Startseite CaO-enhanced polyester for safety: experimental study on fabrication, characterization, and gamma-ray attenuation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

CaO-enhanced polyester for safety: experimental study on fabrication, characterization, and gamma-ray attenuation

  • Mohammad W. Marashdeh und Karem A. Mahmoud ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Januar 2024

Abstract

The current work deals with studying the influence of cheap, widespread CaO on improving the γ ray-protection capacity of the lightweight, sealing polyester. Therefore, polyester composites were filled with different concentrations of CaO fillers. The fabricated CaO-reinforced polyester composites’ density ranged between 1.177 g/cm3 and 1.377 g/cm3, when CaO filler concentrations increased between 0 wt% and 60 wt%, respectively. Fabricated composites’ morphology and chemical composition, as well as CaO fillers’ grain size and distribution, were proved using SEM and EDX spectroscopy. Additionally, the influence of CaO fillers on the gamma-ray shielding properties of the fabricated composites was evaluated using the Monte Carlo simulation and confirmed using the experimental measurements. The recorded results show an enhancement in the synthesized composites’ linear attenuation coefficient from 0.091 cm−1 to 0.106 cm−1 at a gamma ray energy of 0.662 MeV. Moreover, the excess in CaO concentration from 0 wt% and 60 wt% reduces the fabricated composites’ half-value thickness values from 7.64 cm to 6.51 cm, respectively.


Corresponding author: Karem A. Mahmoud, Ural Federal University, 19 Mira St., Yekaterinburg 620002, Russia and Nuclear Materials Authority, P.O. Box 530 El-Maadi, Cairo, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Material preparation, data collection, analysis, and the manuscript as a whole were prepared by the authors of the manuscript K. A. Mahmoud and M. W. Marashdeh.

  3. Conflict of interest: The authors declare no conflict of interest.

  4. Research funding: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023005. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

  5. Data availability: All data generated or analyzed during this study are included in this published article.

References

1. Brocchieri, J., Sabbarese, C. Thickness Determination of the Gilding on Brass Materials by XRF Technique. Nucl. Instrum. Methods Phys. Res. B 2021, 496, 29–36; https://doi.org/10.1016/j.nimb.2021.03.018.Suche in Google Scholar

2. Chilton, A. B., Shultis, J. K., Faw, R. E. Principles of Radiation Shielding; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, 1984.Suche in Google Scholar

3. Lim, G. J., Kardar, L., Ebrahimi, S., Cao, W. A Risk-Based Modeling Approach for Radiation Therapy Treatment Planning under Tumor Shrinkage Uncertainty. Eur. J. Oper. Res. 2020, 280, 266–278; https://doi.org/10.1016/j.ejor.2019.06.041.Suche in Google Scholar

4. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103. Ann. ICRP 2007, 37, 2–4; https://doi.org/10.1016/j.icrp.2007.10.003.Suche in Google Scholar PubMed

5. Kropachev, Y. A., Tashlykov, O. L., Shcheklein, S. E. Optimization of Radiation Protection at the NPP Unit Decommissioning Stage. Izv. Wysshikh Uchebnykh Zawedeniy, Yad. Energetika 2019, 2019, 119.10.26583/npe.2019.1.11Suche in Google Scholar

6. Nosov, Yu. V., Rovneiko, A. V., Tashlykov, O. L., Shcheklein, S. E. Decommissioning Features of BN-350, -600 Fast Reactors. Atom. Energy 2019, 125, 219; https://doi.org/10.1007/s10512-019-00470-z.Suche in Google Scholar

7. Mikhailova, A. F., Tashlykov, O. L. The Ways of Implementation of the Optimization Principle in the Personnel Radiological Protection. Phys. Atom. Nuclei 2020, 83, 1718–1726; https://doi.org/10.1134/s1063778820100154.Suche in Google Scholar

8. Tashlykov, O. L., Sesekin, A. N., Chentsov, A. G., Chentsov, A. A. Development of Methods for Route Optimization of Work in Inhomogeneous Radiation Fields to Minimize the Dose Load of Personnel. Energies 2022, 15, 4788; https://doi.org/10.3390/en15134788.Suche in Google Scholar

9. Tashlykov, O. L., Grigoryev, A. M., Kropachev, Y. A. Reducing the Exposure Dose by Optimizing the Route of Personnel Movement When Visiting Specified Points and Taking into Account the Avoidance of Obstacles. Energies 2022, 15, 8222; https://doi.org/10.3390/en15218222.Suche in Google Scholar

10. IAEA. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, GSR Part 3; Vienna, 2014.Suche in Google Scholar

11. Mahmoud, K. A., Tashlykov, O. L., Mhareb, M. H. A., Almuqrin, A. H., Alajerami, Y. S. M., Sayyed, M. I. A New Heavy-Mineral Doped Clay Brick for Gamma-Ray Protection Purposes. Appl. Radiat. Isotopes 2021, 173, 109720; https://doi.org/10.1016/j.apradiso.2021.109720.Suche in Google Scholar PubMed

12. Ouda, A. S. Development of High-Performance Heavy Density Concrete Using Different Aggregates for Gamma-Ray Shielding. Prog. Nucl. Energy 2015, 79, 48–55; https://doi.org/10.1016/j.pnucene.2014.11.009.Suche in Google Scholar

13. Mahmoud, K. A., Sayyed, M. I., Tashlykov, O. L. Gamma Ray Shielding Characteristics and Exposure Buildup Factor for Some Natural Rocks Using MCNP-5 Code. Nuclear Eng. Technol. 2019, 51, 1835–1841; https://doi.org/10.1016/j.net.2019.05.013.Suche in Google Scholar

14. Khalaf, M. A., Ban, C. C., Ramli, M. The Constituents, Properties and Application of Heavyweight Concrete: A Review. Constr. Build. Mater. 2019, 215, 73–89; https://doi.org/10.1016/j.conbuildmat.2019.04.146.Suche in Google Scholar

15. More, C. V., Alsayed, Z., Badawi, M. S., Thabet, A. A., Pawar, P. P. Polymeric Composite Materials for Radiation Shielding: A Review. Environ. Chem. Lett. 2021, 19, 2057–2090; https://doi.org/10.1007/s10311-021-01189-9.Suche in Google Scholar PubMed PubMed Central

16. Mann, H. S., Brar, G. S., Mann, K. S., Mudahar, G. S. Experimental Investigation of Clay Fly Ash Bricks for Gamma-ray Shielding. Nuclear Eng. Technol. 2016, 48, 1230–1236; https://doi.org/10.1016/j.net.2016.04.001.Suche in Google Scholar

17. Kilic, G., Ilik, E., Mahmoud, K. A., El-Agawany, F. I., Alomairy, S., Rammah, Y. S. The Role of B2O3 on the Structural, Thermal, and Radiation Protection Efficacy of Vanadium Phosphate Glasses. Appl. Phys. A 2021, 127(4), 265; https://doi.org/10.1007/s00339-021-04409-9.Suche in Google Scholar

18. Boukhris, I., Kebaili, I., Al-Buriahi, M. S., Sayyed, M. I. Radiation Shielding Properties of Tellurite-Lead-Tungsten Glasses against Gamma and Beta Radiations. J. Non Cryst. Solids 2021, 551, 120430; https://doi.org/10.1016/j.jnoncrysol.2020.120430.Suche in Google Scholar

19. Şahin, N., Bozkurt, M., Karabul, Y., Kılıç, M., Özdemir, Z. G. Low Cost Radiation Shielding Material for Low Energy Radiation Applications: Epoxy/Yahyali Stone Composites. Prog. Nucl. Energy 2021, 135, 103703; https://doi.org/10.1016/j.pnucene.2021.103703.Suche in Google Scholar

20. Sayyed, M. I., Al-Ghamdi, H., Almuqrin, A. H., Yasmin, S., Elsafi, M. A Study on the Gamma Radiation Protection Effectiveness of Nano/Micro-MgO-Reinforced Novel Silicon Rubber for Medical Applications. Polymers 2022, 14, 2867; https://doi.org/10.3390/polym14142867.Suche in Google Scholar PubMed PubMed Central

21. Elsafi, M., ALasali, H., Almuqrin, A. H., Mahmoud, K. G., Sayyed, M. I. Experimental Assessment for the Photon Shielding Features of Silicone Rubber Reinforced by Tellurium Borate Oxides. Nuclear Eng. Technol. 2023, 55, 2166–2171; https://doi.org/10.1016/j.net.2023.02.022.Suche in Google Scholar

22. Kumar, G. S., Ramakrishnan, A., Hung, Y.-T. Lime Calcination. InAdvanced Physicochemical Treatment Technologies; Humana Press: Totowa, NJ, 2007.Suche in Google Scholar

23. Miller, M. M. ‘Lime’ U.S. Geological Survey Minerals Yearbook-2007; United States Government Publishing Office, Washington, 2007; pp. 43–51.Suche in Google Scholar

24. Mahmoud, K. A., Tashlykov, O. L., Kropachev, Y., Samburov, A., Zakharova, P., Abu El-Soad, A. M. A Close Look for the γ-Ray Attenuation Capacity and Equivalent Dose Rate Form Composites Based Epoxy Resin: An Experimental Study. Radiat. Phys. Chem. 2023, 212, 111063; https://doi.org/10.1016/j.radphyschem.2023.111063.Suche in Google Scholar

25. Sayyed, M. I. The Impact of Chemical Composition, Density and Thickness on the Radiation Shielding Properties of CaO–Al2O3–SiO2 Glasses. Silicon 2023, 15, 7917–7926.10.1007/s12633-023-02640-ySuche in Google Scholar

26. X-5 Monte Carlo Team. MCNP – A General Monte Carlo N-Particle Transport Code, Version 5.La-Ur-03-1987. II, 2003.Suche in Google Scholar

27. Sayyed, M. I., Hannachi, E., Mahmoud, K. A., Slimani, Y. Synthesis of Different (RE)BaCuO Ceramics, Study Their Structural Properties, and Tracking Their Radiation Protection Efficiency Using Monte Carlo Simulation. Mater. Chem. Phys. 2022, 276, 125412; https://doi.org/10.1016/j.matchemphys.2021.125412.Suche in Google Scholar

28. Hannachi, E., Mahmoud, K. A., Sayyed, M. I., Slimani, Y. Effect of Sintering Conditions on the Radiation Shielding Characteristics of YBCO Superconducting Ceramics. J. Phys. Chem. Solids 2022, 164, 110627; https://doi.org/10.1016/j.jpcs.2022.110627.Suche in Google Scholar

29. Mahmoud, K. A., Sayyed, M. I., Alhuthali, A. M. S., Hanfi, M. Y. The Effect of CuO Additive on the Mechanical and Radiation Shielding Features of Li2B4O7. Bol. Soc. Esp. Ceram. Vidr. 2022, 61, 275–283; https://doi.org/10.1016/j.bsecv.2020.11.005.Suche in Google Scholar

30. Abouhaswa, A. S., Sayyed, M. I., Altowyan, A. S., Al-Hadeethi, Y., Mahmoud, K. A. Synthesis, Structural, Optical and Radiation Shielding Features of Tungsten Trioxides Doped Borate Glasses Using Monte Carlo Simulation and phy-X Program. J. Non-Cryst. Solids 2020, 543, 120134.10.1016/j.jnoncrysol.2020.120134Suche in Google Scholar

31. Sayyed, M. I., Mahmoud, K. A., Şakar, E., Kovaleva, E. G. Simulation Studies for Gamma Ray Shielding Properties of Halloysite Nanotubes Using MCNP-5 Code. Appl. Radiat. Isot. 2019, 154, 108882; https://doi.org/10.1016/j.apradiso.2019.108882.Suche in Google Scholar PubMed

32. Kumar, A., Ali, A. M., Sayyed, M. I., Askin, A., Rashad, M., Algarni, H. Structural, Optical, and Gamma-Ray-Sensing Characterization of (35 − x) PbO-10 MgO-10Na2O-5 Fe2O3-10 BaO-(30 − x) B2O3 Glasses. Appl. Phys. A 2019, 125, 512; https://doi.org/10.1007/s00339-019-2810-7.Suche in Google Scholar

33. Al-Yousef, H. A., Alotiby, M., Hanfi, M. Y., Alotaibi, B. M., Mahmoud, K. A., Sayyed, M. I., Al-Hadeethi, Y. Effect of the Fe2O3 Addition on the Elastic and Gamma-Ray Shielding Features of Bismuth Sodium-Borate Glass System. J. Mater. Sci. Mater. Electron. 2021, 32, 6942; https://doi.org/10.1007/s10854-021-05400-z.Suche in Google Scholar

34. Mahmoud, M. E., El-Khatib, A. M., Badawi, M. S., Rashad, A. R., El-Sharkawy, R. M., Thabet, A. A. Fabrication, Characterization and Gamma Rays Shielding Properties of Nano and Micro Lead Oxide-Dispersed-High Density Polyethylene Composites. Radiat. Phys. Chem. 2018, 145, 160.10.1016/j.radphyschem.2017.10.017Suche in Google Scholar

35. Sharma, A., Sayyed, M. I., Agar, O., Kaçal, M. R., Polat, H., Akman, F. Photon-Shielding Performance of Bismuth Oxychloride-Filled Polyester Concretes. Mater. Chem. Phys. 2020, 241, 122330.10.1016/j.matchemphys.2019.122330Suche in Google Scholar

36. Mahmoud, M. E., El-Khatib, A. M., Badawi, M. S, Rashad, A. R., El-Sharkawy, R. M., Thabet, A. A. Recycled High-Density Polyethylene Plastics Added with Lead Oxide Nanoparticles as Sustainable Radiation Shielding Materials. J. Clean. Prod. 2018, 176, 276.10.1016/j.jclepro.2017.12.100Suche in Google Scholar

37. Alsayed, Z., Badawi, M. S., Awad, R., El-Khatib, A. M., Thabet, A. A. Investigation of γ-Ray Attenuation Coefficients, Effective Atomic Number and Electron Density for ZnO/HDPE Composite. Phys. Scr. 2020, 95, 085301.10.1088/1402-4896/ab9a6eSuche in Google Scholar

38. Bagheri, K., Razavi, S. M., Ahmadi, S. J., Kosari, M., Abolghasemi, H. Thermal Resistance, Tensile Properties, and Gamma Radiation Shielding Performance of Unsaturated Polyester/Nanoclay/PbO Composites. Radiat. Phys. Chem. 2018, 146, 5.10.1016/j.radphyschem.2017.12.024Suche in Google Scholar

39. Tashlykov, O. L., Milman, I. I., Aladailah, M. W., Bessonov, I. A., Chalpanov, S. V., Yarkov, V. Y., Pyltsova, D. O., Kuvshinova, E. V., Mahmoud, K. A. An Extensive Experimental Study on the Role of Micro-Size Pozzolana in Enhancing the Gamma-Ray Shielding Properties of High-Density Polyethylene. Radiat. Phys. Chem. 2023, 212, 111079.10.1016/j.radphyschem.2023.111079Suche in Google Scholar

Received: 2023-12-05
Accepted: 2024-01-02
Published Online: 2024-01-12
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0265/html?lang=de
Button zum nach oben scrollen