model System for Understanding the Formation of Dimensionally Reduced Materials. Cryst. Growth Des. 2018, 18(2), 1236–1244. https://doi.org/10.1021/acs.cgd.7b01780.Search in Google Scholar
12. Ok, K. M.; Doran, M. B.; O’Hare, D. [N(CH3)4][(UO2)2F5]: a New Organically Templated Open-Framework Uranium Oxide Fluoride (MUF-2). J. Mater. Chem. 2006, 16 (33), 3366–3368; https://doi.org/10.1039/B609525A.Search in Google Scholar
13. I.I. Chernyaev, Complex Compounds of Uranium, Israel Program for Scientific Translations, Jerusalem, 1966.Search in Google Scholar
14. Davidovich, R. L.; Zemskova, L. A. Reaction of Uranyl Fluoride with Sodium Fluoride in Aqueous Solution. Russ. Chem. Bull. 1978, 27(8), 1492–1497. https://doi.org/10.1007/BF00925027.Search in Google Scholar
15. Dao, N. Q. Physico-Chemical Studies of Uranyl Fluoride Complexes. Inorg. Chim. Acta 1984, 95(3), 165–178. https://doi.org/10.1016/S0020-1693(00)87613-6.Search in Google Scholar
16. Davidovich, R. L.; Goreshnik, E. A. Structural Chemistry of Fluoride Complexes of Uranyl. Struct. Chem. 2023, 34(1), 265–284. https://doi.org/10.1007/s11224-022-02095-8.Search in Google Scholar
17. Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B. Features of Uranium Stereochemistry in Uranyl Oxofluorides. Radiochemistry 2022, 64(4), 491–501. https://doi.org/10.1134/S1066362222040038.Search in Google Scholar
18. Savchenkov, A. V.; Vologzhanina, A. V.; Serezhkina, L. B.; Pushkin, D. V.; Stefanovich, S.Yu.; Serezhkin, V. N. Synthesis, Structure, and Nonlinear Optical Activity of K, Rb, and Cs Tris(Crotonato)Uranylates(VI). Z. anorg. allg. Chem. 2015, 641(6), 1182–1187. https://doi.org/10.1002/zaac.201400575.Search in Google Scholar
19. Klepov, V. V.; Serezhkina, L. B.; Vologzhanina, A. V.; Pushkin, D. V.; Sergeeva, O. A.; Stefanovich, S. Y.; Serezhkin, V. N. Tris(Acrylato)Uranylates as a Scaffold for NLO Materials. Inorg. Chem. Commun. 2014, 46, 5–8. https://doi.org/10.1016/j.inoche.2014.04.024.Search in Google Scholar
20. Klepov, V. V.; Serezhkina, L. B.; Grigoriev, M. S.; Shimin, N. A.; Stefanovich, S.Yu.; Serezhkin, V. N. Morphotropy in Alkaline Uranyl Methacrylate Complexes. Polyhedron 2017, 133, 40–47. https://doi.org/10.1016/j.poly.2017.04.041.Search in Google Scholar
21. Serezhkin, V. N.; Savchenkov, A. V.; Klepov, V. V.; Stefanovich, S.Yu.; Pushkin, D. V.; Serezhkina, L. B. Relationship Between the Structure and Nonlinear Optical Properties of R[UO2L3] and R3[UO2L3]4 Crystals (L—Carboxylate Ion). Russ. J. Inorg. Chem. 2018, 63 (5), 647–654; https://doi.org/10.1134/S0036023618050145.Search in Google Scholar
22. Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. Crystal Space Analysis by Means of Voronoi–Dirichlet Polyhedra. Acta Cryst. A 1995, 51 (6), 909–916; https://doi.org/10.1107/S0108767395006799.Search in Google Scholar
23. Bruker. SAINT-Plus, 2012.Search in Google Scholar
24. Bruker. SADABS, 2008.Search in Google Scholar
25. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Cryst. 2015, 48(1), 3–10. https://doi.org/10.1107/S1600576714022985.Search in Google Scholar PubMed PubMed Central
26. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A 2015, 71 (1), 3–8; https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central
27. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71 (1), 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central
28. Serezhkin, V. N.; Mikhailov, Yu. N.; Buslaev, Yu. A. The Method of Intersecting Spheres for Determination of Coordination Numbers of Atoms in Crystal Structures. Rus. J. Inorg. Chem. 1997, 42(12), 1871–1910.Search in Google Scholar
29. Serezhkin, V. N.; Serezhkina, L. B.; Shevchenko, A. P.; Pushkin, D. V. A New Method for Analyzing Intermolecular Interactions in the Structure of Crystals: Saturated Hydrocarbons. Russ. J. Phys. Chem. 2005, 79(6), 918–928.Search in Google Scholar
30. Serezhkin, V. N.; Shevchenko, A. P.; Serezhkina, L. B. New Method of Analysis of Intermolecular Contacts in the Crystal Structure: Pi-Complexes. Russ. J. Coord. Chem. 2005, 31(7), 467–476; https://doi.org/10.1007/s11173-005-0121-3.Search in Google Scholar
31. Serezhkin, V. N.; Vologzhanina, A. V.; Serezhkina, L. B.; Smirnova, E. S.; Grachova, E. V.; Ostrova, P. V.; Antipin, M.Yu Crystallochemical Formula as a Tool for Describing Metal–Ligand Complexes – a Pyridine-2,6-Dicarboxylate Example. Acta Cryst. B 2009, 65 (1), 45–53; https://doi.org/10.1107/S0108768108038846.Search in Google Scholar PubMed
32. Serezhkin, V. N.; Medvedkov, Y. A.; Serezhkina, L. B.; Pushkin, D. V. Crystal-Chemical Role of Malonate Ions in the Structure of Coordination Polymers. Russ. J. Phys. Chem. 2015, 89 (6), 1018–1027; https://doi.org/10.1134/S0036024415060254.Search in Google Scholar
33. Medvedkov, Y. A.; Serezhkina, L. B.; Serezhkin, V. N. The Crystal-Chemical Role of Alkylmalonate Ions in the Structure of Coordination Polymers. Russ. J. Phys. Chem. 2016, 90 (4), 803–808; https://doi.org/10.1134/S0036024416040191.Search in Google Scholar
34. Serezhkin, V. N.; Rogaleva, E. F.; Shilova, M.Yu.; Novikov, S. A.; Serezhkina, L. B. Role of Succinate Ions in the Polymorphism of Coordination Polymers of f-Metals. Russ. J. Phys. Chem. 2018, 92 (8), 1535–1541; https://doi.org/10.1134/S0036024418080228.Search in Google Scholar
35. Savchenkov, A. V.; Uhanov, A. S.; Grigoriev, M. S.; Fedoseev, A. M.; Pushkin, D. V.; Serezhkina, L. B.; Serezhkin, V. N. Halogen Bonding in Uranyl and Neptunyl Trichloroacetates with Alkali Metals and Improved Crystal Chemical Formulae for Coordination Compounds. Dalton Trans. 2021, 50(12), 4210–4218. https://doi.org/10.1039/D0DT04083E.Search in Google Scholar PubMed
36. Plachinda, P. A.; Dolgikh, V. A.; Stefanovich, S.Yu.; Berdonosov, P. S. Nonlinear-Optical Susceptibility of Hilgardite-like Borates M2B5O9X (M = Pb, Ca, Sr, Ba; X = Cl, Br). Solid State Sci. 2005, 7 (10), 1194–1200; https://doi.org/10.1016/j.solidstatesciences.2005.05.006.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston