Home A novel CPE procedure by oil-in-water microemulsion for preconcentrating and analyzing thorium and uranium
Article
Licensed
Unlicensed Requires Authentication

A novel CPE procedure by oil-in-water microemulsion for preconcentrating and analyzing thorium and uranium

  • Lipei Jia , Zejun Li , Weiqun Shi and Xinghai Shen EMAIL logo
Published/Copyright: March 18, 2022

Abstract

A novel cloud point extraction (CPE) procedure was developed to preenrich Th4+ and UO22+ by oil-in-water (O/W) microemulsion. Coupling CPE to ICP-MS, the separation and analysis were achieved at a trace level, in which the low detection limits were 0.019 and 0.042 ng mL−1 for Th(IV) and U(VI), respectively. N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen), as an extremely hydrophobic extractant, was failed to dissolve in single or mixed micelles, but was successfully solubilized to CPE system owing to O/W microemulsion. The extraction efficiency and selectivity for Th4+ and UO22+ were excellent under acidic condition of 1.0 mol L−1 HNO3, and the recovery of ultra-trace Th4+ and UO22+ was almost 100% even at the presence of large amounts of lanthanides, exhibiting high tolerance limits for lanthanides. The solubilization, extraction and coordination behaviours were studied systematically via DLS, UV–vis, 1H NMR and FT-IR. Moreover, the solubilization of N,N′-dioctyl-N,N′-dioctyl-2,9-diamide-1,10-phenanthroline (Oct-Oct-DAPhen) and efficient extraction for UO22+ were also realized by O/W microemulsion, which further proved the feasibility of the method.


Corresponding author: Xinghai Shen, Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China, E-mail:

Funding source: Science Challenge Project

Award Identifier / Grant number: TZ2016004

Funding source: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809

Award Identifier / Grant number: U1830202

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Science Challenge Project (TZ2016004) and the National Natural Science Foundation of China (Grant No. U1830202).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ghaedi, M., Montazerozohori, M., Rahimi, N., Biysreh, M. N. Chemically modified carbon nanotubes as efficient and selective sorbent for enrichment of trace amount of some metal ions. J. Ind. Eng. Chem. 2013, 19, 1477–1482; https://doi.org/10.1016/j.jiec.2013.01.011.Search in Google Scholar

2. Feng, S., Jia, L., Chen, Q., Shen, X. Application of cloud point extraction for separation and analyses of actinides and lanthanides. J. Nucl. Radiochem. 2019, 41, 13–26.Search in Google Scholar

3. Song, L., Liu, Y., Ding, S., Tan, M., Li, Q., Zhang, L., Liu, C. Extraction kinetics of uranium(VI) and thorium(IV) with di(1-methyl-heptyl)methyl phosphonate from nitric acid medium using a Lewis cell. Separ. Purif. Technol. 2019, 217, 258–264; https://doi.org/10.1016/j.seppur.2019.02.020.Search in Google Scholar

4. Gouda, A. A., Elmasry, M. S., Hashem, H., El-Sayed, H. M. Eco-friendly environmental trace analysis of thorium using a new supramolecular solvent-based liquid–liquid microextraction combined with spectrophotometry. Microchem. J. 2018, 142, 102–107; https://doi.org/10.1016/j.microc.2018.06.024.Search in Google Scholar

5. Nazal, M. K., Albayyari, M. A., Khalili, F. I., Asoudani, E. Synergistic effect of tri-n-butyl phosphate (TBP) or tri-n-octyl phosphine oxide (TOPO) with didodecylphosphoric acid (HDDPA) on extraction of uranium(VI) and thorium(IV) ions. J. Radioanal. Nucl. Chem. 2017, 312, 133–139; https://doi.org/10.1007/s10967-017-5204-3.Search in Google Scholar

6. Khajeh, M., Nemch, T. K. Pre-concentration of uranium from water samples by dispersive liquid–liquid micro-extraction. Radiochim. Acta 2014, 102, 887–893; https://doi.org/10.1515/ract-2013-2226.Search in Google Scholar

7. Unsworth, E. R., Cook, J. M., Hill, S. J. Determination of uranium and thorium in natural waters with a high matrix concentration using solid-phase extraction inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2001, 442, 141–146; https://doi.org/10.1016/s0003-2670(01)01138-2.Search in Google Scholar

8. Kilinc, E., Ozdemir, S., Yalcin, M. S., Soylak, M. A magnetized fungal solid-phase extractor for the preconcentrations of uranium(VI) and thorium(IV) before their quantitation by ICP-OES. Mikrochim. Acta 2019, 186, 355.10.1007/s00604-019-3474-xSearch in Google Scholar PubMed

9. Safiulina, A. M., Ivanets, D. V., Kudryavtsev, E. M., Baulin, D. V., Baulin, V. E., Tsivadze, A. Y. Liquid- and solid-phase extraction of uranium(VI), thorium(IV), and rare earth elements(III) from nitric acid solutions using acid-type phosphoryl-containing podands. Russ. J. Inorg. Chem. 2019, 64, 536–542; https://doi.org/10.1134/s0036023619040181.Search in Google Scholar

10. Aydin, F. A., Soylak, M. Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 2007, 72, 187–192; https://doi.org/10.1016/j.talanta.2006.10.013.Search in Google Scholar PubMed

11. Radchenko, V., Engle, J. W., Wilson, J. J., Maassen, J. R., Nortier, F. M., Taylor, W. A., Birnbaum, E. R., Hudston, L. A., John, K. D., Fassbender, M. E. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J. Chromatogr. A 2015, 1380, 55–63; https://doi.org/10.1016/j.chroma.2014.12.045.Search in Google Scholar PubMed

12. Akhila Maheswari, M., Subramanian, M. S. Selective enrichment of U(VI), Th(IV) and La(III) from high acidic streams using a new chelating ion-exchange polymeric matrix. Talanta 2004, 64, 202–209; https://doi.org/10.1016/j.talanta.2004.02.029.Search in Google Scholar PubMed

13. Santana-Viera, S., Padrón, M. E. T., Sosa-Ferrera, Z., Santana-Rodríguez, J. J. Quantification of cytostatic platinum compounds in wastewater by inductively coupled plasma mass spectrometry after ion exchange extraction. Microchem. J. 2020, 157, 104862; https://doi.org/10.1016/j.microc.2020.104862.Search in Google Scholar

14. Arslan, Z., Oymak, T., White, J. Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for determination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS). Anal. Chim. Acta 2018, 1008, 18–28; https://doi.org/10.1016/j.aca.2018.01.017.Search in Google Scholar PubMed PubMed Central

15. Feng, S., Shen, X. Supramolecular assembly of ionic liquid induced by UO22+: a strategy for selective extraction-precipitation. Radiochim. Acta 2020, 108, 757–767; https://doi.org/10.1515/ract-2020-0038.Search in Google Scholar

16. Nouh, E. S. A. Micelle mediated extraction for preconcentration of Eu(III) prior to determination by flame atomic absorption spectrometry. J. Ind. Eng. Chem. 2015, 24, 87–91; https://doi.org/10.1016/j.jiec.2014.09.013.Search in Google Scholar

17. Souza, V. S., Teixeira, L. S. G., Santos, Q. O., Gomes, I. S., Bezerra, M. A. Determination of copper and cadmium in petroleum produced formation water by electrothermal atomic absorption spectrometry after cloud point extraction. J. Braz. Chem. Soc. 2020, 31, 1186–1193; https://doi.org/10.21577/0103-5053.20200004.Search in Google Scholar

18. Shah, F., Kazi, T. G., Afridi, H. I., Naeemullah, Arain, M. B., Baig, J. A. Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: a multivariate study. J. Hazard Mater. 2011, 192, 1132–1139; https://doi.org/10.1016/j.jhazmat.2011.06.017.Search in Google Scholar PubMed

19. Ferreira, H. S., Bezerra, M. D., Ferreira, S. L. C. A pre-concentration procedure using cloud point extraction for the determination of uranium in natural water. Microchim. Acta 2006, 154, 163–167; https://doi.org/10.1007/s00604-005-0475-8.Search in Google Scholar

20. Li, Y., Hu, B. Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. J. Hazard Mater. 2010, 174, 534–540; https://doi.org/10.1016/j.jhazmat.2009.09.084.Search in Google Scholar PubMed

21. Depoi, F. d. S., Bentlin, F. R. S., Ferrao, M. F., Pozebon, D. Multivariate optimization for cloud point extraction and determination of lanthanides. Anal. Methods 2012, 4, 2809–2814; https://doi.org/10.1039/c2ay25375e.Search in Google Scholar

22. Zhao, L. L., Zhong, S. X., Fang, K. M., Qian, Z. S., Chen, J. R. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. J. Hazard Mater. 2012, 239, 206–212; https://doi.org/10.1016/j.jhazmat.2012.08.066.Search in Google Scholar PubMed

23. Hatzistavros, V., Koulouridakis, P., Kallithrakas-Kontos, N. Complexing membrane for uranium detection by total reflection X-ray fluorescence. Anal. Sci. 2005, 21, 823–826; https://doi.org/10.2116/analsci.21.823.Search in Google Scholar PubMed

24. Saha, A., Sanyal, K., Rawat, N., Deb, S. B., Saxena, M. K., Tomar, B. S. Selective micellar extraction of ultratrace levels of uranium in aqueous samples by task specific ionic liquid followed by its detection employing total reflection X-ray fluorescence spectrometry. Anal. Chem. 2017, 89, 10422–10430; https://doi.org/10.1021/acs.analchem.7b02427.Search in Google Scholar PubMed

25. Madrakian, T., Afkhami, A., Mousavi, A. Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction. Talanta 2007, 71, 610–614; https://doi.org/10.1016/j.talanta.2006.05.002.Search in Google Scholar PubMed

26. Mortada, W. I., Kenawy, I. M. M., El-Gamal, G. G., Moalla, S. M. N. A micro mixed micelle-mediated preconcentration procedure for spectrophotometric determination of uranium in real and synthetic samples. J. Radioanal. Nucl. Chem. 2017, 313, 69–77; https://doi.org/10.1007/s10967-017-5281-3.Search in Google Scholar

27. Shemirani, F., Rahnama Kozani, R., Reza Jamali, M., Assadi, Y., Mohammad Reza Milani, S. Micelle-mediated extraction for direct spectrophotometric determination of trace uranium(VI) in water samples. Separ. Sci. Technol. 2005, 40, 2527–2537; https://doi.org/10.1080/01496390500267673.Search in Google Scholar

28. Pourreza, N., Zareian, M. Determination of Orange II in food samples after cloud point extraction using mixed micelles. J. Hazard Mater. 2009, 165, 1124–1127; https://doi.org/10.1016/j.jhazmat.2008.10.132.Search in Google Scholar PubMed

29. Bhatt, D. R., Maheria, K. C., Parikh, J. K. Highly efficient micellar extraction of toxic picric acid into novel ionic liquid: effect of parameters, solubilization isotherm, evaluation of thermodynamics and design parameters. J. Hazard Mater. 2015, 300, 338–346; https://doi.org/10.1016/j.jhazmat.2015.07.040.Search in Google Scholar PubMed

30. Constantinou, E., Pashalidis, I. Thorium determination in water samples by liquid scintillation counting after its separation by cloud point extraction. J. Radioanal. Nucl. Chem. 2010, 287, 261–265; https://doi.org/10.1007/s10967-010-0677-3.Search in Google Scholar

31. Constantinou, E., Pashalidis, I. Uranium determination in water samples by liquid scintillation counting after cloud point extraction. J. Radioanal. Nucl. Chem. 2010, 286, 461–465; https://doi.org/10.1007/s10967-010-0752-9.Search in Google Scholar

32. Mandyla, S. P., Tsogas, G. Z., Vlessidis, A. G., Giokas, D. L. Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction. J. Hazard Mater. 2017, 323, 67–74; https://doi.org/10.1016/j.jhazmat.2016.03.039.Search in Google Scholar PubMed

33. Labrecque, C., Larivière, D. Quantification of rare earth elements using cloud point extraction with diglycolamide and ICP-MS for environmental analysis. Anal. Methods 2014, 6, 9291–9298; https://doi.org/10.1039/c4ay01911c.Search in Google Scholar

34. Labrecque, C., Lavergne, J. L., Larivière, D. Gross actinide preconcentration using phosphonate-based ligand and cloud point extraction. J. Radioanal. Nucl. Chem. 2015, 308, 527–537; https://doi.org/10.1007/s10967-015-4447-0.Search in Google Scholar

35. Labrecque, C., Whitty-Leveille, L., Lariviere, D. Cloud point extraction of plutonium in environmental matrixes coupled to ICPMS and α spectrometry in highly acidic conditions. Anal. Chem. 2013, 85, 10549–10555; https://doi.org/10.1021/ac402649v.Search in Google Scholar PubMed

36. Labrecque, C., Potvin, S., Whitty-Leveille, L., Lariviere, D. Cloud point extraction of uranium using H2DEH[MDP] in acidic conditions. Talanta 2013, 107, 284–291; https://doi.org/10.1016/j.talanta.2013.01.049.Search in Google Scholar PubMed

37. Saha, A., Deb, S. B., Sarkar, A., Saxena, M. K., Tomar, B. S. Simultaneous preconcentration of uranium and thorium in aqueous samples using cloud point extraction. RSC Adv. 2016, 6, 20109–20119; https://doi.org/10.1039/c5ra23734c.Search in Google Scholar

38. Zhou, X. X., Hao, L. T., Wang, H. Y., Li, Y. J., Liu, J. F. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry. Anal. Chem. 2019, 91, 1785–1790; https://doi.org/10.1021/acs.analchem.8b04729.Search in Google Scholar PubMed

39. Labrecque, C., Lebed, P. J., Larivière, D. Isotopic signature of selected lanthanides for nuclear activities profiling using cloud point extraction and ICP-MS/MS. J. Environ. Radioact. 2016, 155, 15–22; https://doi.org/10.1016/j.jenvrad.2016.02.002.Search in Google Scholar PubMed

40. Kumari, N., Pathak, P. N., Mohapatra, P. K. Comparative evaluation of different extractants toward cloud formation behavior and metal ion extraction: spectrophotometric, dynamic light scattering, and extraction studies. Ind. Eng. Chem. Res. 2013, 52, 15146–15153; https://doi.org/10.1021/ie401658c.Search in Google Scholar

41. Sun, T. X., Gao, S., Chen, Q. D., Shen, X. H. Investigation on the interactions between hydrophobic anions of ionic liquids and Triton X-114 micelles in aqueous solutions. Colloids Surf. A 2014, 456, 18–25; https://doi.org/10.1016/j.colsurfa.2014.05.002.Search in Google Scholar

42. Gao, S., Sun, T., Chen, Q., Shen, X. Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids. J. Hazard Mater. 2013, 263, 562–568; https://doi.org/10.1016/j.jhazmat.2013.10.014.Search in Google Scholar PubMed

43. Liang, H., Chen, Q., Xu, C., Shen, X. Selective cloud point extraction of uranium from thorium and lanthanides using Cyanex 301 as extractant. Separ. Purif. Technol. 2019, 210, 835–842; https://doi.org/10.1016/j.seppur.2018.08.071.Search in Google Scholar

44. Das, S. K., Kedari, C. S., Tripathi, S. C. Spectrophotometric determination of trace amount of uranium(VI) in different aqueous and organic streams of nuclear fuel processing using 2-(5-bromo-2-pyridylazo-5-diethylaminophenol). J. Radioanal. Nucl. Chem. 2010, 285, 675–681; https://doi.org/10.1007/s10967-010-0647-9.Search in Google Scholar

45. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Desreux, J. F., Vidick, G., Bouslimani, N., Modolo, G., Wilden, A., Sypula, M., Vu, T.-H., Simonin, J.-P. Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J. Am. Chem. Soc. 2011, 133, 13093–13102; https://doi.org/10.1021/ja203378m.Search in Google Scholar PubMed

46. Afsar, A., Laventine, D. M., Harwood, L. M., Hudson, M. J., Geist, A. Utilizing electronic effects in the modulation of BTPhen ligands with respect to the partitioning of minor actinides from lanthanides. Chem. Commun. 2013, 49, 8534–8536; https://doi.org/10.1039/c3cc45126g.Search in Google Scholar PubMed

47. Tsutsui, N., Ban, Y., Suzuki, H., Nakase, M., Ito, S., Inaba, Y., Matsumura, T., Takeshita, K. Effects of diluents on the separation of minor actinides from lanthanides with tetradodecyl-1,10-phenanthroline-2,9-diamide from nitric acid medium. Anal. Sci. 2020, 36, 241–246; https://doi.org/10.2116/analsci.19p275.Search in Google Scholar PubMed

48. Xiao, C. L., Wang, C. Z., Yuan, L. Y., Li, B., He, H., Wang, S., Zhao, Y. L., Chai, Z. F., Shi, W. Q. Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg. Chem. 2014, 53, 1712–1720; https://doi.org/10.1021/ic402784c.Search in Google Scholar PubMed

49. Bonhôte, P., Dias, A. P., Armand, M., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1998, 37, 166; https://doi.org/10.1021/ic971286k.Search in Google Scholar PubMed

50. Zhang, X., Yuan, L., Chai, Z., Shi, W. Towards understanding the correlation between UO22+ extraction and substitute groups in 2,9-diamide-1,10-phenanthroline. Sci. China Chem. 2018, 61, 1285–1292; https://doi.org/10.1007/s11426-018-9227-1.Search in Google Scholar

51. Okada, T. Temperature-induced phase separation of nonionic polyoxyethylated surfactant and application to extraction of metal thiocyanates. Anal. Chem. 1992, 64, 2138–2142; https://doi.org/10.1021/ac00042a019.Search in Google Scholar PubMed

52. Qi, L. M., Ma, J. M. Investigation of the microenvironment in nonionic reverse micelles using methyl orange and methylene blue as absorption probes. J. Colloid Interface Sci. 1998, 197, 36–42; https://doi.org/10.1006/jcis.1997.5228.Search in Google Scholar PubMed

53. Mortada, W. I., Kenawy, I. M. M., Abdel-Rhman, M. H., El-Gamal, G. G., Moalla, S. M. N. A new thiourea derivative [2-(3-ethylthioureido)benzoic acid] for cloud point extraction of some trace metals in water, biological and food samples. J. Trace Elem. Med. Biol. 2017, 44, 266–273; https://doi.org/10.1016/j.jtemb.2017.09.003.Search in Google Scholar PubMed

54. Akl, Z. F., Hegazy, M. A. Selective cloud point extraction of thorium (IV) using tetraazonium based ionic liquid. J. Environ. Chem. Eng. 2020, 8, 104185; https://doi.org/10.1016/j.jece.2020.104185.Search in Google Scholar

55. Saha, A., Neogy, S., Rao, D. R. M., Deb, S. B., Saxena, M. K., Tomar, B. S. Colorimetric and visual determination of ultratrace uranium concentrations based on the aggregation of amidoxime functionalized gold nanoparticles. Microchim. Acta 2019, 186, 183; https://doi.org/10.1007/s00604-019-3292-1.Search in Google Scholar PubMed

56. Hamed, M. M., Aglan, R. F. Removal of Arsenazo-III from liquid radioactive waste by cloud point extraction. J. Radioanal. Nucl. Chem. 2019, 321, 917–926; https://doi.org/10.1007/s10967-019-06669-5.Search in Google Scholar

57. Labrecque, C., Lavergne, J. L., Lariviere, D. Gross actinide preconcentration using phosphonate-based ligand and cloud point extraction. J. Radioanal. Nucl. Chem. 2016, 308, 527–537; https://doi.org/10.1007/s10967-015-4447-0.Search in Google Scholar

58. Baghdadi, M., Shemirani, F. In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal. Chim. Acta 2009, 634, 186–191; https://doi.org/10.1016/j.aca.2008.12.017.Search in Google Scholar PubMed

Received: 2021-12-15
Accepted: 2022-02-21
Published Online: 2022-03-18
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1139/pdf?lang=en
Scroll to top button