Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
Abstract
99Tc has a long half-life, high fission yield, and good environmental mobility, posing a significant threat to the environment and human health. Therefore, removing technetium from radioactive wastewater is a very important and urgent task. For laboratory safety reasons, ReO4− is often used as a non-isotopic substitute for 99TcO4−. From this point of view, the study of the separation behavior of Re in the aqueous phase can provide a reference value for the removal of 99Tc. Here, a new type of extraction chromatography resin was prepared by impregnating the functionalized ionic liquid into the macroporous resin, whose imidazolium cations modified by amide functional groups which can effectively capture ReO4−/TcO4− from simulated radioactive wastewater. The results show the resin has good adsorption performance and fast adsorption kinetics (the adsorption equilibrium is about 20 min). The adsorption mechanism was investigated using Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS). It shows that the adsorption process is an anion exchange between Cl− in the resin and ReO4− in the solution.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: Unassigned
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the National Natural Science Foundation of China (21976075).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Suman, S. Hybrid Nuclear-Renewable Energy Systems: A Review. J. Cleaner Prod. 2018, 181, 166–177; https://doi.org/10.1016/j.jclepro.2018.01.262.Search in Google Scholar
2. Hu, H.; Sun, L.; Gao, Y.; Wang, T.; Huang, Y.; Lv, C.; Zhang, Y. F.; Huang, Q.; Chen, X.; Wu, H. Synthesis of ZnO Nanoparticle-Anchored Biochar Composites for the Selective Removal of Perrhenate, a Surrogate for Pertechnetate, from Radioactive Effluents. J. Hazard. Mater. 2020, 387, 121670; https://doi.org/10.1016/j.jhazmat.2019.121670.Search in Google Scholar PubMed
3. Banerjee, D.; Kim, D.; Schweiger, M. J.; Kruger, A. A.; Thallapally, P. K. ChemInform Abstract: Removal of TcO4‐ ions from Solution: Materials and Future Outlook. Chem. Soc. Rev. 2016, 45 (10), 2724–2739; https://doi.org/10.1039/c5cs00330j.Search in Google Scholar PubMed
4. Zhu, L.; Sheng, D.; Xu, C.; Dai, X.; Silver, M. A.; Li, J.; Li, P.; Wang, Y.; Wang, Y.; Chen, L.; Xiao, C.; Chen, J.; Zhou, R.; Zhang, C.; Farha, O. K.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. Identifying the Recognition Site for Selective Trapping of (TcO4-)-Tc-99 in a Hydrolytically Stable and Radiation Resistant Cationic Metal-Organic Framework. J. Am. Chem. Soc. 2017, 139 (42), 14873–14876; https://doi.org/10.1021/jacs.7b08632.Search in Google Scholar PubMed
5. Eagling, J.; Worsfold, P. J.; Blake, W. H.; Keith-Roach, M. J. Mobilization of Technetium from Reduced Sediments under Seawater Inundation and Intrusion Scenarios. ES&T 2012, 46 (21), 11798–11803; https://doi.org/10.1021/es3025935.Search in Google Scholar PubMed
6. Seliman, A. F.; Samadi, A.; Husson, S. M.; Borai, E. H.; DeVol, T. A. Preparation of Polymer-Coated, Scintillating Ion-Exchange Resins for Monitoring of 99Tc in Groundwater. Anal. Chem. 2011, 83 (12), 4759–4766; https://doi.org/10.1021/ac103311p.Search in Google Scholar PubMed
7. Mausolf, E.; Droessler, J.; Poineau, F.; Hartmann, T.; Czerwinski, K. R. Tetraphenylpyridinium Pertechnetate: a Promising Salt for the Immobilization of Technetium. Radiochim. Acta 2012, 100 (5), 325–328; https://doi.org/10.1524/ract.2012.1923.Search in Google Scholar
8. Arce, A.; Arce, A. J., Jr.; Rodriguez, O. Revising Concepts on Liquid-Liquid Extraction: Data Treatment and Data Reliability. JCED, 2022, 67 (1), 286–296. https://doi.org/10.1021/acs.jced.1c00778.Search in Google Scholar
9. Chen, J.; Tomasberger, T. Solvent Extraction of Tc(VII) by the Mixture of TBP and 2-nitrophenyl Octyl Ether. J. Radioanal. Nucl. Chem. 2001, 247 (3), 519–523; https://doi.org/10.1023/a:1010622208450.10.1023/A:1010622208450Search in Google Scholar
10. Kawasaki, M.; Omori, T.; Hasegawa, K. Adsorption of Pertechnetate on an Anion-Exchange Resin. Radiochim. Acta 1993, 63, 53–56; https://doi.org/10.1524/ract.1993.63.special-issue.53.Search in Google Scholar
11. Gu, B. H.; Brown, G. M.; Bonnesen, P. V.; Liang, L.; Moyer, B. A.; Ober, R.; Alexandratos, S. D. Development of Novel Bifunctional Anion Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater. Environ. Sci. Technol. 2000, 34 (6), 1075–1080; https://doi.org/10.1021/es990951g.Search in Google Scholar
12. Shu, Z.; Yang, M. Adsorption of Rhenium(VII) with Anion Exchange Resin D318. Chin. J. Chem. Eng. 2010, 18 (3), 372–376; https://doi.org/10.1016/s1004-9541(10)60233-9.Search in Google Scholar
13. Pierce, E. M.; Lilova, K.; Missimer, D. M.; Lukens, W. W.; Wu, L.; Fitts, J.; Rawn, C.; Huq, A.; Leonard, D. N.; Eskelsen, J. R.; Woodfield, B. F.; Jantzen, C. M.; Navrotsky, A. Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite. Environ. Sci. Technol. 2017, 51 (2), 997–1006; https://doi.org/10.1021/acs.est.6b01879.Search in Google Scholar PubMed
14. Dickson, J. O.; Harsh, J. B.; Flury, M.; Lukens, W. W.; Pierce, E. M. Competitive Incorporation of Perrhenate and Nitrate into Sodalite. Environ. Sci. Technol. 2014, 48 (21), 12851–12857; https://doi.org/10.1021/es503156v.Search in Google Scholar PubMed
15. Xiao, C.; Khayambashi, A.; Wang, S. Separation and Remediation of 99TcO4- from Aqueous Solutions. Chem. Mater. 2019, 31 (11), 3863–3877. https://doi.org/10.1021/acs.chemmater.9b00329.Search in Google Scholar
16. Yang, J.; Shi, K.; Wu, F.; Tong, J.; Su, Y.; Liu, T.; He, J.; Mocilac, P.; Hou, X.; Wu, W.; Shi, W. Technetium-99 Decontamination from Radioactive Wastewater by Modified Bentonite: Batch, Column Experiment and Mechanism Investigation. Chem. Eng. J. 2022, 428, 131333; https://doi.org/10.1016/j.cej.2021.131333.Search in Google Scholar
17. Nash, C.; Musall, B.; Morse, M.; McCabe, D. Characterization of SuperLig® 639 Rhenium and Technetium Resin with Batch Contact and Column Tests. Sep. Sci. Technol. 2015, 50 (18), 2881–2887; https://doi.org/10.1080/01496395.2015.1085410.Search in Google Scholar
18. Sheng, D.; Zhu, L.; Xu, C.; Xiao, C.; Wang, Y.; Wang, Y.; Chen, L.; Diwu, J.; Chen, J.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. Efficient and Selective Uptake of TcO4- by a Cationic Metal-Organic Framework Material with Open Ag+ Sites. ES&T, 2017, 51 (6) 3471–3479. https://doi.org/10.1021/acs.est.7b00339.Search in Google Scholar PubMed
19. Ding, M.; Chen, L.; Xu, Y.; Chen, B.; Ding, J.; Wu, R.; Huang, C.; He, Y.; Jin, Y.; Xia, C. Efficient Capture of Tc/Re(VII, IV) by a Viologen-Based Organic Polymer Containing Tetraaza Macrocycles. Chem. Eng. J. 2020, 380, 122581; https://doi.org/10.1016/j.cej.2019.122581.Search in Google Scholar
20. Goh, K. H.; Lim, T. T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42 (6–7), 1343–1368; https://doi.org/10.1016/j.watres.2007.10.043.Search in Google Scholar PubMed
21. Wang, Y.; Wang, S.; Li, X.; Bai, P.; Yan, W.; Yu, J. Layered Inorganic Cationic Frameworks beyond Layered Double Hydroxides (LDHs): Structures and Applications. Eur. J. Inorg. Chem. 2020, 2020 (43), 4055–4063; https://doi.org/10.1002/ejic.202000710.Search in Google Scholar
22. Sheng, D.; Zhu, L.; Dai, X.; Xu, C.; Li, P.; Pearce, C. I.; Xiao, C.; Chen, J.; Zhou, R.; Duan, T.; Farha, O. K.; Chai, Z.; Wang, S. Successful Decontamination of 99TcO4- in Groundwater at Legacy Nuclear Sites by a Cationic Metal-Organic Framework with Hydrophobic Pockets. Angew. Chem., Int. Ed., 2019. 58 (15), 4968–4972. https://doi.org/10.1002/anie.201814640Search in Google Scholar PubMed
23. Li, J.; Zhu, L.; Xiao, C.; Chen, L.; Chai, Z.; Wang, S. Efficient Uptake of Perrhenate/Pertechnenate from Aqueous Solutions by the Bifunctional Anion-Exchange Resin. Radiochim. Acta 2018, 106 (7), 581–591; https://doi.org/10.1515/ract-2017-2829.Search in Google Scholar
24. Cocalia, V. A.; Rogers, R. D. Ionic Liquid Impregnated Resins in Solid-Liquid Separations. ECS Transactions 2007, 3 (35), 123; https://doi.org/10.1149/1.2798654.Search in Google Scholar
25. Fu, L.; Pan, X.; Zu, J.; He, L. Synthesis of Diamide-Based Resin for Selective Separation of 99Tc. J. Radioanal. Nucl. Chem. 2021, 328, 481–490; https://doi.org/10.1007/s10967-021-07601-6.Search in Google Scholar
26. Barrera, J.; Tarancón, A.; Bagán, H.; García, J. A New Plastic Scintillation Resin for Single-step Separation, Concentration and Measurement of Technetium-99. Anal. Chim. Acta. 2016, 936, 259–266; https://doi.org/10.1016/j.aca.2016.07.008.Search in Google Scholar PubMed
27. Zhi, X.; Li, X.; Dong, F.; Huang, Y.; Yang, S.; Yan, T.; Shen, Y. A Hydrophobic Imidazolium Cationic Framework for Selective Adsorption of TcO4-/ReO4- from Aqueous Solutions. Materials Adv. 2022, 3 (12), 4870–4877; https://doi.org/10.1039/d2ma00220e.Search in Google Scholar
28. Dong, F.; Li, X.; Huang, Y.; Zhi, X.; Yang, S.; Shen, Y. Highly Efficient Uptake of TcO4- by Imidazolium-Functionalized Wood Sawdust. Acs Omega 2021, 6 (39), 25672–25679; https://doi.org/10.1021/acsomega.1c03784.Search in Google Scholar PubMed PubMed Central
29. Shimojo, K.; Suzuki, H.; Yokoyama, K.; Yaita, T.; Ikeda-Ohno, A. Solvent Extraction of Technetium(VII) and Rhenium(VII) Using a Hexaoctylnitrilotriacetamide Extractant. Anal. Sci. 2020, 36 (12), 1435–1437; https://doi.org/10.2116/analsci.20c014.Search in Google Scholar PubMed
30. Lou, Z.; Huang, M.; Cui, J.; Wu, S.; Xing, S.; Zhou, P.; Shan, W.; Xiong, Y. Copolymers of Vinylimidazolium-Based Ionic Liquids and Divinylbenzene for Adsorption of TcO4– or ReO4–. Hydrometallurgy 2019, 190, 105147; https://doi.org/10.1016/j.hydromet.2019.105147.Search in Google Scholar
31. Pepper, S. E.; Ogden, M. D. Perrhenate Extraction Studies by Cyphos 101-IL; Screening for Implementation in Technetium Removal. Sep. Purif. Technol. 2013, 118, 847–852; https://doi.org/10.1016/j.seppur.2013.08.029.Search in Google Scholar
32. Li, X. X.; Han, D.; Guo, T.; Peng, J.; Xu, L.; Zhai, M. Quaternary Phosphonium Modified Hierarchically Macro/Mesoporous Silica for Fast Removal of Perrhenate. Ind. Eng. Chem. Res. 2018, 57 (40), 13511–13518; https://doi.org/10.1021/acs.iecr.8b03306.Search in Google Scholar
33. Huang, Y.; Li, X.; Wu, F.; Yang, S.; Dong, F.; Zhi, X.; Chen, X.; Tian, G.; Shen, Y. A Novel Functionalized Ionic Liquid for Highly Selective Extraction of TcO4–. Inorg. Chem. 2022, 61 (27), 10609–10617; https://doi.org/10.1021/acs.inorgchem.2c01775.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0290).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses
Articles in the same Issue
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses