The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses
Abstract
In this study, we have reported on the effect of the rare earth oxides on the radiation protection performance of the tellurite glasses. In order to determine the effect of rare earth oxides on the radiation shielding properties of tungsten oxide (WO3) modified tellurite glasses, three rare earth element oxides (Nd2O3, Yb2O3, and Er2O3) have been selected. The glass systems have been synthesized using the traditional melt quenching method and were doped with the different amount (1 %, 3 %, 5 %) of the oxides of rare earth elements (Nd2O3, Yb2O3, Er2O3). The linear attenuation coefficient, mass attenuation coefficient, half value layer, and effective atomic number of the synthesized samples were experimentally measured for 662, 1,173 and 1,332 keV gamma-ray energies which were emitted from 137Cs and 60Co radioactive sources. Measurements were conducted in narrow beam transmission geometry using a NaI(Tl) scintillation detector. In addition, all these parameters were calculated theoretically using the WinXCOM program in the energy region of 0.015–15 MeV. The addition of different types and amounts of rare earth oxides to the tellurite glass system was found to significantly enhance the radiation protection performance of the glasses. In particular, it was found that the radiation shielding characteristics of the glasses improved with increasing amount of rare earth doping, the TWYb5 glass system had the best radiation shielding properties, and there was a trend among the doped rare earth oxides in the form of Yb > Er > Nd according to their radiation shielding performance.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This study was financially supported by the Coordination Office of the Scientific Projects of the Kafkas University under the project number 2022-FM-65.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Ahmed, E. K.; Mahran, H. M.; Alrashdi, M. F.; Elsafi, M. Studying the Shielding Ability of Different Cement Mortars Against Gamma Ray Sources Using Waste Iron and BaO Microparticles. Nexus Future Mater. 2024, 1, 1–5.10.70128/583327Suche in Google Scholar
2. Rotkovich, A. A.; Tishkevich, D. I.; German, S. A.; Bondaruk, A. A.; Dashkevich, E. S.; Trukhanov, A. V. A Study of the Morphological, Structural, and Shielding Properties of Epoxy-W Composite Materials. Nexus Future Mater. 2024, 1, 13–19.10.70128/584044Suche in Google Scholar
3. Waida, J.; Rilwan, U. A Comparative Analysis of Radon-222 Concentration in Water Sources and its Potential Stomach and Lungs Doses: A Case Study of Borno State University Campus and its Environs. Nexus Future Mater. 2024, 1, 39–50.Suche in Google Scholar
4. Almuqrin, A. H.; Rashad, M.; More, C. V.; Sayyed, M. I.; Elsafi, M. An Experimental and Theoretical Study to Evaluate Al2O3–PbO–B2O3–SiO2–BaO Radiation Shielding Properties. Radiat. Phys. Chem. 2024, 222, 111824; https://doi.org/10.1016/j.radphyschem.2024.111824.Suche in Google Scholar
5. Altowyan, A. S.; Sayyed, M. I.; Kumar, A.; Rashad, M. SrO–ZnO–PbO–B2O3 Glassy Insights: Unveiling the Structural and Optical Features for Gamma Ray Shielding Efficacy. Opt. Mater. 2024, 152, 115534; https://doi.org/10.1016/j.optmat.2024.115534.Suche in Google Scholar
6. Alasali, H. J.; Rilwan, U.; Mahmoud, K. A.; Hanafy, T. A.; Sayyed, M. I. Comparative Analysis of TiO2, Fe2O3, CaO and CuO in Borate Based Glasses for Gamma Ray Shielding. Nucl. Eng. Technol. 2024. https://doi.org/10.1016/j.net.2024.05.006.Suche in Google Scholar
7. Al-Buriahi, M. S.; Sriwunkum, C.; Arslan, H.; Tonguc, B. T.; Bourham, M. A. Investigation of Barium Borate Glasses for Radiation Shielding Applications. Appl. Phys. A 2020, 126 (1), 68; https://doi.org/10.1007/s00339-019-3254-9.Suche in Google Scholar
8. Albarzan, B.; Almuqrin, A. H.; Koubisy, M. S.; Wahab, E. A.; Mahmoud, K. A.; Shaaban, K.; Sayyed, M. I. Effect of Fe2O3 Doping on Structural, FTIR and Radiation Shielding Characteristics of Aluminium-Lead-Borate Glasses. Prog. Nucl. Energy 2021, 141, 103931; https://doi.org/10.1016/j.pnucene.2021.103931.Suche in Google Scholar
9. El-Rehim, A. A.; Shaaban, K. S. Influence of La2O3 Content on the Structural, Mechanical, and Radiation-Shielding Properties of Sodium Fluoro Lead Barium Borate Glasses. J. Mater. Sci.: Mater. Electron. 2021, 32, 4651–4671; https://doi.org/10.1007/s10854-020-05204-7.Suche in Google Scholar
10. Bilir, G.; Bilgici Cengiz, G.; Çağlar, İ.; Ertap, H. Photon Radiation Shielding Properties of Germanate Glass Systems Containing Bi2O3, PbF2, and B2O3. Int. J. Appl. Glass Sci. 2022, 13 (4), 729–737; https://doi.org/10.1111/ijag.16562.Suche in Google Scholar
11. Al-Buriahi, M. S.; Alzahrani, J. S.; Olarinoye, I. O.; Mutuwong, C.; Elsaeedy, H. I.; Alomairy, S.; Tonguç, B. T. Effects of Reducing PbO Content on the Elastic and Radiation Attenuation Properties of Germanate Glasses: A New Non-Toxic Candidate for Shielding Applications. J. Mater. Sci.: Mater. Electron. 2021, 32 (11), 15080–15094; https://doi.org/10.1007/s10854-021-06060-9.Suche in Google Scholar
12. Issa, S. A.; Sayyed, M. I.; Mostafa, A. M. A.; Lakshminarayana, G.; Kityk, I. V. Investigation of Mechanical and Radiation Shielding Features of Heavy Metal Oxide Based Phosphate Glasses for Gamma Radiation Attenuation Applications. J. Mater. Sci.: Mater. Electron. 2019, 30, 12140–12151; https://doi.org/10.1007/s10854-019-01572-x.Suche in Google Scholar
13. Wahab, E. A.; Ahmed, E. M.; Rammah, Y. S.; Shaaban, K. S. Basicity, Electronegativity, Optical Parameters and Radiation Attenuation Characteristics of P2O5–As2O3–PbO Glasses Doped Vanadium Ions. J. Inorg. Organomet. Polym. Mater. 2022, 32 (10), 3983–3996; https://doi.org/10.1007/s10904-022-02400-2.Suche in Google Scholar
14. Shaaban, K. S.; Al-Baradi, A. M.; Alotaibi, B. M.; Abd El-Rehim, A. F. Mechanical and Radiation Shielding Features of Lithium Titanophosphate Glasses Doped BaO. J. Mater. Res. Technol. 2023, 23, 756–764; https://doi.org/10.1016/j.jmrt.2023.01.062.Suche in Google Scholar
15. Çağlar, İ.; Cengiz, G. B.; Bilir, G. Gamma Radiation Shielding Properties of Some Binary Tellurite Glasses. J. Non-Cryst. Solids 2021, 574, 121139; https://doi.org/10.1016/j.jnoncrysol.2021.121139.Suche in Google Scholar
16. Hussan, G.; Khan, S.; Ahmad, R.; Farooq, A.; Anwar, M. Effect of WO3 on the Radiation Shielding Ability of TeO2–TiO2–WO3 Glass System. Radiochim. Acta 2023, 111 (5), 401–413; https://doi.org/10.1515/ract-2022-0057.Suche in Google Scholar
17. Al-Buriahi, M. S.; Alrowaili, Z. A.; Eke, C.; Alzahrani, J. S.; Olarinoye, I. O.; Sriwunkum, C. Optical and Radiation Shielding Studies on Tellurite Glass System Containing ZnO and Na2O. Optik 2022, 257, 168821; https://doi.org/10.1016/j.ijleo.2022.168821.Suche in Google Scholar
18. Alzahrani, J. S.; Alothman, M. A.; Eke, C.; Al-Ghamdi, H.; Aloraini, D. A.; Al-Buriahi, M. S. Simulating the Radiation Shielding Properties of TeO2–Na2O–TiO Glass System Using PHITS Monte Carlo Code. Comput. Mater. Sci. 2021, 196, 110566; https://doi.org/10.1016/j.commatsci.2021.110566.Suche in Google Scholar
19. Bilir, G.; Kaya, A.; Cinkaya, H.; Eryürek, G. Spectroscopic Investigation of Zinc Tellurite Glasses Doped with Yb3+ and Er3+ Ions. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2016, 165, 183–190; https://doi.org/10.1016/j.saa.2016.04.042.Suche in Google Scholar PubMed
20. Ersundu, A. E.; Büyükyıldız, M.; Ersundu, M. Ç.; Şakar, E.; Kurudirek, M. The Heavy Metal Oxide Glasses within the WO3–oO3–TeO2 System to Investigate the Shielding Properties of Radiation Applications. Prog. Nucl. Energy 2018, 104, 280–287; https://doi.org/10.1016/j.pnucene.2017.10.008.Suche in Google Scholar
21. Yin, S.; Zhang, Z.; Xiang, Y.; Qiao, Q.; Ding, G.; Huang, X.; Lin, Q. Nuclear Radiation Shielding Performance of the New Lead-Free TeO2–Bi2O3–ZnO–BaF2 Glass. Int. J. Appl. Ceram. Technol. 2024. https://doi.org/10.1111/ijac.14723.Suche in Google Scholar
22. Bilir, G.; Mustafaoglu, N.; Ozen, G.; Di Bartolo, B. Characterization of Emission Properties of Er3+ Ions in TeO2–CdF2–WO3 Glasses. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2011, 83 (1), 314–321; https://doi.org/10.1016/j.saa.2011.08.037.Suche in Google Scholar PubMed
23. Bilir, G.; Ozen, G. Optical Absorption and Emission Properties of Nd3+ in TeO2–WO3 and TeO2–WO3–CdO Glasses. Phys. B: Condens. Matter 2011, 406 (21), 4007–4013; https://doi.org/10.1016/j.physb.2011.07.010.Suche in Google Scholar
24. Bilir, G. Intense Upconverted White Light Emission from Tm3+–Er3+–Yb3+ Doped Zinc Tungsten Tellurite Glasses. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017, 21 (3), 786–790; https://doi.org/10.19113/sdufbed.28398.Suche in Google Scholar
25. Vani, P.; Vinitha, G.; Sayyed, M. I.; AlShammari, M. M.; Manikandan, N. Effect of Rare Earth Dopants on the Radiation Shielding Properties of Barium Tellurite Glasses. Nucl. Eng. Technol. 2021, 53 (12), 4106–4113; https://doi.org/10.1016/j.net.2021.06.009.Suche in Google Scholar
26. Malidarre, R. B.; Akkurt, I.; Kocar, O.; Ekmekci, I. Analysis of Radiation Shielding, Physical and Optical Qualities of Various Rare Earth Dopants on Barium Tellurite Glasses: A Comparative Study. Radiat. Phys. Chem. 2023, 207, 110823; https://doi.org/10.1016/j.radphyschem.2023.110823.Suche in Google Scholar
27. Abd-Allah, W. M.; Fayad, A. M.; Saudi, H. A. Effect of Doping Some Lanthanide Oxides on Optical and Radiation Shielding Properties of Cadmium Borate Glasses. Opt. Quantum Electron. 2019, 51, 1–14; https://doi.org/10.1007/s11082-019-1870-4.Suche in Google Scholar
28. Bilir, G. Synthesis and Spectroscopy of Nd3+ Doped Tellurite-Based Glasses. Int. J. Appl. Glass Sci. 2015, 6 (4), 397–405; https://doi.org/10.1111/ijag.12124.Suche in Google Scholar
29. Shaaban, K. S.; Alotaibi, B. M.; Yousef, E. S. Effect of La2O3 Concentration on the Structural, Optical and Radiation-Shielding Behaviors of Titanate Borosilicate Glasses. J. Electron. Mater. 2023, 52 (6), 3591–3603; https://doi.org/10.1007/s11664-023-10347-4.Suche in Google Scholar
30. Alrowaili, Z. A.; Al-Baradi, A. M.; Sayed, M. A.; Ali, A. M.; Wahab, E. A.; Al-Buriahi, M. S.; Shaaban, K. S. The Impact of Fe2O3 on the Dispersion Parameters and Gamma/Fast Neutron Shielding Characteristics of Lithium Borosilicate Glasses. Optik 2022, 249, 168259; https://doi.org/10.1016/j.ijleo.2021.168259.Suche in Google Scholar
31. Rammah, Y. S.; El-Agawany, F. I.; Wahab, E. A.; Hessien, M. M.; Shaaban, K. S. Significant Impact of V2O5 Content on Lead Phosphor-Arsenate Glasses for Mechanical and Radiation Shielding Applications. Radiat. Phys. Chem. 2022, 193, 109956; https://doi.org/10.1016/j.radphyschem.2021.109956.Suche in Google Scholar
32. Abdelgawad, K. R. M.; Ahmed, G. S. M.; Farag, A. T. M.; Bendary, A. A.; Salem, S. M.; Tartor, B. A.; Bashter, I. I. Structure and Gamma-Ray Attenuation Capabilities for Eco-Friendly Transparent Glass System Prepared from Rice Straw Ash. Prog. Nucl. Energy 2023, 158, 104586; https://doi.org/10.1016/j.pnucene.2023.104586.Suche in Google Scholar
33. Sayyed, M. I.; Dwaikat, N.; Mhareb, M. H. A.; D’Souza, A. N.; Almousa, N.; Alajerami, Y. S. M.; Almasoud, F.; Naseer, K. A.; Kamath, S. D.; Khandaker, M. U.; Osman, H.; Alamri, S. Effect of TeO2 Addition on the Gamma Radiation Shielding Competence and Mechanical Properties of Boro-Tellurite Glass: An Experimental Approach. J. Mater. Res. Technol. 2022, 18, 1017–1027; https://doi.org/10.1016/j.jmrt.2022.02.130.Suche in Google Scholar
34. El-Taher, A.; Ali, A. M.; Saddeek, Y. B.; Elsaman, R.; Algarni, H.; Shaaban, K.; Amer, T. Z. Gamma Ray Shielding and Structural Properties of Iron Alkali Alumino-Phosphate Glasses Modified by PbO. Radiat. Phys. Chem. 2019, 165, 108403; https://doi.org/10.1016/j.radphyschem.2019.108403.Suche in Google Scholar
35. Ravangvong, S.; Glumglomchit, P.; Zuprakhon, S.; Thinkoksoong, T.; Jitrawang, P.; Sriwongsa, K.; Khobkham, C.; Kaewkhao, J. The Properties of Bi2O3 Additive on Radiation Shielding and Elastic Moduli Properties of TeO2–P2O5 Based Glass System. Integr. Ferroelectr. 2023, 238 (1), 280–295; https://doi.org/10.1080/10584587.2023.2234576.Suche in Google Scholar
36. Shaaban, K. S.; Tamam, N.; Alghasham, H. A.; Alrowaili, Z. A.; Al-Buriahi, M. S.; Ellakwa, T. E. Thermal, Optical, and Radiation Shielding Capacity of B2O3–MoO3–Li2O–Nb2O5 Glasses. Mater. Today Commun. 2023, 37, 107325; https://doi.org/10.1016/j.mtcomm.2023.107325.Suche in Google Scholar
37. Alyousef, H. A.; Alrowaili, Z. A.; Saad, M.; Al-Mohiy, H.; Alshihri, A. A.; Shaaban, K. S.; Wahab, E. A. Examinations of Mechanical, and Shielding Properties of CeO2 Reinforced B2O3–ZnF2–Er2O3–ZnO Glasses for Gamma-Ray Shield and Neutron Applications. Heliyon 2023, 9 (3); https://doi.org/10.1016/j.heliyon.2023.e14435.Suche in Google Scholar PubMed PubMed Central
38. Gaikwad, D. K.; Sayyed, M. I.; Obaid, S. S.; Issa, S. A.; Pawar, P. P. Gamma Ray Shielding Properties of TeO2–ZnF2–As2O3–Sm2O3 Glasses. J. Alloys Compd. 2018, 765, 451–458; https://doi.org/10.1016/j.jallcom.2018.06.240.Suche in Google Scholar
39. El-Sharkawy, R. M.; Shaaban, K. S.; Elsaman, R.; Allam, E. A.; El-Taher, A.; Mahmoud, M. E. Investigation of Mechanical and Radiation Shielding Characteristics of Novel Glass Systems with the Composition xNiO–20ZnO–60B2O3–(20–X) CdO Based on Nanometal Oxides. J. Non-Cryst. Solids 2020, 528, 119754; https://doi.org/10.1016/j.jnoncrysol.2019.119754.Suche in Google Scholar
40. Saudi, H. A.; Abd-Allah, W. M.; Shaaban, K. S. Investigation of Gamma and Neutron Shielding Parameters for Borosilicate Glasses Doped Europium Oxide for the Immobilization of Radioactive Waste. J. Mater. Sci.: Mater. Electron. 2020, 31, 6963–6976; https://doi.org/10.1007/s10854-020-03261-6.Suche in Google Scholar
41. Mahmoud, M.; Makhlouf, S. A.; Alshahrani, B.; Yakout, H. A.; Shaaban, K. S.; Wahab, E. A. Experimental and Simulation Investigations of Mechanical Properties and Gamma Radiation Shielding of Lithium Cadmium Gadolinium Silicate Glasses Doped Erbium Ions. Silicon 2021, 1–15; https://doi.org/10.1007/s12633-021-01062-y.Suche in Google Scholar
42. Kaur, P.; Singh, K. J.; Thakur, S.; Singh, P.; Bajwa, B. S. Investigation of Bismuth Borate Glass System Modified with Barium for Structural and Gamma-Ray Shielding Properties. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2019, 206, 367–377; https://doi.org/10.1016/j.saa.2018.08.038.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses
Artikel in diesem Heft
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses