Startseite Alpha-hydroxyisobutyric acid-assisted solid-liquid chromatography for the separation of lutetium-177 from neutron-irradiated natural ytterbium
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Alpha-hydroxyisobutyric acid-assisted solid-liquid chromatography for the separation of lutetium-177 from neutron-irradiated natural ytterbium

  • Aulia Arivin Billah ORCID logo EMAIL logo , Kukuh Eka Prasetya , Fany Triyatna , Daya Agung Sarwono , Abidin Abidin , Fernanto Rindiyantono ORCID logo , Maiyesni Maiyesni , Miftakul Munir ORCID logo , Indra Saptiama ORCID logo , Rien Ritawidya und Agustino Zulys
Veröffentlicht/Copyright: 6. Februar 2024

Abstract

The production method of no-carrier added Lutetium-177 (177Lu) was developed from a neutron-activated natural ytterbium (Yb) using column chromatography separation method. Dowex W50 X8 resin and a combination of alpha-hydroxyisobutyric acid (α-HIBA) and hydrochloric acid (HCl) were used as column filler and eluent, respectively. HCl increased the desorption and separation between 177Lu and Yb at a concentration of 0.25 M, while the optimal α-HIBA concentration was 0.15 M, resulting in 177Lu yield of 81.19 % and low impurities (175Yb: 9.28 %, and 169Yb: 2.09 %). Nevertheless, further study using an enriched 176Yb target is essential to significantly increase the specific activity of 177Lu.


Corresponding author: Aulia Arivin Billah, Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Puspiptek Area, South Tangerang, 15314, Indonesia; and Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, 16424, Indonesia, E-mail:

Acknowledgments

The research was supported by the Degree By Research Program - BRIN and Research Organization for Nuclear Energy, the National Research and Innovation Agency (ORTN-BRIN).

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: ORTN-BRIN, grants number TR-032.

  5. Data availability: Not applicable.

References

1. Kristiansson, A., Örbom, A., Ahlstedt, J., Karlsson, H., Zedan, W., Gram, M., Åkerström, B., Strand, S. E., Altai, M., Strand, J., Timmermand, O. V. 177Lu‐psma‐617 Therapy in Mice, with or without the Antioxidant α1‐Microglobulin (A1m), Including Kidney Damage Assessment Using 99mTc‐mag3 Imaging. Biomolecules 2021, 11, 1.10.3390/biom11020263Suche in Google Scholar PubMed PubMed Central

2. Humani, T. S., Sutari, S., Triningsih, T., Ramli, M., Ritawidya, R., Haryuni, R. D. Preparation of (177Lu-DOTA)n-PAMAM-[Nimotuzumab-F(ab’)2] as a Therapeutic Radioimmunoconjugate for EGFR Overexpressed Cancers Treatment. J. Math. Fundam. Sci. 2017, 49, 258; https://doi.org/10.5614/j.math.fund.sci.2017.49.3.4.Suche in Google Scholar

3. Marganiec-Gałązka, J., Ziemek, T., Broda, R., Cacko, D., Czudek, M., Jęczmieniowski, A., Kołakowska, E., Lech, E., Listkowska, A., Saganowski, P., Tymiński, Z. Standardization of 177Lu by Means of 4π(LS)β-γ Coincidence and Anti-Coincidence Counting. J. Radioanal. Nucl. Chem. 2022, 331, 3283; https://doi.org/10.1007/s10967-022-08330-0.Suche in Google Scholar

4. Emmett, L., Willowson, K., Violet, J., Shin, J., Blanksby, A., Lee, J. Lutetium-177 PSMA Radionuclide Therapy for Men with Prostate Cancer: A Review of the Current Literature and Discussion of Practical Aspects of Therapy. J. Med. Radiat. Sci. 2017, 64, 52–60; https://doi.org/10.1002/jmrs.227.Suche in Google Scholar PubMed PubMed Central

5. Keam, S. J. Lutetium Lu 177 Vipivotide Tetraxetan: First Approval. Mol. Diagn. Ther. 2022, 26, 467; https://doi.org/10.1007/s40291-022-00594-2.Suche in Google Scholar PubMed PubMed Central

6. Das, S., Al-Toubah, T., El-Haddad, G., Strosberg, J. 177Lu-DOTATATE for the Treatment of Gastroenteropancreatic Neuroendocrine Tumors. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 1023; https://doi.org/10.1080/17474124.2019.1685381.Suche in Google Scholar PubMed PubMed Central

7. Lahiri, S., Nayak, D., Nandy, M., Das, N. R. Separation of Carrier Free Lutetium Produced in Proton Activated Ytterbium with HDEHP. Appl. Radiat. Isot. 1998, 49, 911; https://doi.org/10.1016/s0969-8043(97)10101-4.Suche in Google Scholar

8. Zahn, G. S., Genezini, F. A., da Silva, P. S. C., Nory, R. M., Moreira, E. G., Santiago, P. S. On the Feasibility of Producing Lu-177 in the IEA-R1 Reactor via the Direct Route. Braz. J. Radiat. Sci. 2021, 9, 1; https://doi.org/10.15392/bjrs.v9i1a.1411.Suche in Google Scholar

9. Soliman, M. A., Mohamed, N. M. A., Takamiya, K., Sekimoto, S., Inagaki, M., Oki, Y., Ohtsuki, T. Estimation of 47Sc and 177Lu Production Rates from Their Natural Targets in Kyoto University Research Reactor. J. Radioanal. Nucl. Chem. 2020, 324, 1099; https://doi.org/10.1007/s10967-020-07156-y.Suche in Google Scholar

10. Boldyrev, P. P., Zagryadskii, V. A., Erak, D. Y., Kurochkin, A. V., Markovskii, D. V., Mikhin, O. V., Proshin, M. A., Khmyzov, N. V., Chuvilin, D. Y., Yashin, Y. A. Possibility of Obtaining High-Activity 177Lu in the IR-8 Research Reactor. At. Energy 2017, 121, 208; https://doi.org/10.1007/s10512-017-0185-4.Suche in Google Scholar

11. Zhuo, L., Yang, Y., Yue, H., Xiong, X., Wang, G., Wang, H., Yang, L., Lin, Q., Chen, Q., Tu, J., Wei, H., Yang, X., Kan, W. Effective Lutetium/ytterbium Separation for No-Carrier Added Lutetium-177 Production. J. Radioanal. Nucl. Chem. 2022, 331, 5719; https://doi.org/10.1007/s10967-022-08588-4.Suche in Google Scholar

12. Ambul, E. V., Goletskii, N. D., Medvedeva, A. I., Naumov, A. A., Puzikov, E. A., Afonin, M. A., Shishkin, D. N. Separation of Ytterbium And Lutetium with Solutions of (2-Ethylhexyl)Phosphonic Acid Mono-2-Ethylhexyl Ester in Hydrocarbons from Nitric Acid Solutions and its Simulation. Radiochemistry 2022, 64, 300; https://doi.org/10.1134/s1066362222030067.Suche in Google Scholar

13. Kuznetsov, R. A., Bobrovskaya, K. S., Svetukhin, V. V., Fomin, A. N., Zhukov, A. v. Production of Lutetium-177: Process Aspects. Radiochemistry 2019, 61, 381; https://doi.org/10.1134/s1066362219040015.Suche in Google Scholar

14. Hashimoto, K., Matsuoka, H., Uchida, S. Production of No-Carrier-Added 177Lu via the 176Yb(n,γ)177Yb→177Lu Process. J. Radioanal. Nucl. Chem. 2003, 255, 177.Suche in Google Scholar

15. Nguyen, N. T., Duong, V. D., Bui, V. C., Pham, T. M., Nguyen, T. H. Study on the Production of 177Lu for Medical Purposes at the Dalat Research Reactor. Part 1. Study on Production of 177Lu at the Dalat Research Reactor. Nucl. Sci. Technol. 2015, 5, 18; https://doi.org/10.53747/jnst.v5i1.181.Suche in Google Scholar

16. Kumar, P., Jaison, P. G., Rao, D. R. M., Telmore, V. M., Sarkar, A., Aggarwal, S. K. Determination of Lanthanides and Yttrium in High Purity Dysprosium by Rp-Hplc Using δ-hydroxyisobutyric Acid as an Eluent. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 1513; https://doi.org/10.1080/10826076.2012.692148.Suche in Google Scholar

17. Kim, A., Choi, K. Preparative Chromatographic Separation of Neighboring Lanthanides Using Amines as a pH Adjusting Additive for Producing Carrier-free 177Lu. J. Radioanal. Nucl. Chem. 2022, 331, 1451; https://doi.org/10.1007/s10967-022-08216-1.Suche in Google Scholar

18. Pourjavid, M. R., Norouzi, P., Rashedi, H., Ganjali, M. R. Separation and Direct Detection of Heavy Lanthanides Using New Ion-Exchange Chromatography: Fast Fourier Transform Continuous Cyclic Voltammetry System. J. Appl. Electrochem. 2010, 40, 1593; https://doi.org/10.1007/s10800-010-0144-4.Suche in Google Scholar

19. Watanabe, S., Hashimoto, K., Watanabe, S., Iida, Y., Hanaoka, H., Endo, K., Ishioka, N. S. Production of Highly Purified No-Carrier-Added 177Lu for Radioimmunotherapy. J. Radioanal. Nucl. Chem. 2015, 303, 935; https://doi.org/10.1007/s10967-014-3534-y.Suche in Google Scholar

20. Pasqualini Da Silva, G., Alberto, J., Junior, O. Study of the Production of 177Lu through 176Yb (n, γ) 177Yb → 177Lu Nuclear Reaction. Dissertation, Sao Paulo University, 2008; pp. 1–78.Suche in Google Scholar

21. Li, F. F., Cui, W. R., Jiang, W., Zhang, C. R., Liang, R. P., Qiu, J. D. Stable Sp2 Carbon-Conjugated Covalent Organic Framework for Detection and Efficient Adsorption of Uranium from Radioactive Wastewater. J. Hazard. Mater. 2020, 392; https://doi.org/10.1016/j.jhazmat.2020.122333.Suche in Google Scholar PubMed

22. Jun, B. M., Lee, H. K., Park, S., Kim, T. J. Purification of Uranium-Contaminated Radioactive Water by Adsorption: A Review on Adsorbent Materials. Sep. Purif. Technol. 2022, 278, 119675; https://doi.org/10.1016/j.seppur.2021.119675.Suche in Google Scholar

23. Zhang, M., Gu, P., Zhang, Z., Liu, J., Dong, L., Zhang, G. Effective, Rapid and Selective Adsorption of Radioactive Sr2+ from Aqueous Solution by a Novel Metal Sulfide Adsorbent. Chem. Eng. J. 2018, 351, 668; https://doi.org/10.1016/j.cej.2018.06.069.Suche in Google Scholar

24. Park, H., Kwon, D. H., Cha, Y. H., Kim, T. S., Han, J., Ko, K. H., Jeong, D. Y., Kim, C. J. Stable Isotope Production of 168Yb and 176Yb for Industrial and Medical Applications. J. Nucl. Sci. Technol. 2008, 45, 111; https://doi.org/10.1080/00223131.2008.10875990.Suche in Google Scholar

25. Park, H., Kostritsa, S., Kwon, D., Cha, Y., Lee, K., Nam, S., Han, J., Rhee, Y., Kim, C.-J. Effect of Laser Intensity on the Selective Photoionization of the 168Yb Isotope. J. Korean Phys. Soc. 2002, 41, 3.Suche in Google Scholar

26. Karadag, M., Yücel, H. Measurement of Thermal Neutron Cross-Section and Resonance Integral for the 174Yb(n,γ) 175Yb Reaction by the Cadmium Ratio Method. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 2549; https://doi.org/10.1016/j.nimb.2008.03.201.Suche in Google Scholar

27. Zaved, M. M., Islam, M. A., Hossain, A. Experimental Cross Sections of the 174Yb(n,γ) 175Yb Reaction at New Energies of 0.0334 eV and 0.0536 eV. Radiat. Phys. Chem. 2020, 166, 108471; https://doi.org/10.1016/j.radphyschem.2019.108471.Suche in Google Scholar

28. Wang, Q., Gao, F., Yang, L., Shi, T., Xie, Q. Study of the Thermodynamic Behavior of Rare Earths in the System of R-SO3H α-HIBA on HPLC and its Application to Analytical Chemistry. Microchem. J. 1995, 52, 236; https://doi.org/10.1006/mchj.1995.1092.Suche in Google Scholar

29. Ansari, S. A., Mohapatra, P. K., Manchanda, V. K. A Novel Malonamide Grafted Polystyrene-Divinyl Benzene Resin for Extraction, Pre-Concentration and Separation of Actinides. J. Hazard. Mater. 2009, 161, 1323; https://doi.org/10.1016/j.jhazmat.2008.04.093.Suche in Google Scholar PubMed

30. Wakaki, S., Tanaka, T. Stable Sm Isotopic Analysis of Terrestrial Rock Samples by Double-Spike Thermal Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2016, 407, 22; https://doi.org/10.1016/j.ijms.2016.06.010.Suche in Google Scholar

31. Cáceres-Rivero, C., Ramos-Trujillo, B. J., Farfán, Y., Solis, J. L., Bedregal, P. The Role of pH in the Separation of Lu and Yb by Ion-Exchange Explained by Novel Chemical Structures of Lanthanide Complexes. Results Chem. 2022, 4, 100514; https://doi.org/10.1016/j.rechem.2022.100514.Suche in Google Scholar

32. Balasubramanian, P. S. Separation of Carrier-Free Lutetium-177 From Neutron Irradiated Natural Ytterbium Target. J. Radioanal. Nucl. Chem. 1994, 185, 2; https://doi.org/10.1007/bf02041303.Suche in Google Scholar

33. Barkhausen, C. Production of Non Carrier Added (n.c.a.) 177Lu for Radiopharmaceutical Applications. Dissertation, Technical University Munich: Munich, 2011; pp. 1–120.Suche in Google Scholar

34. Dembowski, M., Rowley, J. E., Boland, K., Droessler, J., Hathcoat, D. A., Marchi, A., Goff, G. S., May, I. Rare Earth Element Separations by High-Speed Counter-current Chromatography. J. Chromatogr. A 2022, 1682, 463528; https://doi.org/10.1016/j.chroma.2022.463528.Suche in Google Scholar PubMed

35. Dembiński, W., Poniński, M., Fiedler, R. Preliminary Results of the Studies on Fractionation of Ytterbium Isotopes in Yb(III)-acetate/Yb-amalgam System. Sep. Sci. Technol. 1998, 33, 1693; https://doi.org/10.1080/01496399808545074.Suche in Google Scholar

36. Salek, N., Shirvani Arani, S., Bahrami Samani, A., Vosoghi, S., Mehrabi, M. Feasibility Study for Production and Quality Control of Yb-175 as a Byproduct of No Carrier Added Lu-177 Preparation for Radiolabeling of DOTMP. Australas. Phys. Eng. Sci. Med. 2018, 41, 69; https://doi.org/10.1007/s13246-017-0611-x.Suche in Google Scholar PubMed

37. Baek, J., Schwahn, A. B., Lin, S., Pohl, C. A., De Pra, M., Tremintin, S. M., Cook, K. New Insights into the Chromatography Mechanisms of Ion-Exchange Charge Variant Analysis: Dispelling Myths and Providing Guidance for Robust Method Optimization. Anal. Chem. 2020, 92, 13411; https://doi.org/10.1021/acs.analchem.0c02775.Suche in Google Scholar PubMed

38. Kondev, F. G., Wang, M., Huang, W. J., Naimi, S., Audi, G. The NUBASE2020 Evaluation of Nuclear Physics Properties*. Chinese Phys. C 2021, 45, 030001; https://doi.org/10.1088/1674-1137/abddae.Suche in Google Scholar

39. Lakka, N. S., Kuppan, C. Principles of chromatography method development. Biochem. Anal. Tools 2019, 89501, 1.Suche in Google Scholar

Received: 2023-09-26
Accepted: 2023-12-14
Published Online: 2024-02-06
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0234/html?lang=de
Button zum nach oben scrollen