Startseite The adsorption of U(VI) on chlorite: batch, modeling and XPS study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The adsorption of U(VI) on chlorite: batch, modeling and XPS study

  • Qiang Jin EMAIL logo , Yuxiong Wang , Xin Zhao , Ye Fan , Xinya Diao , Zongyuan Chen und Zhijun Guo ORCID logo EMAIL logo
Veröffentlicht/Copyright: 10. Mai 2024

Abstract

A mechanistic modelling of the adsorption processes onto individual minerals presenting in the near- and far-fields can greatly enhance the credibility of long-term safety assessments of granite-based geological repositories. In this study, the titration and U(VI) adsorption characteristics of chlorite, one of the major minerals of rock fractures, have been studied. Potentiometric titration curves at two ionic strengths (0.1 and 0.4 mol/L NaCl) are successfully interpreted by considering protonation/deprotonation reactions on generic edge sites (≡SOH) in the framework of a non-electrostatic surface complexation model (SCM). The adsorption of U(VI) on chlorite was reached after 24 h, the adsorption kinetics can be described by a pseudo-second-order model. A non-electrostatic SCM with three surface complexes (≡SOUO2+, ≡SO(UO2)3(OH)5 and ≡SO(UO2)3(OH)72−) was set up based on pH edges of U(VI) at adsorption equilibrium in the absence of CO2. Additional, experimental data measured as a function of U(VI) concentration, solid-to-liquid ratio and carbonate concentration were well reproduced by the proposed model. Finally, parallel experiments were conducted using X-ray photoelectron spectroscopy (XPS) to analyze the variation of U(VI) surface species speciation at different pH values. The good agreement between SCM prediction and XPS analysis demonstrates the reliability of the model in predicting and quantifying the radionuclides retention by chlorite.


Corresponding author: Qiang Jin and Zhijun Guo, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China; and Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China, E-mail: (Q. Jin), (Z. Guo)

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 12175094, 22176079

Funding source: Natural Science Foundation of Gansu Province, China

Award Identifier / Grant number: 22JR5RA480

Funding source: Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: lzujbky–2022–sp05, lzujbky–2023–stlt01

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work funded by the National Natural Science Foundation of China (Grant Nos. 12175094, 22176079), the Natural Science Foundation of Gansu Province, China (No. 22JR5RA480) and the Fundamental Research Funds for the Central Universities (lzujbky–2022–sp05, lzujbky–2023–stlt01).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Ewing, R. C. Long-term Storage of Spent Nuclear Fuel. Nat. Mater. 2015, 14, 252; https://doi.org/10.1038/nmat4226.Suche in Google Scholar PubMed

2. Li, X. D.; Puhakka, E.; Liu, L. C.; Zhang, W. Z.; Ikonen, J.; Lindberg, A.; Siitari-Kauppi, M. Multi-site Surface Complexation Modelling of Se(IV) Sorption on Biotite. Chem. Geol. 2020, 533, 119433; https://doi.org/10.1016/j.chemgeo.2019.119433.Suche in Google Scholar

3. Kitamura, A.; Yamamoto, T.; Nishikawa, S.; Moriyama, H. Sorption Behavior of Am(III) onto Granite. J. Radioanal. Nucl. Chem. 1999, 239, 449; https://doi.org/10.1007/bf02349049.Suche in Google Scholar

4. Soler, J. M.; Landa, J.; Havlova, V.; Tachi, Y.; Ebina, T.; Sardini, P.; Siitari-Kauppi, M.; Eikenberg, J.; Martin, A. J. Comparative Modeling of an In Situ Diffusion Experiment in Granite at the Grimsel Test Site. J. Contam. Hydrol. 2015, 179, 89; https://doi.org/10.1016/j.jconhyd.2015.06.002.Suche in Google Scholar PubMed

5. Wang, J.; Chen, L.; Su, R.; Zhao, X. G. The Beishan Underground Research Laboratory for Geological Disposal of High-Level Radioactive Waste in China: Planning, Site Selection, Site Characterization and In Situ Tests. J. Rock Mech. Geotech. Eng. 2018, 10, 411; https://doi.org/10.1016/j.jrmge.2018.03.002.Suche in Google Scholar

6. Jin, Q.; Wang, G.; Ge, M. T.; Chen, Z. Y.; Wu, W. S.; Guo, Z. J. The Adsorption of Eu(III) and Am(III) on Beishan Granite: XPS, EPMA, Batch and Modeling Study. Appl. Geochem. 2014, 47, 17; https://doi.org/10.1016/j.apgeochem.2014.05.004.Suche in Google Scholar

7. Keisuke, F.; Koushi Maeda, Y. H.; Aoi, Y.; Tamura, A.; Arai, S.; Yamamoto, Y.; Aosai, D.; Mizuno, T. Sorption of Eu(III) on Granite: EPMA, LA–ICP–MS, Batch and Modeling Studies. Environ. Sci. Technol. 2013, 47, 12811; https://doi.org/10.1021/es402676n.Suche in Google Scholar PubMed

8. Bailey, S. W.; Brindley, G. W.; Johns, W. D.; Martin, R. T.; Ross, M. Summary of National and International Recommendations on Clay Mineral Nomenclature. Clays Clay Miner. 1971, 19, 129; https://doi.org/10.1346/ccmn.1971.0190210.Suche in Google Scholar

9. Zazzi, Å.; Jakobsson, A.-M.; Wold, S. Ni(II) Sorption on Natural Chloritec. Appl. Geochem. 2012, 27, 1189; https://doi.org/10.1016/j.apgeochem.2012.03.001.Suche in Google Scholar

10. Singer, D. M.; Maher, K.; Brown, G. E.Jr. Uranyl-chlorite Sorption/Desorption: Evaluation of Difference U(VI) Sequestration Processes. Geochim. Cosmochim. Acta 2009, 73, 5889.10.1016/j.gca.2009.07.002Suche in Google Scholar

11. Vandenhove, H.; Cuypers, A.; Hees, M. V.; Koppen, G.; Wannijn, J. Oxidative Stress Reactions Induced in Beans (Phaseolus vulgaris) Following Exposure to Uranium. Plant Physiol. Bioch. 2006, 44, 795; https://doi.org/10.1016/j.plaphy.2006.10.013.Suche in Google Scholar PubMed

12. Gu, P. C.; Liu, S. S.; Cheng, X. M.; Zhang, S.; Wu, C. Y.; Wen, T.; Wang, X. K. Recent Strategies, Progress, and Prospects of Two-Dimensional Metal Carbides (MXenes) Materials in Wastewater Purification: A Review. Sci. Total Environ. 2024, 912, 169533; https://doi.org/10.1016/j.scitotenv.2023.169533.Suche in Google Scholar PubMed

13. Liu, X. L.; Xiao, M. L.; Li, Y.; Chen, Z. S.; Yang, H.; Wang, X. K. Advanced Porous Materials and Emerging Technologies for Radionuclides Removal from Fukushima Radioactive Water. Eco Environ Health 2023, 2, 252.10.1016/j.eehl.2023.09.001Suche in Google Scholar PubMed PubMed Central

14. Arnold, T.; Zorn, T.; Zänker, H.; Bernhard, G.; Nitsche, H. Sorption Behavior of U(VI) on Phyllite: Experiments and Modeling. J. Contam. Hydrol. 2001, 47, 219; https://doi.org/10.1016/s0169-7722(00)00151-0.Suche in Google Scholar PubMed

15. Wang, Z. M.; Zachara, J. M.; Shang, J. Y.; Jeon, C.; Liu, J.; Liu, C. X. Investigation of U(VI) Adsorption in Quartz-Chlorite Mineral Mixtures. Environ. Sci. Technol. 2014, 48, 7766; https://doi.org/10.1021/es500537g.Suche in Google Scholar PubMed

16. Zorn, T. Untersuchungen der sorption von uran(VI) an das gestein phyllit zur bestimmung von oberflächenkomplexbildungskonstanten. PhD Thesis, Technical University, Dresden, 2000.Suche in Google Scholar

17. Chen, Z. Y.; Wang, S. Y.; Hou, H. J.; Chen, K.; Gao, P. Y.; Zhang, Z.; Jin, Q.; Pan, D. Q.; Guo, Z. J.; Wu, W. S. China’s Progress in Radionuclide Migration Study over the Past Decade (2010–2021): Sorption, Transport and Radioactive Colloid. Chin. Chem. Lett. 2022, 33, 3405; https://doi.org/10.1016/j.cclet.2022.02.054.Suche in Google Scholar

18. Geckeis, H.; Lützenkirchen, J.; Polly, R.; Rabung, T.; Schmidt, M. Mineral–water Interface Reactions of Actinides. Chem. Rev. 2013, 113, 1016; https://doi.org/10.1021/cr300370h.Suche in Google Scholar PubMed

19. Geckeis, H.; Rabung, T. Actinide Geochemistry: From the Molecular Level to the Real System. J. Contam. Hydrol. 2008, 102, 187; https://doi.org/10.1016/j.jconhyd.2008.09.011.Suche in Google Scholar PubMed

20. Guo, Z. J.; Su, H. Y.; Wu, W. S. Sorption and Desorption of Uranium(VI) on Silica: Experimental and Modeling Studies. Radiochim. Acta 2009, 97, 133; https://doi.org/10.1524/ract.2009.1589.Suche in Google Scholar

21. Bradbury, M. H.; Baeyens, B. Modelling the Sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on Montmorillonite: Linear Free Energy Relationships and Estimates of Surface Binding Constants for Some Selected Heavy Metals and Actinides. Geochim. Cosmochim. Acta 2005, 69, 875; https://doi.org/10.1016/j.gca.2004.07.020.Suche in Google Scholar

22. Yang, Z. Q.; Huang, L.; Lu, Y.; Guo, Z. J.; Montavon, G.; Wu, W. S. Temperature Effect on U(VI) Sorption onto Na–Bentonite. Radiochim. Acta 2010, 98, 785; https://doi.org/10.1524/ract.2010.1784.Suche in Google Scholar

23. Jin, Q.; Su, L.; Montavon, G.; Sun, Y. F.; Chen, Z. Y.; Guo, Z. J.; Wu, W. S. Surface Complexation Modeling of U(VI) Adsorption on Granite at Ambient/elevated Temperature: Experimental and XPS Study. Chem. Geol. 2016, 433, 81; https://doi.org/10.1016/j.chemgeo.2016.04.001.Suche in Google Scholar

24. Montavon, G.; Ribet, S.; Hassan, L. Y.; Maia, F.; Bailly, C.; David, K.; Lerouge, C.; Madé, B.; Robinet, J. C.; Grambow, B. Uranium Retention in a Callovo–Oxfordian Clay Rock Formation: From Laboratory-Based Models to in Natura Conditions. Chemosphere 2022, 299, 134307; https://doi.org/10.1016/j.chemosphere.2022.134307.Suche in Google Scholar PubMed

25. Gustafsson, J. P. Visual MINTEQ Version 3.1; KTH: Sweden, 2013.Suche in Google Scholar

26. Ragoussi, M. E.; Costa, D. Fundamentals of the NEA Thermochemical Database and its Influence over National Nuclear Programs on the Performance Assessment of Deep Geological Repositories. J. Environ. Radioact. 2019, 196, 225; https://doi.org/10.1016/j.jenvrad.2017.02.019.Suche in Google Scholar PubMed

27. Bradbury, M. H.; Baeyens, B. A Mechanistic Description of Ni and Zn Sorption on Na–Montmorillonite Part II: Modelling. J. Contam. Hydrol. 1997, 27, 223; https://doi.org/10.1016/s0169-7722(97)00007-7.Suche in Google Scholar

28. Baeyens, B.; Bradbury, M. H. A Mechanistic Description of Ni and Zn Sorption on Na–Montmorillonite Part I: Titration and Sorption Measurements. J. Contam. Hydrol. 1997, 27, 199; https://doi.org/10.1016/s0169-7722(97)00008-9.Suche in Google Scholar

29. Bradbury, M. H.; Baeyens, B. Sorption Modelling on Illite Part I: Titration Measurements and the Sorption of Ni, Co, Eu and Sn. Geochim. Cosmochim. Acta 2009, 73, 990; https://doi.org/10.1016/j.gca.2008.11.017.Suche in Google Scholar

30. Tertre, E.; Castet, S.; Berger, G.; Loubet, M.; Giffaut, E. Surface Chemistry of Kaolinite and Na–Montmorillonite in Aqueous Electrolyte Solutions at 25 and 60 °C: Experimental and Modeling Study. Geochim. Cosmochim. Acta 2006, 70, 4579; https://doi.org/10.1016/j.gca.2006.07.017.Suche in Google Scholar

31. Ma, F.; Jin, Q.; Li, P.; Chen, Z. Y.; Lu, J. C.; Guo, Z. J.; Wu, W. S. Experimental and Modelling Approaches to Am(III) and Np(V) Adsorption on the Maoming Kaolinite. Appl. Geochem. 2017, 84, 325; https://doi.org/10.1016/j.apgeochem.2017.07.002.Suche in Google Scholar

32. Wang, J. Q.; Chen, Z.; Shao, D. D.; Li, Y. Y.; Xu, Z. M.; Cheng, C.; Asiri, A. M.; Marwani, H. M.; Hu, S. H. Adsorption of U(VI) on Bentonite in Simulation Environmental Conditions. J. Mol. Liq. 2017, 242, 678; https://doi.org/10.1016/j.molliq.2017.07.048.Suche in Google Scholar

33. Ho, Y. S.; McKay, G. Pseudo-second Order Model for Sorption Processes. Process Biochem. 1999, 34, 45; https://doi.org/10.1016/s0032-9592(98)00112-5.Suche in Google Scholar

34. Gao, X. Q.; Bi, M. L.; Shi, K. L.; Chai, Z. F.; Wu, W. S. Sorption Characteristic of Uranium(VI) Ion onto K-Feldspar. Appl. Radiat. Isot. 2017, 128, 311; https://doi.org/10.1016/j.apradiso.2017.07.041.Suche in Google Scholar PubMed

35. Tertre, E.; Berger, G.; Simoni, E.; Castet, S.; Giffaut, E.; Loubet, M.; Catalette, H. Europium Retention onto Clay Minerals from 25 to 150 °C: Experimental Measurements, Spectroscopic Features and Sorption Modelling. Geochim. Cosmochim. Acta 2006, 70, 4563; https://doi.org/10.1016/j.gca.2006.06.1568.Suche in Google Scholar

36. Liu, P.; Yuan, N.; Xiong, W.; Wu, H. Y.; Pan, D. Q.; Wu, W. S. Removal of U(VI) from Aqueous Solution Using TiO2 Modified β-zeolite. Radiochim. Acta 2017, 105, 1005; https://doi.org/10.1515/ract-2017-2765.Suche in Google Scholar

37. Chen, J. H.; Lu, D. Q.; Chen, B.; OuYang, P. K. Removal of U(VI) from Aqueous Solutions by Using MWCNTs and Chitosan Modified MWCNTs. J. Radioanal. Nucl. Chem. 2013, 295, 2233; https://doi.org/10.1007/s10967-012-2276-y.Suche in Google Scholar

Received: 2024-01-18
Accepted: 2024-04-01
Published Online: 2024-05-10
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0278/html
Button zum nach oben scrollen