Startseite Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications

  • Bünyamin Aygün EMAIL logo , Murat Şentürk , Esra Cinan , Önder Şimsek , Mohammad Ibrahim Abu Al-Sayyed und Abdulhalik Karabulut
Veröffentlicht/Copyright: 8. September 2022

Abstract

Ionizing radiation is used in many fields in energy, medicine, and industrial applications. Those who are in these areas or cancer patients receiving radiotherapy are at risk for acute or long-term exposure to radiation damage due to these ionizing radiations. Non-toxic new agents are needed to protect intact tissue and cells. In this study, we aimed to determine the gamma and neutron radiation attenuation characteristics of seven different natural compounds (quercetin, menadione, naphthol, caffeine, quinine sulphate, cholesterol and riboflavin) to help users in radiation applications. Gamma radiation attenuation parameters such as the mean free path, mass attenuation coefficient, effective atom number, linear attenuation coefficient, and half-value layer were calculated theoretically with WinXCom software for the energy range 0.015–15 MeV. Fast neutron attenuation criteria, such as mean free path, half-value layer, effective removal cross-sections and transmission neutron number, were theoretically determined with Monte Carlo simulation codes (Geant4). Neutron absorption measurement experiments were also applied in addition to the theoretical results. The neutron radiation absorption capacities were determined for samples with an 241Am-Be 4.5 MeV energy neutron source and portatif-type Canberra brand BF3 gas neutron detector. Neutron attenuation parameters were compared with paraffin to determine the absorption capability of the samples. It was found that the dose 1.1094 (μSv/h) from the source was absorbed by the samples to the following extent: 31.76% (Quercetin), 21.85% (Menadione), 28.85% (Naphthol), 22.94% (Caffeine), 12.51% (Quinine sulphate), 40.44% (Cholesterol) and 20.94% (Riboflavin). From the results, it can be clearly seen that all these drug samples had a good neutron radiation attenuation capacity. This revealed that the examined samples had radiation absorption abilities. It was found that the cholesterol sample had an especially excellent absorption power for both neutron and gamma radiation. The samples investigated in this study could be used to develop radiation-protective drugs.


Corresponding author: Bünyamin Aygün, Department of Electronics and Automation, Vocational School, Agri Ibrahim Cecen University, Agri, Turkey, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: No funding was received for this study.

  3. Conflict of interest statement: There is no conflict of interest between the authors.

References

1. World Health Oragnization (WHO). Ionizing Radiation, Health Effects and Protective Measures; World Health Oragnization (WHO): Geneva, 2016.Suche in Google Scholar

2. Aygün, B., Şakar, E., Korkut, T., Sayyed, M. I., Karabulut, A. New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 2019, 107, 1–9; https://doi.org/10.1515/ract-2018-3075.Suche in Google Scholar

3. Aygün, B., Şakar, E., Agar, O., Sayyed, M. I., Karabulut, A., Singh, V. P. Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications. Prog. Nucl. Energy 2021, 133, 103645; https://doi.org/10.1016/j.pnucene.2021.103645.Suche in Google Scholar

4. Dezhampanah, S., Nikbin, I. M., Mehdipour, S., Mohebbi, R., Moghadam, H. H. Fiber- reinforced concrete containing nano – TiO2 as a new gamma-ray radiation shielding materials. J. Build. Eng. 2021, 44, 102542; https://doi.org/10.1016/j.jobe.2021.102542.Suche in Google Scholar

5. Aygün, B., Şakar, E., Karabulut, A., Alım, B., Sayyed, M. I., Singh, V. P., Yorgun, N. Y., Özpolat, Ö. F. Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochim. Acta 2021, 109, 143–151; https://doi.org/10.1515/ract-2020-0067.Suche in Google Scholar

6. Kaewkhao, J., Korkut, T., Korkut, H., Aygün, B., Yasaka, P., Tuscharoen, S., Insiripong, S., Karabulut, A. Monte Carlo design and experiments on the neutron shielding performances of B2O3–ZnO–Bi2O3 glass system. Glass Phys. Chem. 2017, 43, 560–563; https://doi.org/10.1134/s1087659617060050.Suche in Google Scholar

7. Sayyed, M. I., Akyildirim, H., Al-Buriahi, M. S., Lacomme, E., Ayad, R., Bonvicini, G. Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO. Appl. Phys. A: Mater. Sci. Process 2020, 126, https://doi.org/10.1007/s00339-019-3265-6.Suche in Google Scholar

8. Bilici, İ., Aygün, B., Deniz, C. U., Öz, B., Sayyed, M. I., Karabulut, A. Fabrication of novel neutron shielding materials: polypropylene composites containing colemanite, tincal and ulexite. Prog. Nucl. Energy 2021, 141, 103954; https://doi.org/10.1016/j.pnucene.2021.103954.Suche in Google Scholar

9. Aygün, B., Korkut, T., Karabulut, A., Gencel, O., Karabulut, A. Production and neutron irradiation tests on a new epoxy/molybdenum composite. Int. J. Polym. Anal. Char. 2015, 20, 323–329; https://doi.org/10.1080/1023666x.2015.1017790.Suche in Google Scholar

10. Ekinci, N., Kavaz, E., Aygün, B., Perişanoğlu, U. Gamma ray shielding capabilities of rhenium-based superalloys. Radiat. Eff. Defect Solid 2019, 174, 435–451; https://doi.org/10.1080/10420150.2019.1596110.Suche in Google Scholar

11. Korkut, T., Aygün, B., Bayram, Ö., Karabulut, A. Study of neutron attenuation properties of super alloys with added rhenium. J. Radioanal. Nucl. Chem. 2015, 306, 119–122; https://doi.org/10.1007/s10967-015-4063-z.Suche in Google Scholar

12. Aygün, B. Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique. Radiat. Phys. Chem. 2021, 188, 109630; https://doi.org/10.1016/j.radphyschem.2021.109630.Suche in Google Scholar

13. Aygün, B. High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 2019, 52, 647–653; https://doi.org/10.1016/j.net.2019.08.017.Suche in Google Scholar

14. Roy, S., Silwal, B., Nycz, A., Noakes, M., Cakmak, E., Nandwana, P., Yamamoto, Y. Investigating the effect of different shielding gas mixtures on microstructure and mechanical properties of 410 stainless steel fabricated via large scale additive manufacturing. Addit. Manuf. 2021, 38, 101821; https://doi.org/10.1016/j.addma.2020.101821.Suche in Google Scholar

15. Koukourakis, M. I., Panteliadou, M., Abatzoglou, I. M., Sismanidou, K., Sivridis, E., Giatromanolaki, A. Postmastectomy hypofractionated and accelerated radiation therapy with (and without) subcutaneous amifostine cytoprotection. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e7–13; https://doi.org/10.1016/j.ijrobp.2012.08.017.Suche in Google Scholar PubMed

16. Anand, U., Biswas, P., Kumar, V., Ray, D., Ray, P., Loake, V. I. P., Kandimalla, R., Chaudhary, A., Singh, B., Routhu, N. K., Chen, Z.-S., Proćków, J., Dey, A. Podophyllum hexandrum and its active constituents: novel radioprotectants. Biomed. Pharmacother. 2022, 146, 112555; https://doi.org/10.1016/j.biopha.2021.112555.Suche in Google Scholar PubMed

17. Alaylar, B., Aygün, B., Turhan, K., Karadayi, G., Şakar, E., Singh, V. P., Sayyed, M. I., Pelit, E., Karabulut, A., Güllüce, M., Turgut, Z., Isaoglu, M. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem. 2021, 184, 109471; https://doi.org/10.1016/j.radphyschem.2021.109471.Suche in Google Scholar

18. Aygün, B., Alaylar, B., Turhan, K., Şakar, E., Karadayı, M., Sayyed, M. I., Pelit, E., Güllüce, M., Karabulut, A., Turgut, Z., Alım, B. Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Int. J. Radiat. Biol. 2020, 96, 1423–1434; https://doi.org/10.1080/09553002.2020.1811421.Suche in Google Scholar PubMed

19. Aygün, B., Alaylar, B., Aklncloǧlu, A., Allm, B., Kocaman, E. T., Karadayl, M., Abu Al-Sayyed, M. I., Aksu, S., Sakar, E., Özpolat, Ö. F., Göksu, S., Güllüce, M., Karabulut, A. Determination of radioprotective and genotoxic properties of sulfamide derivatives. Radiochim. Acta 2021, 109, 891; https://doi.org/10.1515/ract-2021-1088.Suche in Google Scholar

20. Aygün, B., Akıncıoğlu, A., Sayyed, M. I., Karabulut, A. Investigation of some drug active substances able to protect against radiation damage with experimental and Monte Carlo calculations. Radiat. Phys. Chem. 2022, 191, 109850; https://doi.org/10.1016/j.radphyschem.2021.109850.Suche in Google Scholar

21. Buckner, M. Q., Wu, C. Y., Henderson, R. A., Bucher, B., Wimer, N., Chyzh, A., Bredeweg, T. A., Baramsai, B., Couture, A., Jandel, M., Mosby, S., Ullmann, J. L. Comprehensive Am 242 m neutron-induced reaction cross sections and resonance parameters. Phys. Rev. C 2017, 95, 061602; https://doi.org/10.1103/physrevc.95.061602.Suche in Google Scholar

22. Aygün, B., Korkut, T., Karabulut, A. High performance shielding material to prevent radiation leaks. Biol. Chem. Res. 2017, 10, 247–253.Suche in Google Scholar

23. Korkut, T., Karabulut, A., Budak, G., Aygün, B., Gencel, O., Hançerlioĝullari, A. Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Appl. Radiat. Isot. 2012, 70, 341–345; https://doi.org/10.1016/j.apradiso.2011.09.006.Suche in Google Scholar

24. El-Khayatt, A. M., Akkurt, I. Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann. Nucl. Energy 2013, 60, 8–14; https://doi.org/10.1016/j.anucene.2013.04.021.Suche in Google Scholar

25. Li, X., Wu, J., Tang, C., He, Z., Yuan, P., Sun, Y., Lau, W. M., Zhang, K., Mei, J., Huang, Y. High temperature resistant polyimide/boron carbide composites for neutron radiation shielding. Compos. B Eng. 2019, 159, 355; https://doi.org/10.1016/j.compositesb.2018.10.003.Suche in Google Scholar

26. Manjunatha, H. C., Seenappa, L., Chandrika, B. M., Sridhar, K. N., Hanumantharayappa, C. Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys. Appl. Radiat. Isot. 2018, 139, 187–194; https://doi.org/10.1016/j.apradiso.2018.05.014.Suche in Google Scholar

27. Aygün, B. Developed and produced new laterite refractory brick samples protective for gamma and neutron radiation using GEANT4 code. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2020, 10, 1–6.10.17714/gumusfenbil.571726Suche in Google Scholar

28. Aygün, B., Şakar, E., Korkut, T., Sayyed, M. I., Karabulut, A. New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 2019, 107, 359–367; https://doi.org/10.1515/ract-2018-3075.Suche in Google Scholar

29. Sayyed, M. I., Ersundu, M. Ç., Ersundu, A. E., Lakshminarayana, G., Kostka, P. Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 2018, 144, 419–425; https://doi.org/10.1016/j.radphyschem.2017.10.005.Suche in Google Scholar

30. El-Agawany, F. I., Ekinci, N., Mahmoud, K. A., Sarıtaş, S., Aygün, B., Ahmed, E. M., Rammah, Y. S. Gamma-ray shielding capacity of different B4C-Re-and Ni-based superalloys. Eur. Phys. J. Plus 2021, 136, 2–17; https://doi.org/10.1140/epjp/s13360-021-01498-6.Suche in Google Scholar

31. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G. G4--a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303.10.1016/S0168-9002(03)01368-8Suche in Google Scholar

32. Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S. M., Salem, M. A., Merghany, R. M., El Mahdy, N. M., Kılıç, C. S., Sytar, O., Sharifi-Rad, M., Sharopov, F., Martins, N., Martorell, M., Cho, W. C. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega. 2020, 5, 11849–11872; https://doi.org/10.1021/acsomega.0c01818.Suche in Google Scholar PubMed PubMed Central

33. Sreekanth, R., Prasanthkumar, K. P., Sunil Paul, M. M., Aravind, U. K., Aravindakumar, C. T. Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study. J. Phys. Chem. A 2013, 117, 11261; https://doi.org/10.1021/jp4081355.Suche in Google Scholar

34. Nehlig, A., Daval, J. L., Debry, G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 1992, 17, 139; https://doi.org/10.1016/0165-0173(92)90012-b.Suche in Google Scholar

35. Stuart, M. C., Kouimtzi, M., Hill, S. R. WHO Model Formulary. World Health Organization (WHO): Geneva, 2008. ISBN 9789241547659.Suche in Google Scholar

36. QuiNINE monograph for professionals – drugs.com, 2022, https://www.drugs.com/monograph/quinine.html.Suche in Google Scholar

37. Hanukoglu, I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 1992, 43, 779; https://doi.org/10.1016/0960-0760(92)90307-5.Suche in Google Scholar

38. York, M. J. Chapter 14 clinical pathology. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development; ScienceDirect, 36, 2017; pp. 325–374.10.1016/B978-0-12-803620-4.00014-1Suche in Google Scholar

39. Riboflavin monograph for professionals – drugs.com. 2022, https://www.drugs.com/monograph/riboflavin.html.Suche in Google Scholar

40. Naseer, K. A., Sathiyapriya, G., Marimuthu, K., Piotrowski, T., Alqahtani, M. S., Yousef, E. S. Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses. Optik 2022, 251, 168436; https://doi.org/10.1016/j.ijleo.2021.168436.Suche in Google Scholar

41. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. WinXCom – a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 2004, 71, 653–654; https://doi.org/10.1016/j.radphyschem.2004.04.040.Suche in Google Scholar

42. Libeesh, N. K., Naseer, K. A., Arivazhagan, S., El-Rehim, A. F. A., ALMisned, G., Tekin, H. O. Characterization of Ultramafic–Alkaline–Carbonatite complex for radiation shielding competencies: an experimental and Monte Carlo study with lithological mapping. Ore Geol. Rev. 2022, 142, 104735; https://doi.org/10.1016/j.oregeorev.2022.104735.Suche in Google Scholar

43. Arivazhagan, S., Naseer, K. A., Mahmoud, K. A., Arun Kumar, K. V., Libeesh, N. K., Sayyed, M. I., Alqahtani, M. S., Yousef, E. S., Khandaker, M. U. Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India. Radiat. Phys. Chem. 2022, 196, 110108; https://doi.org/10.1016/j.radphyschem.2022.110108.Suche in Google Scholar

44. Sayyed, M. I., Dwaikat, N., Mhareb, M. H. A., D’Souza, A. N., Almousa, N., Alajerami, Y. S. M., Almasoud, F., Naseer, K. A., Kamath, S. D., Khandaker, M. U., Osman, H., Alamri, S. Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach. J. Mater. Res. Technol. 2022, 18, 1017; https://doi.org/10.1016/j.jmrt.2022.02.130.Suche in Google Scholar

Received: 2022-02-23
Accepted: 2022-06-30
Published Online: 2022-09-08
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0028/html
Button zum nach oben scrollen