Abstract
Pancreatic cancer remains difficult to diagnose using currently available imaging probes. Thus, this study aimed to develop a novel imaging agent for the diagnosis of pancreatic cancer using positron emission tomography (PET). Specifically, this study explores gelatin-based nanoparticles fabricated via radiation-induced crosslinking, as gelatin is known for its ability to produce biocompatible materials. Aqueous gelatin solutions were irradiated with γ-rays to produce nanoparticles with average diameters of 5–20 nm via a radiation crosslinking technique. The gelatin nanoparticles were labeled with 64Cu, exhibiting negative surface potentials. Furthermore, the nanoparticles were evaluated in vivo by injecting them into pancreatic tumor-bearing mice. Notably, the nanoparticles accumulated in the tumors. Hence, 64Cu-labeled gelatin nanoparticles show promise as a platform for next-generation PET imaging agents for pancreatic cancer.
Acknowledgments
The authors thank Dr. Noriaki Seko (QST) for analyzing the radiation-crosslinked gelatin nanoparticles; Dr. Noriko S. Ishioka (QST) for her valuable discussion and helpful advice; and all members of Medical Radioisotope Applications Project and the operating crew of TIARA for their continuous support. The authors would like to thank Editage (www.editage.com) for the English language editing.
-
Research ethics: All procedures involving animals were conducted in accordance with the ethical standards of National Institutes for Quantum Science and Technology and were approved by the Animal Ethics Committee.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was partially supported by Kakenhi (Grant Nos. 20K20915 and 23K11713) and the Innovative Science and Technology Initiative for Security (Grant Number JPJ004596, ATLA, Japan).
-
Data availability: The data are available from the corresponding author upon reasonable request.
References
1. Dayton, P. A.; Ferrara, K. W. Targeted Imaging Using Ultrasound. J. Magn. Reson. Imag. 2002, 16, 362–377; https://doi.org/10.1002/jmri.10173.Search in Google Scholar PubMed
2. Terreno, E.; Castelli, D. D.; Viale, A.; Aime, S. Challenges for Molecular Magnetic Resonance Imaging. Chem. Rev. 2010, 110, 3019–3042; https://doi.org/10.1021/cr100025t.Search in Google Scholar PubMed
3. Torigian, D. A.; Huang, S. S.; Houseni, M.; Alavi, A. Functional Imaging of Cancer with Emphasis on Molecular Techniques. CA Cancer J. Clin. 2007, 57, 206–224; https://doi.org/10.3322/canjclin.57.4.206.Search in Google Scholar PubMed
4. Zhu, L.; Ploessl, K.; Kung, H. F. PET/SPECT Imaging Agents for Neurodegenerative Diseases. Chem. Soc. Rev. 2014, 43, 6683–6691; https://doi.org/10.1039/c3cs60430f.Search in Google Scholar PubMed PubMed Central
5. Lisney, A. R.; Leitsmann, C.; Strauß, A.; Meller, B.; Bucerius, J. A.; Sahlmann, C. O. The Role of PSMA PET/CT in the Primary Diagnosis and Follow-Up of Prostate Cancer–A Practical Clinical Review. Cancers 2022, 14, 3638; https://doi.org/10.3390/cancers14153638.Search in Google Scholar PubMed PubMed Central
6. Romeo, V.; Clauser, P.; Rasul, S.; Kapetas, P.; Gibbs, P.; Baltzer, P. A. T.; Hacker, M.; Woitek, R.; Helbich, T. H.; Pinker, K. AI-Enhanced Simultaneous Multiparametric 18F-FDG PET/MRI for Accurate Breast Cancer Diagnosis. Eur J Nucl Med Mol Imag. 2022, 49, 596–608; https://doi.org/10.1007/s00259-021-05492-z.Search in Google Scholar PubMed PubMed Central
7. McDevitt, M. R.; Chattopadhyay, D.; Jaggi, J. S.; Finn, R. D.; Zanzonico, P. B.; Villa, C.; Rey, D.; Mendenhall, J.; Batt, C. A.; Njardarson, J. T.; Scheinberg, D. A. PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice. PLoS One 2007, 2, e907; https://doi.org/10.1371/journal.pone.0000907.Search in Google Scholar PubMed PubMed Central
8. Chakravarty, R.; Rajeswari, A.; Shetty, P.; Jagadeesan, K. C.; Ram, R.; Jadhav, S.; Sarma, H. D.; Dash, A.; Chakraborty, S. A Simple and Robust Method for Radiochemical Separation of No-Carrier-Added 64Cu Produced in a Research Reactor for Radiopharmaceutical Preparation. Appl. Radiat. Isot. 2020, 165, 109341; https://doi.org/10.1016/j.apradiso.2020.109341.Search in Google Scholar PubMed
9. Chen, X.; Niu, W.; Du, Z.; Zhang, Y.; Su, D.; Gao, X. 64Cu Radiolabeled Nanomaterials for Positron Emission Tomography (PET) Imaging. Chin. Chem. Lett. 2022, 33, 3349–3360; https://doi.org/10.1016/j.cclet.2022.02.070.Search in Google Scholar
10. Colombié, M.; Gouard, S.; Frindel, M.; Vidal, A.; Chérel, M.; Kraeber-Bodéré, F.; Rousseau, C.; Bourgeois, M. Focus on the Controversial Aspects of 64Cu-ATSM in Tumoral Hypoxia Mapping by PET Imaging. Front. Med. 2015, 2, 58; https://doi.org/10.3389/fmed.2015.00058.Search in Google Scholar PubMed PubMed Central
11. Fodero-Tavoletti, M. T.; Villemagne, V. L.; Paterson, B. M.; White, A. R.; Li, Q. X.; Camakaris, J.; O’keefe, G.; Cappai, R.; Barnham, K. J.; Donnelly, P. S. Bis(thiosemicarbazonato) Cu-64 Complexes for Positron Emission Tomography Imaging of Alzheimer’s Disease. J. Alzheim. Dis. 2010, 20, 49–55; https://doi.org/10.3233/jad-2010-1359.Search in Google Scholar PubMed
12. Guo, H.; Miao, Y. Cu-64-labeled Lactam Bridge-Cyclized α-MSH Peptides for PET Imaging of Melanoma. Mol. Pharm. 2012, 9, 2322–2330; https://doi.org/10.1021/mp300246j.Search in Google Scholar PubMed PubMed Central
13. Maier, F. C.; Wild, A. M.; Kirchen, N.; Holm, F.; Fuchs, K.; Schwenck, J.; Maurer, A.; Wiehr, S. Comparative Immuno-Cerenkov Luminescence and -PET Imaging Enables Detection of PSMA+ Tumors in Mice Using 64Cu-Radiolabeled Monoclonal Antibodies. Appl. Radiat. Isot. 2019, 143, 149–155; https://doi.org/10.1016/j.apradiso.2018.09.006.Search in Google Scholar PubMed
14. Voss, S. D.; Smith, S. V.; DiBartolo, N.; McIntosh, L. J.; Cyr, E. M.; Bonab, A. A.; Dearling, J. L.; Carter, E. A.; Fischman, A. J.; Treves, S. T.; Gillies, S. D.; Sargeson, A. M.; Huston, J. S.; Packard, A. B. Positron Emission Tomography (PET) Imaging of Neuroblastoma and Melanoma with 64Cu-SarAr Immunoconjugates. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17489–17493; https://doi.org/10.1073/pnas.0708436104.Search in Google Scholar PubMed PubMed Central
15. Xie, Q.; Zhu, H.; Wang, F.; Meng, X.; Ren, Q.; Xia, C.; Yang, Z. Establishing Reliable Cu-64 Production Process: from Target Plating to Molecular Specific Tumor Micro-PET Imaging. Molecules 2017, 22, 641; https://doi.org/10.3390/molecules22040641.Search in Google Scholar PubMed PubMed Central
16. Glaus, C.; Rossin, R.; Welch, M. J.; Bao, G. In Vivo Evaluation of (64)Cu-Labeled Magnetic Nanoparticles as a Dual-Modality PET/MR Imaging Agent. Bioconjugate Chem. 2010, 21, 715–722; https://doi.org/10.1021/bc900511j.Search in Google Scholar PubMed PubMed Central
17. Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392.Search in Google Scholar
18. Fang, J.; Islam, R.; Islam, W.; Yin, H.; Subr, V.; Etrych, T.; Ulbrich, K.; Maeda, H. Augmentation of EPR Effect and Efficacy of Anticancer Nanomedicine by Carbon Monoxide Generating Agents. Pharmaceutics 2019, 11, 343; https://doi.org/10.3390/pharmaceutics11070343.Search in Google Scholar PubMed PubMed Central
19. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the Enhanced Permeability and Retention Effect for Tumor Targeting. Drug Discov. Today 2006, 11, 812–818; https://doi.org/10.1016/j.drudis.2006.07.005.Search in Google Scholar PubMed
20. Moballegh Nasery, M.; Abadi, B.; Poormoghadam, D.; Zarrabi, A.; Keyhanvar, P.; Khanbabaei, H.; Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Sethi, G. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules 2020, 25, 689; https://doi.org/10.3390/molecules25030689.Search in Google Scholar PubMed PubMed Central
21. Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR Effect and beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy. Theranostics 2020, 10, 7921–7924; https://doi.org/10.7150/thno.49577.Search in Google Scholar PubMed PubMed Central
22. Zhou, H.; Zhang, Q.; Cheng, Y.; Xiang, L.; Shen, G.; Wu, X.; Cai, H.; Li, D.; Zhu, H.; Zhang, R.; Li, L.; Cheng, Z. 64Cu-labeled Melanin Nanoparticles for PET/CT and Radionuclide Therapy of Tumor. Nanomedicine 2020, 29, 102248; https://doi.org/10.1016/j.nano.2020.102248.Search in Google Scholar PubMed PubMed Central
23. Alhakamy, N. A.; Ahmed, O. A. A.; Fahmy, U. A.; Md, S. Apamin-Conjugated Alendronate Sodium Nanocomplex for Management of Pancreatic Cancer. Pharmaceuticals 2021, 14, 729; https://doi.org/10.3390/ph14080729.Search in Google Scholar PubMed PubMed Central
24. Bailey, A. J.; Rhodes, D. N.; Cater, C. W. Irradiation-induced Crosslinking of Collagen. Radiat. Res. 1964, 22, 606–621; https://doi.org/10.2307/3571543.Search in Google Scholar
25. Manzur, A.; Oluwasanmi, A.; Moss, D.; Curtis, A.; Hoskins, C. Nanotechnologies in Pancreatic Cancer Therapy. Pharmaceutics 2017, 9, 39; https://doi.org/10.3390/pharmaceutics9040039.Search in Google Scholar PubMed PubMed Central
26. Yasunaga, M.; Manabe, S.; Matsumura, Y. New Concept of Cytotoxic Immunoconjugate Therapy Targeting Cancer-Induced Fibrin Clots. Cancer Sci. 2011, 102, 1396–1402; https://doi.org/10.1111/j.1349-7006.2011.01954.x.Search in Google Scholar PubMed PubMed Central
27. Cataldo, F.; Ursini, O.; Lilla, E.; Angelini, G. Radiation-induced Crosslinking of Collagen Gelatin into a Stable Hydrogel. J. Radioanal. Nucl. Chem. 2008, 275, 125–131; https://doi.org/10.1007/s10967-007-7003-8.Search in Google Scholar
28. Cheung, D. T.; Perelman, N.; Tong, D.; Nimni, M. E. The Effect of γ-irradiation on Collagen Molecules. J. Biomed. Mater. Res. 1990, 24, 581–589; https://doi.org/10.1002/jbm.820240505.Search in Google Scholar PubMed
29. Kuan, Y. H.; Bhat, R.; Patras, A.; Karim, A. A. Radiation Processing of Food Proteins – A Review on the Recent Developments. Trends Food Sci. Technol. 2013, 30, 105–120; https://doi.org/10.1016/j.tifs.2012.12.002.Search in Google Scholar
30. Oyama, T. G.; Kimura, A.; Nagasawa, N.; Oyama, K.; Taguchi, M. Development of Advanced Biodevices Using Quantum Beam Microfabrication Technology. Quant. Beam Sci. 2020, 4, 14; https://doi.org/10.3390/qubs4010014.Search in Google Scholar
31. LaVerne, J. A. OH Radicals and Oxidizing Products in the Gamma Radiolysis of Water. Radiat. Res. 2000, 153, 196200; https://doi.org/10.1667/0033-7587(2000)153[0196:oraopi]2.0.co;2.Search in Google Scholar
32. Getoff, N. Factors Influencing the Efficiency of Radiation-Induced Degradation of Water Pollutants. Radiat. Phys. Chem. 2002, 65, 437–446; https://doi.org/10.1016/s0969-806x(02)00342-0.Search in Google Scholar
33. Garrison, W. M. Reaction Mechanisms in the Radiolysis of Peptides, Polypeptides, and Proteins. Chem. Rev. 1987, 87, 381–398; https://doi.org/10.1021/cr00078a006.Search in Google Scholar
34. Maitra, J.; Shukla, V. K. Crosslinking in Hydrogels – A Review. Am. J. Polym. Sci. 2014, 4, 25–31.Search in Google Scholar
35. Kimura, A.; Yoshida, F.; Ueno, M.; Taguchi, M. Application of Radiation Crosslinking Technique to Development of Gelatin Scaffold for Tissue Engineering. Radiat. Phys. Chem. 2021, 180, 109287; https://doi.org/10.1016/j.radphyschem.2020.109287.Search in Google Scholar
36. Tachibana, T.; Oyama, T. G.; Yoshii, Y.; Hihara, F.; Igarashi, C.; Tsuji, A. B.; Higashi, T.; Taguchi, M. Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell. Appl. Sci. 2021, 11, 7031; https://doi.org/10.3390/app11157031.Search in Google Scholar
37. Zhang, X.; Xu, L.; Huang, X.; Wei, S.; Zhai, M. Structural Study and Preliminary Biological Evaluation on the Collagen Hydrogel Crosslinked by γ-irradiation. J. Biomed. Mater. Res. A 2012, 100, 2960–2969; https://doi.org/10.1002/jbm.a.34243.Search in Google Scholar PubMed
38. Kimura, A.; Arai, T.; Ueno, M.; Oyama, K.; Yu, H.; Yamashita, S.; Otome, Y.; Taguchi, M. Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis. Pharmaceutics 2022, 14, 2400; https://doi.org/10.3390/pharmaceutics14112400.Search in Google Scholar PubMed PubMed Central
39. Mahmoudi, M.; Simchi, A.; Imani, M.; Häfeli, U. O. Superparamagnetic Iron Oxide Nanoparticles with Rigid Cross-Linked Polyethylene Glycol Fumarate Coating for Application in Imaging and Drug Delivery. J. Phys. Chem. C 2009, 113, 8124–8131; https://doi.org/10.1021/jp900798r.Search in Google Scholar
40. Kimura, A.; Jo, J. I.; Yoshida, F.; Hong, Z.; Tabata, Y.; Sumiyoshi, A.; Taguchi, M.; Aoki, I. Ultra-small Size Gelatin Nanogel as a Blood Brain Barrier Impermeable Contrast Agent for Magnetic Resonance Imaging. Acta Biomater. 2021, 125, 290–299; https://doi.org/10.1016/j.actbio.2021.02.016.Search in Google Scholar PubMed
41. Dunshee, L. C.; Sullivan, M. O.; Kiick, K. L. Manipulation of the Dually Thermoresponsive Behavior of Peptide-Based Vesicles through Modification of Collagen-like Peptide Domains. Bioeng. Transl. Med. 2020, 5, e10145; https://doi.org/10.1002/btm2.10145.Search in Google Scholar PubMed PubMed Central
42. McCarthy, D. W.; Shefer, R. E.; Klinkowstein, R. E.; Bass, L. A.; Margeneau, W. H.; Cutler, C. S.; Anderson, C. J.; Welch, M. J. Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron. Nucl. Med. Biol. 1997, 24, 35–43; https://doi.org/10.1016/s0969-8051(96)00157-6.Search in Google Scholar PubMed
43. Watanabe, S.; Watanabe, S.; Liang, J.; Hanaoka, H.; Endo, K.; Ishioka, N. S. Chelating Ion-Exchange Methods for the Preparation of No-Carrier-Added 64Cu. Nucl. Med. Biol. 2009, 36, 587–590; https://doi.org/10.1016/j.nucmedbio.2009.04.005.Search in Google Scholar PubMed
44. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, 1993.Search in Google Scholar
45. Bohidar, H. B. Hydrodynamic Properties of Gelatin in Dilute Solutions. Int. J. Biol. Macromol. 1998, 23, 1–6; https://doi.org/10.1016/s0141-8130(98)00003-8.Search in Google Scholar PubMed
46. Hedstrom, L. Serine Protease Mechanism and Specificity. Chem. Rev. 2002, 102, 4501–4524; https://doi.org/10.1021/cr000033x.Search in Google Scholar PubMed
47. Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of Nanomedicines. J. Contr. Release 2010, 145, 182–195; https://doi.org/10.1016/j.jconrel.2010.01.036.Search in Google Scholar PubMed PubMed Central
48. Pérez-Campaña, C.; Gómez-Vallejo, V.; Puigivila, M.; Martín, A.; Calvo-Fernández, T.; Moya, S. E.; Ziolo, R. F.; Reese, T.; Llop, J. Biodistribution of Different Sized Nanoparticles Assessed by Positron Emission Tomography: A General Strategy for Direct Activation of Metal Oxide Particles. ACS Nano 2013, 7, 3498–3505; https://doi.org/10.1021/nn400450p.Search in Google Scholar PubMed
49. Welch, M. J.; Hawker, C. J.; Wooley, K. L. The Advantages of Nanoparticles for PET. J. Nucl. Med. 2009, 50, 1743–1746; https://doi.org/10.2967/jnumed.109.061846.Search in Google Scholar PubMed
50. Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N. Mechanical and Thermal Properties of Gelatin Films at Different Degrees of Glutaraldehyde Crosslinking. Biomaterials 2001, 22, 763–768; https://doi.org/10.1016/s0142-9612(00)00236-2.Search in Google Scholar PubMed
51. Uesugi, Y.; Kawata, H.; Saito, Y.; Tabata, Y. Ultrasound-responsive Thrombus Treatment with Zinc-Stabilized Gelatin Nano-Complexes of Tissue-type Plasminogen Activator. J. Drug Target. 2012, 20, 224–234; https://doi.org/10.3109/1061186x.2011.633259.Search in Google Scholar
52. Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E. J.; Zhong, Z. Click Hydrogels, Microgels, and Nanogels: Emerging Platforms for Drug Delivery and Tissue Engineering. Biomaterials 2014, 35, 4969–4985; https://doi.org/10.1016/j.biomaterials.2014.03.001.Search in Google Scholar PubMed
53. Murillo, O.; Collantes, M.; Gazquez, C.; Moreno, D.; Hernandez-Alcoceba, R.; Barberia, M.; Ecay, M.; Tamarit, B.; Douar, A.; Ferrer, V.; Combal, J. P.; Peñuelas, I.; Bénichou, B.; Gonzalez-Aseguinolaza, G. High Value of 64Cu as a Tool to Evaluate the Restoration of Physiological Copper Excretion after Gene Therapy in Wilson’s Disease. Mol. Ther. Methods Clin. Dev. 2022, 26, 98–106; https://doi.org/10.1016/j.omtm.2022.06.001.Search in Google Scholar PubMed PubMed Central
54. Ahmedova, A.; Todorov, B.; Burdzhiev, N.; Goze, C. Copper Radiopharmaceuticals for Theranostic Applications. Eur. J. Med. Chem. 2018, 157, 1406–1425; https://doi.org/10.1016/j.ejmech.2018.08.051.Search in Google Scholar PubMed
55. Mishiro, K.; Hanaoka, H.; Yamaguchi, A.; Ogawa, K. Radiotheranostics with Radiolanthanides: Design, Development Strategies, and Medical Applications. Coord. Chem. Rev. 2019, 383, 104–131; https://doi.org/10.1016/j.ccr.2018.12.005.Search in Google Scholar
56. Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An Overview of Targeted Alpha Therapy with 225Actinium and 213Bismuth. Curr. Rad. 2018, 11, 200–208; https://doi.org/10.2174/1874471011666180502104524.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses
Articles in the same Issue
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses