Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
-
Bünyamin Aygün
, Murat Şentürk
Abstract
Ionizing radiation is used in many fields in energy, medicine, and industrial applications. Those who are in these areas or cancer patients receiving radiotherapy are at risk for acute or long-term exposure to radiation damage due to these ionizing radiations. Non-toxic new agents are needed to protect intact tissue and cells. In this study, we aimed to determine the gamma and neutron radiation attenuation characteristics of seven different natural compounds (quercetin, menadione, naphthol, caffeine, quinine sulphate, cholesterol and riboflavin) to help users in radiation applications. Gamma radiation attenuation parameters such as the mean free path, mass attenuation coefficient, effective atom number, linear attenuation coefficient, and half-value layer were calculated theoretically with WinXCom software for the energy range 0.015–15 MeV. Fast neutron attenuation criteria, such as mean free path, half-value layer, effective removal cross-sections and transmission neutron number, were theoretically determined with Monte Carlo simulation codes (Geant4). Neutron absorption measurement experiments were also applied in addition to the theoretical results. The neutron radiation absorption capacities were determined for samples with an 241Am-Be 4.5 MeV energy neutron source and portatif-type Canberra brand BF3 gas neutron detector. Neutron attenuation parameters were compared with paraffin to determine the absorption capability of the samples. It was found that the dose 1.1094 (μSv/h) from the source was absorbed by the samples to the following extent: 31.76% (Quercetin), 21.85% (Menadione), 28.85% (Naphthol), 22.94% (Caffeine), 12.51% (Quinine sulphate), 40.44% (Cholesterol) and 20.94% (Riboflavin). From the results, it can be clearly seen that all these drug samples had a good neutron radiation attenuation capacity. This revealed that the examined samples had radiation absorption abilities. It was found that the cholesterol sample had an especially excellent absorption power for both neutron and gamma radiation. The samples investigated in this study could be used to develop radiation-protective drugs.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: No funding was received for this study.
-
Conflict of interest statement: There is no conflict of interest between the authors.
References
1. World Health Oragnization (WHO). Ionizing Radiation, Health Effects and Protective Measures; World Health Oragnization (WHO): Geneva, 2016.Suche in Google Scholar
2. Aygün, B., Şakar, E., Korkut, T., Sayyed, M. I., Karabulut, A. New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 2019, 107, 1–9; https://doi.org/10.1515/ract-2018-3075.Suche in Google Scholar
3. Aygün, B., Şakar, E., Agar, O., Sayyed, M. I., Karabulut, A., Singh, V. P. Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications. Prog. Nucl. Energy 2021, 133, 103645; https://doi.org/10.1016/j.pnucene.2021.103645.Suche in Google Scholar
4. Dezhampanah, S., Nikbin, I. M., Mehdipour, S., Mohebbi, R., Moghadam, H. H. Fiber- reinforced concrete containing nano – TiO2 as a new gamma-ray radiation shielding materials. J. Build. Eng. 2021, 44, 102542; https://doi.org/10.1016/j.jobe.2021.102542.Suche in Google Scholar
5. Aygün, B., Şakar, E., Karabulut, A., Alım, B., Sayyed, M. I., Singh, V. P., Yorgun, N. Y., Özpolat, Ö. F. Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding. Radiochim. Acta 2021, 109, 143–151; https://doi.org/10.1515/ract-2020-0067.Suche in Google Scholar
6. Kaewkhao, J., Korkut, T., Korkut, H., Aygün, B., Yasaka, P., Tuscharoen, S., Insiripong, S., Karabulut, A. Monte Carlo design and experiments on the neutron shielding performances of B2O3–ZnO–Bi2O3 glass system. Glass Phys. Chem. 2017, 43, 560–563; https://doi.org/10.1134/s1087659617060050.Suche in Google Scholar
7. Sayyed, M. I., Akyildirim, H., Al-Buriahi, M. S., Lacomme, E., Ayad, R., Bonvicini, G. Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO. Appl. Phys. A: Mater. Sci. Process 2020, 126, https://doi.org/10.1007/s00339-019-3265-6.Suche in Google Scholar
8. Bilici, İ., Aygün, B., Deniz, C. U., Öz, B., Sayyed, M. I., Karabulut, A. Fabrication of novel neutron shielding materials: polypropylene composites containing colemanite, tincal and ulexite. Prog. Nucl. Energy 2021, 141, 103954; https://doi.org/10.1016/j.pnucene.2021.103954.Suche in Google Scholar
9. Aygün, B., Korkut, T., Karabulut, A., Gencel, O., Karabulut, A. Production and neutron irradiation tests on a new epoxy/molybdenum composite. Int. J. Polym. Anal. Char. 2015, 20, 323–329; https://doi.org/10.1080/1023666x.2015.1017790.Suche in Google Scholar
10. Ekinci, N., Kavaz, E., Aygün, B., Perişanoğlu, U. Gamma ray shielding capabilities of rhenium-based superalloys. Radiat. Eff. Defect Solid 2019, 174, 435–451; https://doi.org/10.1080/10420150.2019.1596110.Suche in Google Scholar
11. Korkut, T., Aygün, B., Bayram, Ö., Karabulut, A. Study of neutron attenuation properties of super alloys with added rhenium. J. Radioanal. Nucl. Chem. 2015, 306, 119–122; https://doi.org/10.1007/s10967-015-4063-z.Suche in Google Scholar
12. Aygün, B. Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique. Radiat. Phys. Chem. 2021, 188, 109630; https://doi.org/10.1016/j.radphyschem.2021.109630.Suche in Google Scholar
13. Aygün, B. High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 2019, 52, 647–653; https://doi.org/10.1016/j.net.2019.08.017.Suche in Google Scholar
14. Roy, S., Silwal, B., Nycz, A., Noakes, M., Cakmak, E., Nandwana, P., Yamamoto, Y. Investigating the effect of different shielding gas mixtures on microstructure and mechanical properties of 410 stainless steel fabricated via large scale additive manufacturing. Addit. Manuf. 2021, 38, 101821; https://doi.org/10.1016/j.addma.2020.101821.Suche in Google Scholar
15. Koukourakis, M. I., Panteliadou, M., Abatzoglou, I. M., Sismanidou, K., Sivridis, E., Giatromanolaki, A. Postmastectomy hypofractionated and accelerated radiation therapy with (and without) subcutaneous amifostine cytoprotection. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e7–13; https://doi.org/10.1016/j.ijrobp.2012.08.017.Suche in Google Scholar PubMed
16. Anand, U., Biswas, P., Kumar, V., Ray, D., Ray, P., Loake, V. I. P., Kandimalla, R., Chaudhary, A., Singh, B., Routhu, N. K., Chen, Z.-S., Proćków, J., Dey, A. Podophyllum hexandrum and its active constituents: novel radioprotectants. Biomed. Pharmacother. 2022, 146, 112555; https://doi.org/10.1016/j.biopha.2021.112555.Suche in Google Scholar PubMed
17. Alaylar, B., Aygün, B., Turhan, K., Karadayi, G., Şakar, E., Singh, V. P., Sayyed, M. I., Pelit, E., Karabulut, A., Güllüce, M., Turgut, Z., Isaoglu, M. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem. 2021, 184, 109471; https://doi.org/10.1016/j.radphyschem.2021.109471.Suche in Google Scholar
18. Aygün, B., Alaylar, B., Turhan, K., Şakar, E., Karadayı, M., Sayyed, M. I., Pelit, E., Güllüce, M., Karabulut, A., Turgut, Z., Alım, B. Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Int. J. Radiat. Biol. 2020, 96, 1423–1434; https://doi.org/10.1080/09553002.2020.1811421.Suche in Google Scholar PubMed
19. Aygün, B., Alaylar, B., Aklncloǧlu, A., Allm, B., Kocaman, E. T., Karadayl, M., Abu Al-Sayyed, M. I., Aksu, S., Sakar, E., Özpolat, Ö. F., Göksu, S., Güllüce, M., Karabulut, A. Determination of radioprotective and genotoxic properties of sulfamide derivatives. Radiochim. Acta 2021, 109, 891; https://doi.org/10.1515/ract-2021-1088.Suche in Google Scholar
20. Aygün, B., Akıncıoğlu, A., Sayyed, M. I., Karabulut, A. Investigation of some drug active substances able to protect against radiation damage with experimental and Monte Carlo calculations. Radiat. Phys. Chem. 2022, 191, 109850; https://doi.org/10.1016/j.radphyschem.2021.109850.Suche in Google Scholar
21. Buckner, M. Q., Wu, C. Y., Henderson, R. A., Bucher, B., Wimer, N., Chyzh, A., Bredeweg, T. A., Baramsai, B., Couture, A., Jandel, M., Mosby, S., Ullmann, J. L. Comprehensive Am 242 m neutron-induced reaction cross sections and resonance parameters. Phys. Rev. C 2017, 95, 061602; https://doi.org/10.1103/physrevc.95.061602.Suche in Google Scholar
22. Aygün, B., Korkut, T., Karabulut, A. High performance shielding material to prevent radiation leaks. Biol. Chem. Res. 2017, 10, 247–253.Suche in Google Scholar
23. Korkut, T., Karabulut, A., Budak, G., Aygün, B., Gencel, O., Hançerlioĝullari, A. Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Appl. Radiat. Isot. 2012, 70, 341–345; https://doi.org/10.1016/j.apradiso.2011.09.006.Suche in Google Scholar
24. El-Khayatt, A. M., Akkurt, I. Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann. Nucl. Energy 2013, 60, 8–14; https://doi.org/10.1016/j.anucene.2013.04.021.Suche in Google Scholar
25. Li, X., Wu, J., Tang, C., He, Z., Yuan, P., Sun, Y., Lau, W. M., Zhang, K., Mei, J., Huang, Y. High temperature resistant polyimide/boron carbide composites for neutron radiation shielding. Compos. B Eng. 2019, 159, 355; https://doi.org/10.1016/j.compositesb.2018.10.003.Suche in Google Scholar
26. Manjunatha, H. C., Seenappa, L., Chandrika, B. M., Sridhar, K. N., Hanumantharayappa, C. Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys. Appl. Radiat. Isot. 2018, 139, 187–194; https://doi.org/10.1016/j.apradiso.2018.05.014.Suche in Google Scholar
27. Aygün, B. Developed and produced new laterite refractory brick samples protective for gamma and neutron radiation using GEANT4 code. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2020, 10, 1–6.10.17714/gumusfenbil.571726Suche in Google Scholar
28. Aygün, B., Şakar, E., Korkut, T., Sayyed, M. I., Karabulut, A. New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 2019, 107, 359–367; https://doi.org/10.1515/ract-2018-3075.Suche in Google Scholar
29. Sayyed, M. I., Ersundu, M. Ç., Ersundu, A. E., Lakshminarayana, G., Kostka, P. Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 2018, 144, 419–425; https://doi.org/10.1016/j.radphyschem.2017.10.005.Suche in Google Scholar
30. El-Agawany, F. I., Ekinci, N., Mahmoud, K. A., Sarıtaş, S., Aygün, B., Ahmed, E. M., Rammah, Y. S. Gamma-ray shielding capacity of different B4C-Re-and Ni-based superalloys. Eur. Phys. J. Plus 2021, 136, 2–17; https://doi.org/10.1140/epjp/s13360-021-01498-6.Suche in Google Scholar
31. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G. G4--a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303.10.1016/S0168-9002(03)01368-8Suche in Google Scholar
32. Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S. M., Salem, M. A., Merghany, R. M., El Mahdy, N. M., Kılıç, C. S., Sytar, O., Sharifi-Rad, M., Sharopov, F., Martins, N., Martorell, M., Cho, W. C. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega. 2020, 5, 11849–11872; https://doi.org/10.1021/acsomega.0c01818.Suche in Google Scholar PubMed PubMed Central
33. Sreekanth, R., Prasanthkumar, K. P., Sunil Paul, M. M., Aravind, U. K., Aravindakumar, C. T. Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study. J. Phys. Chem. A 2013, 117, 11261; https://doi.org/10.1021/jp4081355.Suche in Google Scholar
34. Nehlig, A., Daval, J. L., Debry, G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 1992, 17, 139; https://doi.org/10.1016/0165-0173(92)90012-b.Suche in Google Scholar
35. Stuart, M. C., Kouimtzi, M., Hill, S. R. WHO Model Formulary. World Health Organization (WHO): Geneva, 2008. ISBN 9789241547659.Suche in Google Scholar
36. QuiNINE monograph for professionals – drugs.com, 2022, https://www.drugs.com/monograph/quinine.html.Suche in Google Scholar
37. Hanukoglu, I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 1992, 43, 779; https://doi.org/10.1016/0960-0760(92)90307-5.Suche in Google Scholar
38. York, M. J. Chapter 14 clinical pathology. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development; ScienceDirect, 36, 2017; pp. 325–374.10.1016/B978-0-12-803620-4.00014-1Suche in Google Scholar
39. Riboflavin monograph for professionals – drugs.com. 2022, https://www.drugs.com/monograph/riboflavin.html.Suche in Google Scholar
40. Naseer, K. A., Sathiyapriya, G., Marimuthu, K., Piotrowski, T., Alqahtani, M. S., Yousef, E. S. Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses. Optik 2022, 251, 168436; https://doi.org/10.1016/j.ijleo.2021.168436.Suche in Google Scholar
41. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. WinXCom – a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 2004, 71, 653–654; https://doi.org/10.1016/j.radphyschem.2004.04.040.Suche in Google Scholar
42. Libeesh, N. K., Naseer, K. A., Arivazhagan, S., El-Rehim, A. F. A., ALMisned, G., Tekin, H. O. Characterization of Ultramafic–Alkaline–Carbonatite complex for radiation shielding competencies: an experimental and Monte Carlo study with lithological mapping. Ore Geol. Rev. 2022, 142, 104735; https://doi.org/10.1016/j.oregeorev.2022.104735.Suche in Google Scholar
43. Arivazhagan, S., Naseer, K. A., Mahmoud, K. A., Arun Kumar, K. V., Libeesh, N. K., Sayyed, M. I., Alqahtani, M. S., Yousef, E. S., Khandaker, M. U. Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India. Radiat. Phys. Chem. 2022, 196, 110108; https://doi.org/10.1016/j.radphyschem.2022.110108.Suche in Google Scholar
44. Sayyed, M. I., Dwaikat, N., Mhareb, M. H. A., D’Souza, A. N., Almousa, N., Alajerami, Y. S. M., Almasoud, F., Naseer, K. A., Kamath, S. D., Khandaker, M. U., Osman, H., Alamri, S. Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach. J. Mater. Res. Technol. 2022, 18, 1017; https://doi.org/10.1016/j.jmrt.2022.02.130.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding
Artikel in diesem Heft
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding