Startseite Gamma and neutron radiation shielding properties of Al2O3–B2O3–SiO2–ZnO–BaO glasses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Gamma and neutron radiation shielding properties of Al2O3–B2O3–SiO2–ZnO–BaO glasses

  • Dalal Abdullah Aloraini , Aljawhara Almuqrin , Badriah Albarzan , Essam A. Abdel Wahab und Khamies S. Shaaban ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. Mai 2025

Abstract

This study focused on developing new high-transparency, non-lead radiation shielding in barium zinc aluminum borosilicate glasses formulated as xBaO-17SiO2-(20-x) ZnO–58B2O3–5Al2O3, where (0 ≤ x ≤ 12 mol %) of BaO. The density was measured according to Archimedes’ principle. Theoretical radiation shielding values were calculated with the Phy-X program. Findings revealed that the density and radiation shielding results increased as BaO increased. The Linear Attenuation coefficient (LAC), effective electron density (Neff) effective atomic number (Zeq), and electronic cross-section (ECS) variation as follow: G5 > G4 > G3 > G2 > G1. The Half value layer (HVL) and mean free path (MFP) variation as follow: G1 > G2 > G3 > G4 > G5. Consequently, a shield with a higher BaO content has better attenuation properties. The study found that among the analyzed glass samples, the G5 sample offered the highest efficiency in radiation protection. This highlights the potential of the synthesized glasses as promising candidates for applications requiring efficient fast neutron attenuation.


Corresponding author: Khamies S. Shaaban, Department of Chemistry, Faculty of Science, Al-Azhar University, P.O. 71524, Assiut, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors extend their appreciation to the Deanship of Scientific Research and Libraries in Princess Nourah bint Abdulrahman University for funding this research work through the Research Group project, Grant No. (RG-1445-0008).

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Kaur, G.; Sharma, P.; Kumar, V.; Singh, K. Assessment of In Vitro Bioactivity of SiO2–BaO–ZnO–B2o3–Al2O3 Glasses: An Optico-Analytical Approach. Mater. Sci. Eng.: C 2012, 32 (7), 1941. https://doi.org/10.1016/j.msec.2012.05.034.Suche in Google Scholar PubMed

2. Shaaban, K. S.; Alotaibi, B. M.; Alrowaili, Z. A.; Al-Buriahi, M. S.; Ashour, A.; Yousef, S. Thermal and Mechanical Studies of Cerium Molybdenum Borosilicate Glasses and Glass–Ceramics. Silicon 2023, 15, 5233. https://doi.org/10.1007/s12633-023-02433-3.Suche in Google Scholar

3. Shaaban, K. S.; Aloraini, D. A.; Al-Baradi, A. M.; Assem, E. E. Bi2O3 Reinforced B2O3–SiO2–MgO Glass System: A Characterization Study through Physical, Mechanical and Gamma Shields Characteristics. Silicon 2025, 17, 615. https://doi.org/10.1007/s12633-024-03217-z.Suche in Google Scholar

4. Shaaban, K. S.; Aloraini, D. A. Spectroscopic Insights: Linear and Nonlinear Properties and Radiation Shielding Characteristics of Titanium-Modified Aluminum Borosilicate Glasses. Mater. Res. Bull. 2025, 184, 113266. https://doi.org/10.1016/j.materresbull.2024.113266.Suche in Google Scholar

5. Aloraini, D. A.; Ashour, A.; Shaaban, K. S. Effect of Various Na2O–MoO3 Concentrations on the Thermal, Mechanical, and Radiation-Resisting Attributes of Zinc-Borosilicate Glasses. Silicon 2024, 16, 1837. https://doi.org/10.1007/s12633-023-02804-w.Suche in Google Scholar

6. Juhim, F.; Chee, F. P.; Awang, A.; Salleh, S.; Rumaling, M. I.; Alalawi, A.; Al-Buriahi, M. Effect of Al2O3, RHF, and RHA on Gamma Shielding and Mechanical Properties of TeO2-Based Glass Using Phy-X/PSD. Prog. Nucl. Energy 2025, 185, 105767. https://doi.org/10.1016/j.pnucene.2025.105767.Suche in Google Scholar

7. Yadav, A. K.; Gautam, C. R. Synthesis, Structural and Optical Studies of Barium Strontium Titanate Borosilicate Glasses Doped with Ferric Oxide. Spectrosc. Lett. 2015, 48 (7), 514. https://doi.org/10.1080/00387010.2014.920886.Suche in Google Scholar

8. Partyka, J.; Gasek, K.; Pasiut, K.; Gajek, M. Effect of Addition of BaO on Sintering of Glass–Ceramic Materials from SiO2–Al2O3–Na2O–K2o–CaO/MgO System. J. Therm. Anal. Calorim. 2016, 125, 1095. https://doi.org/10.1007/s10973-016-5462-2.Suche in Google Scholar

9. Atamnia, K.; Satha, S.; Satha, H.; Gonon, M. F. Synthesis, Structural and Thermal Characterization of Silica Glasses Containing BaO, SrO and ZnO Oxides. Mater. Res. Express 2021, 8, 015201. https://doi.org/10.1088/2053-1591/abd33c.Suche in Google Scholar

10. Şakar, E.; Özpolat, Ö. F.; Alım, B.; Sayyed, M.; Kurudirek, M. Phy-X/PSD: Development of a User-Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiat. Phys. Chem. 2019, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496.Suche in Google Scholar

11. Aloraini, D. A.; Shaaban, K. S.; Gomaa, H. M. Influence of Replacement Trace Amounts of B2O3 with Nd2O3 on the Optical, Shielding, and Structural Parameters of Lanthanum-Based Borate Glass. Radiat. Phys. Chem. 2025, 231, 112598. https://doi.org/10.1016/j.radphyschem.2025.112598.Suche in Google Scholar

12. Kreen, K.; Aloraini, D. A.; Al-Baradi, A. M. A Closer Inspection of the Mechanical and Radiation Shielding Properties of La2O3-Doped Zinc Tellurite Glasses. Radiat. Phys. Chem. 2025, 232, 112613. https://doi.org/10.1016/j.radphyschem.2025.112613.Suche in Google Scholar

13. Sahu, P.; Ali, S. M. BaO-doped Silicate and Borosilicate Glasses for Enhanced Chemical Durability: Molecular Dynamics Simulations Based Strategy for Glass Design. Mol. Syst. Des. Eng. 2022, 7, 1477. https://doi.org/10.1039/d2me00094f.Suche in Google Scholar

14. Abdel Wahab, E. A.; Aloraini, D. A.; Shaaban, K. S. Germanium Magnesium Tellurium Borate Glasses Doped with Thulium Ions for Enhancing the Mechanical and Radiation Shielding Features. Appl. Phys. A 2025, 131, 137. https://doi.org/10.1007/s00339-025-08258-8.Suche in Google Scholar

15. Shaaban, K. S.; Al-Baradi, A. M.; Alotaibi, B.; El-Rehim, A. Mechanical and Radiation Shielding Features of Lithium Titanophosphate Glasses Doped BaO. J. Mater. Res. Technol. 2023, 23, 756. https://doi.org/10.1016/j.jmrt.2023.01.062.Suche in Google Scholar

16. Shaaban, K. S.; Al-Harbi, N.; Alyousef, H. A.; Al-Baradi, A. M.; Ali, A. M.; Abdel Wahab, E. Thermal, Mechanical Characteristics as Well as Gamma-Ray Shielding Capabilities of Sodium-Barium Borosilicate Glasses with Y3+ Ions. Radiat. Phys. Chem. 2023, 212, 111086. https://doi.org/10.1016/j.radphyschem.2023.111086.Suche in Google Scholar

17. Shaaban, K.; Tamam, N.; Alghasham, H. A.; Alrowaili, Z.; Al-Buriahi, M.; Ellakwa, T. E. Thermal, Optical, and Radiation Shielding Capacity of B2O3–MoO3–Li2O–Nb2O5 Glasses. Mater. Today Commun. 2023, 37, 107325. https://doi.org/10.1016/j.mtcomm.2023.107325.Suche in Google Scholar

18. Sayyed, M.; More, C. V.; Mahmoud, K.; Khandaker, M.; Lam, S. ZnO-enhanced Borotellurite Glasses: A Comparative Investigation of Radiation Shielding via Experiment and Simulation Approaches. Radiat. Phys. Chem. 2025, 234, 112812. https://doi.org/10.1016/j.radphyschem.2025.112812.Suche in Google Scholar

19. Alghasham, H. A.; Ismail, Y. A.; Aloraini, D. A.; Shaaban, K. Elucidating the Influences of MoO3 in Na2O–ZnO–B2o3–SiO2: Fabrication, Optical, and γ-ray Protection Properties for the Novel High-Density Glasses. Mater. Today Commun. 2024, 38, 107840. https://doi.org/10.1016/j.mtcomm.2023.107840.Suche in Google Scholar

20. Sayyed, M.; Mahmoud, K.; Biradar, S. Synergistic Effects of Erbium and Barium Oxides on Optical and Gamma-Ray Shielding Characteristics of Boro-Tellurite Glasses. Radiat. Phys. Chem. 2025, 229, 112508. https://doi.org/10.1016/j.radphyschem.2024.112508.Suche in Google Scholar

21. Mahrous, E. M.; Al-Baradi, A. M.; Shaaban, K. S. Significant Influence of La2O3 Content on Radiation Shielding Characteristics Properties of Bismuth Sodium Borosilicate Glasses. Radiochim. Acta 2024, 112, 1007. https://doi.org/10.1515/ract-2024-0307.Suche in Google Scholar

22. Kumar, A.; Sayyed, M.; Hanafy, T. A. Physical, Mechanical, Structural, Optical and Gamma Ray Shielding Behavior of (90-X-y)B2O3–5PbO–5BaO–xZnO–yTiO2 Glasses. Ceram. Int. 2024, 50 (21), 43279. https://doi.org/10.1016/j.ceramint.2024.08.182.Suche in Google Scholar

23. Shaaban, K. S.; Al-Baradi, A. M.; Ali, A. M. Physical, Optical, and Advanced Radiation Absorption Characteristics of Cadmium Lead Phosphate Glasses Containing MoO3. J. Mater. Sci.: Mater. Electron. 2022, 33, 3297. https://doi.org/10.1007/s10854-021-07530-w.Suche in Google Scholar

24. Alsafi, K.; Aloraini, D. A.; Assem, E. E.; Shaaban, K. S.; Abdel Wahab, E. A. Spectroscopic Insights: Linear and Nonlinear Features and Radiation Protection Competences of Y2O3 Doped ZnPbSiO4 Glasses. Opt. Quantum Electron. 2024, 56, 968. https://doi.org/10.1007/s11082-024-06816-7.Suche in Google Scholar

25. Shaaban, K. S.; Al-Baradi, A. M.; Ali, A. M. Gamma-ray Shielding and Mechanical Characteristics of Iron-Doped Lead Phosphosilicate Glasses. Silicon 2022, 14, 8971. https://doi.org/10.1007/s12633-022-01702-x.Suche in Google Scholar

26. Shaaban, K. S.; Althagafi, T. M.; Ashour, A.; Alalawi, A.; Al-Buriahi, M.; Ibraheem, A. A. The Role of Nb2O5 on Structural, Mechanical, and Gamma-Ray Shielding Characteristics of Lithium Molybdenum Borate Glasses. Radiat. Phys. Chem. 2024, 216, 111440. https://doi.org/10.1016/j.radphyschem.2023.111440.Suche in Google Scholar

27. Al-Baradi, A. M.; Alotaibi, B. M.; Alharbi, N.; El-Rehim, A. F. A.; Shaaban, K. S. Gamma Radiation Shielding and Mechanical Studies on Highly Dense Lithium Iron Borosilicate Glasses Modified by Zinc Oxide. Silicon 2022, 14, 10391. https://doi.org/10.1007/s12633-022-01801-9.Suche in Google Scholar

28. Acikgoz, A.; Aladailah, M. W.; Tashlykov, O. L.; Demircan, G.; Kamislioglu, M.; Yaşar, M. M.; Özdoğan, H.; Yorulmaz, N. Influence of Nd2O3 on Radiation Shielding and Elastic Properties of TeO2–MgO–Na2O Glasses: A Simulation Study by PHITS and MCNP. Pramana J. Phys. 2023, 97, 167. https://doi.org/10.1007/s12043-023-02629-7.Suche in Google Scholar

29. Murshed, M. N.; El Sayed, M. E.; Saleh, E. E.; Alresheedi, F.; Algradee, M. A. Novel Li2O–BaO–PbO–B2o3 Glasses: Physical, Structural, Optical, Gamma Ray Shielding, and Fast Neutron Features. Opt. Quantum Electron. 2024, 56, 620. https://doi.org/10.1007/s11082-024-06304-y.Suche in Google Scholar

30. Rasul, S. Y.; Aktas, B.; Yilmaz, D.; Pathman, A. F.; Yalcin, S.; Acikgoz, A. Impact of HfO2 on the Structural, Thermal, Gamma, and Neutron Shielding Properties of Boro-Tellurite Glasses. Inorg. Chem. Commun. 2025, 174, 113993. https://doi.org/10.1016/j.inoche.2025.113993.Suche in Google Scholar

Received: 2025-05-02
Accepted: 2025-05-14
Published Online: 2025-05-26
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0048/html?lang=de
Button zum nach oben scrollen