Home Insight on the properties of multi-walled carbon nanotubes reinforced nitrile rubber composites cured by ionizing radiation or peroxide: a comparative study
Article
Licensed
Unlicensed Requires Authentication

Insight on the properties of multi-walled carbon nanotubes reinforced nitrile rubber composites cured by ionizing radiation or peroxide: a comparative study

  • Khaled F. El-Nemr , Hamdi Radi EMAIL logo , Aman I. Khalaf ORCID logo and Eman M. Hamdy
Published/Copyright: April 18, 2024

Abstract

A comparative study was carried out between ionizing radiation and dicumyl peroxide (Dicup) as two different curing systems for nitrile rubber (NBR) reinforced with different concentrations of multi-walled carbon nanotubes (MWCNTs). Upon ionizing irradiation, the tensile strength (TS) of the composites increases with increasing absorbed dose up to 50 kGy and then decreases with increasing absorbed dose. TS also increases with increasing of MWCNTs content up to 0.75 phr (part per hundred part of rubber). TS values are decreased in the case of Dicup curing as compared with radiation curing. Other characterizations were made, such as the Differential Scanning Calorimeter (DSC), Fourier transform infrared spectroscopies (FTIR), and morphological characterization, which give further implications for the good compatibility between MWCNTs and NBR phases. A study of the effect of fuel on NBR/MWCNTs composites showed that the composites cured by Dicup had lower values for swelling in fuels when compared with others that were cured by radiation.


Corresponding author: Hamdi Radi, Radiation Chemistry Department National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt, E-mail:

Acknowledgments

All persons who have made significant contributions to the work mentioned in the manuscript (eg, technical assistance, writing and editing assistance, and general support) are the working authors and we thank the National Centre of Radiation Research and Technology - Egyptian Atomic Energy Authority (EAEA) for the support needed to complete the work.

  1. Research ethics: Not applicable.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. Khaled F. El-Nemr was responsible for the conception and design, analysis and data interpretation, data acquisition, writing review. H. Radi was responsible for preparation, analysis and data interpretation, validation, data curation, writing - a review, and editing. Aman I. Khalaf and Eman M. Hamdy were responsible for testing, and data interpretation. All authors read, revise, and approved the final manuscript.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding:None declared.

  5. Data availability: The authors declare that all data supporting the findings and materials of this study are available within the paper.

References

1. Yasin, T.; Ahmed, S.; Yoshii, F.; Makuuchi, K. Radiation Vulcanization of Acrylonitrile–Butadiene Rubber with Polyfunctional Monomers. React. Funct. Polym. 2002, 53, 173–181; https://doi.org/10.1016/s1381-5148(02)00171-2.Search in Google Scholar

2. Bokobza, L.; Rahmani, M.; Belin, C.; Bruneel, J. L.; El bounia, N. E. Blends of Carbon Blacks and Multiwall Carbon Nanotubes as Reinforcing Fillers for Hydrocarbon Rubbers. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1939–1951; https://doi.org/10.1002/polb.21529.Search in Google Scholar

3. Le, H.; Sriharish, M.; Henning, S.; Klehm, J.; Menzel, M.; Frank, W.; Wiesner, S.; Das, A.; Stockelhuber, K.-W.; Heinrich, G.; Radusch, H. J. Dispersion and Distribution of Carbon Nanotubes in Ternary Rubber Blends. Compos. Sci. Technol. 2014, 90, 180–186; https://doi.org/10.1016/j.compscitech.2013.11.008.Search in Google Scholar

4. Boonmahitthisud, A.; Chuayjuljit, S. NR/XSBR Nanocomposites with Carbon Black and Carbon Nanotube Prepared by Latex Compounding. J. Met. Mater. 2012, 22, 77–85.Search in Google Scholar

5. Wu, D.; Lin, D.; Zhang, J.; Zhou, W.; Zhang, M.; Zhang, Y.; Wang, D.; Lin, B. Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromol. Chem. Phys. 2011, 212, 613–626; https://doi.org/10.1002/macp.201000579.Search in Google Scholar

6. Sun, Y.; Guo, Z. X.; Yu, J. Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromol. Mater. Eng. 2010, 295, 263–268; https://doi.org/10.1002/mame.200900242.Search in Google Scholar

7. Göldel, A.; Kasaliwal, G.; Pötschke, P. Selective Localization and Migration of Multiwalled Carbon Nanotubes in Blends of Polycarbonate and Poly (Styrene-acrylonitrile). Macromol. Rapid Commun. 2009, 30, 423–429; https://doi.org/10.1002/marc.200800549.Search in Google Scholar PubMed

8. Lim, S. K.; Hong, E. P.; Song, Y. H.; Choi, H. J.; Chin, I. J. Ternary Poly (Styrene-Co-Acrylonitrile)/Poly (Vinyl Chloride) Blend Composites with Multi-Walled Carbon Nanotubes and Enhanced Physical Characteristics. Macromol. Mater. Eng. 2010, 295, 329–335; https://doi.org/10.1002/mame.200900280.Search in Google Scholar

9. Hong, J. S.; Kim, C. Dispersion of Multi-Walled Carbon Nanotubes in PDMS/PB Blend. Rheologica acta 2011, 50, 955–964; https://doi.org/10.1007/s00397-011-0581-y.Search in Google Scholar

10. Boonmahitthisud, A.; Chuayjuljit, S. Use of Carbon Nanotube and Nanosilica as Reinforcement Nanofillers in NR/SBR Blended Latex; Trans Tech Publ, 2012.10.4028/www.scientific.net/AMR.347-353.3197Search in Google Scholar

11. Fan, X.; Wang, Z.; Wang, K.; Deng, H.; Chen, F.; Fu, Q. Acid-Modified Carbon Nanotubes Distribution and Mechanical Enhancement in Polystyrene/Elastomer Blends. Polym Eng Sci. 2012, 52, 964–971; https://doi.org/10.1002/pen.22163.Search in Google Scholar

12. Sahakaro, K.; Datta, R. N.; Baaij, J.; Noordermeer, J. W. Blending of NR/BR/EPDM by Reactive Processing for Tire Sidewall Applications. III. Assessment of the Blend Ozone-and Fatigue-Resistance in Comparison with a Conventional NR/BR Compound. J. Appl. Polym. Sci. 2007, 103, 2555–2563; https://doi.org/10.1002/app.25101.Search in Google Scholar

13. Zerda, T.; Song, G.; Waddell, W. Distribution of Elastomers and Silica in Polymer Blends Characterized by Raman Microimaging Technique. Rubber Chem. Technol. 2003, 76, 769–778; https://doi.org/10.5254/1.3547770.Search in Google Scholar

14. Lee, M. S.; Ha, M. G.; Ko, H. J.; Yang, K. S.; Lee, W. J.; Park, M. Morphology and Electrical Conductivity of PS/PMMA/SMMA Blends Filled with Carbon Black. Fibers Polym. 2000, 1, 32–36; https://doi.org/10.1007/bf02874874.Search in Google Scholar

15. Kruźelàk, J.; Sýkora, R.; Hudec, I. Peroxide Vulcanization of Natural Rubber. Part II: Effect of Peroxides and Co-agents. J. Polym. Eng. 2015, 35, 21–29; https://doi.org/10.1515/polyeng-2014-0035.Search in Google Scholar

16. Jablonowski, T. L.; Reichel, C. New Advances in Millable Urethanes, 2005.Search in Google Scholar

17. Rajan, R.; Varghese, S.; George, K. Role of Coagents in Peroxide Vulcanization of Natural Rubber. Rubber Chem. Technol. 2013, 86, 488–502; https://doi.org/10.5254/rct.13.87984.Search in Google Scholar

18. Manaila, E.; Craciun, G.; Stelescu, M.-D.; Ighigeanu, D.; Ficai, M. Radiation Vulcanization of Natural Rubber with Polyfunctional Monomers. Polym. Bull. 2014, 71, 57–82; https://doi.org/10.1007/s00289-013-1045-6.Search in Google Scholar

19. Vieira, E. R.; Mantovani, J. D.; De Camargo Forte, M. M. Comparison between Peroxide/coagent Cross-Linking Systems and Sulfur for Producing Tire Treads from Elastomeric Compounds. J. Elastomers Plast. 2015, 47, 347–359; https://doi.org/10.1177/0095244313514988.Search in Google Scholar

20. El-Nemr, K. F. Effect of Different Curing Systems on the Mechanical and Physico-Chemical Properties of Acrylonitrile Butadiene Rubber Vulcanizates. Mater. Des. 2011, 32, 3361–3369; https://doi.org/10.1016/j.matdes.2011.02.010.Search in Google Scholar

21. Likozar, B.; Krajnc, M. Influence of Morphology on the Dynamic Mechanical Properties of Hydrogenated Acrylonitrile Butadiene Elastomer/Coagent Nanodispersions. J. Appl. Polym. Sci. 2008, 110, 183–195; https://doi.org/10.1002/app.28525.Search in Google Scholar

22. Búcsi, A.; Szőcs, F. Kinetics of Radical Generation in PVC with Dibenzoyl Peroxide Utilizing High-Pressure Technique. Macromol. Chem. Phys. 2000, 201, 435–438; https://doi.org/10.1002/(sici)1521-3935(20000201)201:4<435::aid-macp435>3.0.co;2-c.10.1002/(SICI)1521-3935(20000201)201:4<435::AID-MACP435>3.0.CO;2-CSearch in Google Scholar

23. Samaržija-Jovanović, S.; Jovanović, V.; Marinović-cincović, M.; Budinski-Simendić, J.; Marković, G. Comparative Study of Radiation Effect on Rubber–Carbon Black Compounds. Composites, Part B 2014, 62, 183–190; https://doi.org/10.1016/j.compositesb.2014.02.029.Search in Google Scholar

24. Marković, G.; Veljković, O.; Marinović-Cincović, M.; Jovanović, V.; Samaržija-Jovanvić, S.; Budinski-Simendić, J. Composites Based on Waste Rubber Powder and Rubber Blends: BR/CSM. Composites, Part B 2013, 45, 178–184; https://doi.org/10.1016/j.compositesb.2012.08.013.Search in Google Scholar

25. Kong, L.; Li, F.; Wang, F.; Miao, Y.; Huang, X.; Zhu, H.; Lu, Y. High-performing Multi-Walled Carbon Nanotubes/Silica Nanocomposites for Elastomer Application. Compos. Sci. Technol. 2018, 162, 23–32; https://doi.org/10.1016/j.compscitech.2018.04.008.Search in Google Scholar

26. Verge, P.; Peeterbroeck, S.; Bonnaud, L.; Dubois, P. Investigation on the Dispersion of Carbon Nanotubes in Nitrile Butadiene Rubber: Role of Polymer-To-Filler Grafting Reaction. Compos. Sci. Technol. 2010, 70, 1453–1459; https://doi.org/10.1016/j.compscitech.2010.04.022.Search in Google Scholar

27. Li, Y.; Wang, S.; Wang, Q.; Xing, M. Molecular Dynamics Simulations of Tribology Properties of NBR (Nitrile-Butadiene Rubber)/Carbon Nanotube Composites. Composites, Part B 2016, 97, 62–67; https://doi.org/10.1016/j.compositesb.2016.04.053.Search in Google Scholar

28. Likozar, B.; Major, Z. Morphology, Mechanical, Cross-Linking, Thermal, and Tribological Properties of Nitrile and Hydrogenated Nitrile Rubber/Multi-Walled Carbon Nanotubes Composites Prepared by Melt Compounding: The Effect of Acrylonitrile Content and Hydrogenation. Appl. Surf. Sci. 2010, 257, 565–573; https://doi.org/10.1016/j.apsusc.2010.07.034.Search in Google Scholar

29. Ning, N.; Cheng, D.; Yang, J.; Liu, L.; Tian, M.; Wu, Y.; Wang, W.; Zhang, L.; Lu, Y. New Insight on the Interfacial Interaction between Multiwalled Carbon Nanotubes and Elastomers. Compos. Sci. Technol. 2017, 142, 214–220; https://doi.org/10.1016/j.compscitech.2017.02.012.Search in Google Scholar

30. Woointranont, P.; Pecharapa, W. Effects of Surface Modification of Carbon Nanotubes on the Deposition of NiO/CNTs Nanocomposites. J. Microsc. Soc. Thai. 2011, 4, 116–119.Search in Google Scholar

31. Treloar, L. G. The Physics of Rubber Elasticity, 1975.Search in Google Scholar

32. Zang, Y. H.; Muller, R.; Froelich, D. New Representation of the True Stress for Uniaxial Extension of Crosslinked Rubbers. J. Rheol. 1986, 30, 1165–1180; https://doi.org/10.1122/1.549885.Search in Google Scholar

33. El-Nemr, K. F.; Raslan, H. A.; Ali, M. A.; Hasan, M. M. Innovative γ Rays Irradiated Styrene Butadiene Rubber/Reclaimed Waste Tire Rubber Blends: A Comparative Study Using Mechano-Chemical and Microwave Devulcanizing Methods. J. Polym. Eng. 2020, 40, 267–277; https://doi.org/10.1515/polyeng-2019-0307.Search in Google Scholar

34. Habib, N. A.; Chieng, B. W.; Mazlan, N.; Rashid, U.; Yunus, R.; Rashid, S. A. Elastomeric Nanocomposite Based on Exfoliated Graphene Oxide and its Characteristics without Vulcanization. J. Nanomater. 2017, 2017, 1–12; https://doi.org/10.1155/2017/8543137.Search in Google Scholar

35. El-Nemr, K. F.; Ali, M. A.; El-Sayed, S. N.; Zahran, M. K. Physical and Chemical Properties of Gamma-Irradiated Styrene–Butadiene Rubber/Vermiculite Clay Nanocomposites Modified Using Maleic Anhydride. Polym. Bull. 2018, 75, 3587–3606; https://doi.org/10.1007/s00289-017-2227-4.Search in Google Scholar

36. Ali, M. A.; El-Nemr, K. F.; El-Sabbagh, S. H.; Bekhit, M. Dual Effect of Maleic Anhydride and Gamma Radiation on Properties of EPDM/Microcrystalline Newsprint Fiber Composites. J. Polym. Eng. 2022, 42, 395–406; https://doi.org/10.1515/polyeng-2021-0258.Search in Google Scholar

37. Liu, X.; Guo, R.; Lin, Z.; Yang, Y.; Xia, H.; Yao, Z. Resistance-strain Sensitive Rubber Composites Filled by Multiwalled Carbon Nanotubes for Structuraldeformation Monitoring. Nanomater. Nanotechnol. 2021, 11, 1–13; https://doi.org/10.1177/18479804211011384.Search in Google Scholar

38. Ahmed, D. S.; Haider, A. J.; Mohammad, M. Comparesion of Functionalization of Multi-Walled Carbon Nanotubes Treated by Oil Olive and Nitric Acid and Their Characterization. Energy Procedia 2013, 36, 1111–1118; https://doi.org/10.1016/j.egypro.2013.07.126.Search in Google Scholar

39. Naseh, M. V.; Khodadadi, A. A.; Mortazavi, Y.; Sahraei, O. A.; Pourfayaz, F.; Sedghi, S. M. Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma. Int. J. Chem. Biol. Eng. 2009, 3, 33–35.Search in Google Scholar

40. Kumar, N.; Das, S.; Bernhard, C.; Varma, G. D. Effect of Graphene Oxide Doping on Superconducting Properties of Bulk MgB2. Supercond. Sci. Technol. 2013, 26, 095008; https://doi.org/10.1088/0953-2048/26/9/095008.Search in Google Scholar

41. Akhlaghi, S.; Kalaee, M.; Mazinani, S.; Jowdar, E.; Nouri, A.; Sharif, A.; Sedaghat, N. Effect of Zinc Oxide Nanoparticles on Isothermal Cure Kinetics, Morphology and Mechanical Properties of EPDM Rubber. Thermochim. Acta 2012, 527, 91–98; https://doi.org/10.1016/j.tca.2011.10.015.Search in Google Scholar

42. LIU, J.; SUN, J.; ZHANG, Z.; YANG, H.; NIE, X. One-Step Synthesis of End-Functionalized Hydrogenated Nitril-Butadiene Rubber by Combining the Functional Metathesis with Hydrogenation. ChemistryOpen 2020, 9, 374–380; https://doi.org/10.1002/open.201900369.Search in Google Scholar PubMed PubMed Central

43. Fan, Y.; Cho, U. R. Influence of the Hybrid Materials Based on Carbon Nanotubes and Tannic Acid on the Rheological, Thermal and Mechanical Performances of Nitrile Butadiene Rubber Composites. Polym. Compos. 2019, 40, 4510–4518; https://doi.org/10.1002/pc.25307.Search in Google Scholar

44. Liang, L.; Dong, J.; Yue, D. Branched EHNBR and its Properties with Enhanced Low-Temperature Performance and Oil Resistance. RSC advances 2019, 9, 32130–32136; https://doi.org/10.1039/c9ra03656c.Search in Google Scholar PubMed PubMed Central

45. Xue, B.; Peng, Y.; Song, Y.; Bai, J.; Niu, M.; Yang, Y.; Liu, X. Functionalized Multiwalled Carbon Nanotubes by Loading Phosphorylated Chitosan: Preparation, Characterization, and Flame-Retardant Applications of Polyethylene Terephthalate. High Perform. Polym. 2018, 30, 1036–1047; https://doi.org/10.1177/0954008317736375.Search in Google Scholar

46. Jin, S. H.; Park, Y.-B.; Yoon, K. H. Rheological and Mechanical Properties of Surface Modified Multi-Walled Carbon Nanotube-Filled PET Composite. Compos. Sci. Technol. 2007, 67, 3434–3441; https://doi.org/10.1016/j.compscitech.2007.03.013.Search in Google Scholar

47. Tarawneh, M. A. A.; Ahmad, S. H.; Yahya, S.; Rasid, R.; Noum, S. Y. E. Mechanical Properties of Thermoplastic Natural Rubber Reinforced with Multi-Walled Carbon Nanotubes. J. Reinf. Plast. Compos. 2011, 30, 363–368; https://doi.org/10.1177/0731684410397407.Search in Google Scholar

48. Khelidj, N.; Colin, X.; Audouina, L.; Verdu, J.; Monchy-Leroy, C.; Prunier, V. Oxidation of Polyethylene under Irradiation at Low Temperature and Low Dose Rate. Part II. Low Temperature Thermal Oxidation. Polym. Degrad. Stab. 2006, 91, 1598–1605; https://doi.org/10.1016/j.polymdegradstab.2005.09.012.Search in Google Scholar

49. Kobayashi, M. Structure of Gels, Characterization Techniques. In Gels Handbook; Elsevier, 2001; p. 172.10.1016/B978-012394690-4/50082-7Search in Google Scholar

50. Salehi, M. M.; Khalkhali, T.; Davoodi, A. The Physical and Mechanical Properties and Cure Characteristics of NBR/silica/MWCNT Hybrid Composites. Polym. Sci., Ser. A 2016, 58, 567–577; https://doi.org/10.1134/s0965545x16040131.Search in Google Scholar

51. Rahiman, K. H.; Unnikrishnan, G.; Sujith, A.; Radhakrishnan, C. Cure Characteristics and Mechanical Properties of Styrene–Butadiene Rubber/Acrylonitrile Butadiene Rubber. Mater. Lett. 2005, 59, 633–639; https://doi.org/10.1016/j.matlet.2004.10.050.Search in Google Scholar

52. Yang, D.; Huang, S.; Wu, Y.; Ruan, M.; Li, S.; Shang, Y.; Cui, X.; Zhou, J.; Guo, W.; Zhang, L. All-organic Non-Percolative Dielectric Composites with Enhanced Electromechanical Actuating Performances by Controlling Molecular Interaction. RSC Adv. 2015, 5, 102157–102166; https://doi.org/10.1039/c5ra18394d.Search in Google Scholar

53. Schawe, J. E.; Wrana, C. Competition between Structural Relaxation and Crystallization in the Glass Transition Range of Random Copolymers. Polymers 2020, 12, 1778; https://doi.org/10.3390/polym12081778.Search in Google Scholar PubMed PubMed Central

54. Maciel, A. V.; Machado, J. C.; Pasa, V. M. D. The Effect of Temperature on the Properties of the NBR/PVC Blend Exposed to Ethanol Fuel and Different Gasolines. Fuel 2013, 113, 679–689; https://doi.org/10.1016/j.fuel.2013.05.101.Search in Google Scholar

55. El-Nemr, K. F.; Hassan, M. M.; Hamdy, E. M. Waste Rubber Ash Modified by Silane Coupling Agent as Reinforced Filler in Acrylonitrile Butadiene Rubber Cured by Ionising Radiation. Int. J. Environ. Anal. Chem. 2021, 101, 1240–1257; https://doi.org/10.1080/03067319.2019.1679801.Search in Google Scholar

Received: 2023-11-03
Accepted: 2024-03-24
Published Online: 2024-04-18
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0244/html
Scroll to top button