Effect of varying Nd2O3 contents on the structure and mechanical properties of the radioactive waste form: aluminosilicate glass-ceramics
-
Pan Tan
, Yi Xie
und Faqin Dong
Abstract
The magmatic diagenetic environment was simulated by high-temperature melting and natural cooling. A series of glass-ceramics with different Nd2O3 contents were prepared by using complex component granite (aluminosilicate material). The phase evolution of the matrix at different temperatures was studied by X-ray diffraction (XRD). The structure of glass-ceramics was analyzed by infrared spectroscopy (IR) and scanning electron microscopy (SEM). The mechanical properties of glass-ceramics were also evaluated. The results showed that the glass transition of pure matrix begins at 1200 °C, and the sample with the highest degree of vitrification is obtained at 1500 °C. The addition of Nd2O3 promoted the melting of Fe3O4 crystal, resulting in the complete amorphous matrix when the Nd2O3 amount is in the range of 20–26 wt.%. With the further increase of Nd2O3 content, Nd-bearing feldspar first appeared. No raw material Nd2O3 was found, indicating that the formation of Nd-bearing feldspar may increase the carrying capacity of the material. The Gaussian fitting results showed that the glass-ceramic samples with Nd2O3 content of 29 wt.% are mainly composed of Q2 and Q3 structural units. In the EDS result, part of neodymium was clustered with small bright spots, while the spots were uniformly distributed on the sample surface as a whole. Meanwhile, the addition of Nd2O3 increased the mechanical properties of the samples (3.20 g/cm3, 8.33 GPa for the sample with 29 wt.% of Nd2O3). The results provide a strategy for the treatment of solid waste with radioactive residual actinides.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: No. 21976146
Funding source: Open Foundation of Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province
Award Identifier / Grant number: No. 2020ZD001
Funding source: Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology
Award Identifier / Grant number: No. 22fksy12
Funding source: Open Fund of National Key Laboratory of Soil and Water Pollution Control and Remediation for Environmental Protection
Award Identifier / Grant number: No. GHBK-2020-005
Funding source: Open Foundation of Nuclear Medicine Laboratory of Mianyang Central Hospital
Award Identifier / Grant number: No. 2021HYX028
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by National Natural Science Foundation of China (No. 21976146), Open Foundation of Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province (No. 2020ZD001), Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 22fksy12), Open Fund of National Key Laboratory of Soil and Water Pollution Control and Remediation for Environmental Protection (No. GHBK-2020-005) and Open Foundation of Nuclear Medicine Laboratory of Mianyang Central Hospital (No. 2021HYX028).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Keeney, R. L., Winterfeldt, D. V. Managing nuclear waste from power plants. Risk Anal. 1994, 14, 107–130. https://doi.org/10.1111/j.1539-6924.1994.tb00033.x.Suche in Google Scholar
2. Osmanlioglu, A. E. Natural diatomite process for removal of radioactivity from liquid waste. Appl. Radiat. Isot. 2007, 65, 17–20. https://doi.org/10.1016/j.apradiso.2006.08.012.Suche in Google Scholar PubMed
3. Gurau, D., Deju, R. The use of chemical gel for decontamination during decommissioning of nuclear facilities. Radiat. Phys. Chem. 2015, 106, 371–375. https://doi.org/10.1016/j.radphyschem.2014.08.022.Suche in Google Scholar
4. Koarashi, J., Mikami, S., Akiyama, K., Kobayashi, H., Takeishi, M. A simple and reliable monitoring system for 3H and 14C in radioactive airborne effluent. J. Radioanal. Nucl. Chem. 2006, 268, 475–479. https://doi.org/10.1007/s10967-006-0193-7.Suche in Google Scholar
5. Mccombie, C. Nuclear waste management worldwide. Phys. Today 1997, 50, 56–62. https://doi.org/10.1063/1.881779.Suche in Google Scholar
6. Ewing, R. C., Weber, W. J., Clinard, F. W. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–127. https://doi.org/10.1016/0149-1970(94)00016-y.Suche in Google Scholar
7. Kim, J. S., Kwon, S. K., Sanchez, M., Cho, G. C. Geological storage of high level nuclear waste. KSCE J. Civil Eng. 2011, 15, 721–737. https://doi.org/10.1007/s12205-011-0012-8.Suche in Google Scholar
8. Weber, W. J., Navrotsky, A., Stefanovsky, S., Vance, E. R., Vernaz, E. Materials science of high-level nuclear waste immobilization. MRS Bull. 2009, 34, 46–53. https://doi.org/10.1557/mrs2009.12.Suche in Google Scholar
9. Shozugawa, K., Nogawa, N., Matsuo, M. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ. Pollut. 2012, 163, 243–247. https://doi.org/10.1016/j.envpol.2012.01.001.Suche in Google Scholar PubMed
10. Grambow, B. Mobile fission and activation products in nuclear waste disposal. J. Contam. Hydrol. 2008, 102, 180–186. https://doi.org/10.1016/j.jconhyd.2008.10.006.Suche in Google Scholar PubMed
11. Zhang, J. X., Meng, F. C., Wan, Y. S. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: petrological and U-Pb geochronological constraints. J. Metamorph. Geol. 2007, 25, 285–304. https://doi.org/10.1111/j.1525-1314.2006.00689.x.Suche in Google Scholar
12. Grambow, B. Nuclear waste glasses-how durable? Elements 2006, 2, 357–364. https://doi.org/10.2113/gselements.2.6.357.Suche in Google Scholar
13. Shi, C., Spence, R. Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes. Crit. Rev. Environ. Sci. Technol. 2004, 34, 391–417. https://doi.org/10.1080/10643380490443281.Suche in Google Scholar
14. Wang, L., Liang, T. Ceramics for high level radioactive waste solidification. J. Adv. Ceram. 2012, 1, 194–203. https://doi.org/10.1007/s40145-012-0019-8.Suche in Google Scholar
15. Uchida, E., Endo, S., Makino, M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Res. Geol. 2007, 57. https://doi.org/10.1111/j.1751-3928.2006.00004.x.Suche in Google Scholar
16. Freeman, T. J., Murray, C. N., Francis, T. J. G., McPhail, S. D., Schultheiss, P. J. Modelling radioactive waste disposal by penetrator experiments in the abyssal Atlantic Ocean. Nature 1984, 310, 130–133. https://doi.org/10.1038/310130a0.Suche in Google Scholar
17. Lee, W. E., Ojovan, M. I., Stennett, M. C., Hyatt, N. C. Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram. 2006, 105, 3–12. https://doi.org/10.1179/174367606x81669.Suche in Google Scholar
18. Hyatt, N. C., Ojovan, M. I. Special issue: materials for nuclear waste immobilization. Materials 2019, 12, 3611–3615. https://doi.org/10.3390/ma12213611.Suche in Google Scholar PubMed PubMed Central
19. Jantzen, C. M. Systems approach to nuclear waste glass development. J. Non Cryst. Solid. 1986, 84, 215–225. https://doi.org/10.1016/0022-3093(86)90780-5.Suche in Google Scholar
20. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A. Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 1979, 278, 219–223. https://doi.org/10.1038/278219a0.Suche in Google Scholar
21. Ringwood, A. E., Oversby, V. M., Kesson, S. E., Sinclair, W., Ware, N., Hibberson, W., Major, A. Immobilisation of high level nuclear reactor wastes in SYNROC: a current appraisal. Nucl. Chem. Waste Manag. 1979, 2, 287–305. https://doi.org/10.1016/0191-815X(81)90055-3.Suche in Google Scholar
22. Vance, E. R. Synroc: a suitable waste form for actinides. MRS Bull. 1994, 19, 28–32. https://doi.org/10.1557/s0883769400048661.Suche in Google Scholar
23. Yang, J. W., Luo, S. G., Bao jun, L. I., Tang, B. L. Pyrochlore-rich synroc for immobilization of actinides. At. Energy Sci. Technol. 2001, 35, 104–109.Suche in Google Scholar
24. Yanikomer, N., Asal, S., Haciyakupoglu, S., Erenturk, S. A. New solidification materials in nuclear waste management. Int. J. Eng. Technol. 2016, 2, 76–82. https://doi.org/10.19072/ijet.54627.Suche in Google Scholar
25. Gregg, D. J., Farzana, R., Dayal, P., Holmes, R., Triani, G. Synroc technology: perspectives and current status. J. Am. Ceram. Soc. 2020, 103, 5424–5441. https://doi.org/10.1111/jace.17322.Suche in Google Scholar
26. Nash, J. T., Granger, H. C., Adams, S. S. Geology and concepts of genesis of important types of uranium deposits. Econ. Geol. 1981, 63–116. https://doi.org/10.5382/AV75.04.Suche in Google Scholar
27. Ludwig, K. R., Wallace, A. R., Simmons, K. R. The Schwartzwalder uranium deposit; II, Age of uranium mineralization and lead isotope constraints on genesis. J. Heterocycl. Chem. 1985, 80, 1858–1871. https://doi.org/10.2113/gsecongeo.80.7.1858.Suche in Google Scholar
28. Wilde, A. R., Wall, V. J. Geology of the Nabarlek uranium deposit, Northern Territory, Australia. Econ. Geol. 1987, 82, 1152–1168. https://doi.org/10.2113/gsecongeo.82.5.1152.Suche in Google Scholar
29. Cuney, M. Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types. Econ. Geol. 2010, 105, 553–569. https://doi.org/10.2113/gsecongeo.105.3.553.Suche in Google Scholar
30. Keegan, E., Richter, S., Kelly, I., Wong, H., Gadd, P., Kuehn, H., Alonso-Munoz, A. The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl. Geochem. 2008, 23, 765–777. https://doi.org/10.1016/j.apgeochem.2007.12.004.Suche in Google Scholar
31. Alexander, W. R., Reijonen, H. M., McKinley, I. G. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories. Swiss J. Geosci. 2015, 108, 1–26. https://doi.org/10.1007/s00015-015-0187-y.Suche in Google Scholar
32. Goldfarb, R. J., Snee, L. W., Pickthorn, W. J. Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera. Mineral. Mag. 1993, 57, 375–394. https://doi.org/10.1180/minmag.1993.057.388.03.Suche in Google Scholar
33. Yusheng, W., Jianxin, Z., Jingsui, Y., Zhiqin, X. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance. J. Asian Earth Sci. 2006, 28, 174–184. https://doi.org/10.1016/j.jseaes.2005.09.018.Suche in Google Scholar
34. Caurant, D., Majérus, O., Fadel, E., Lenoir, M., Gervais, C., Pinet, O. Effect of molybdenum on the structure and on the crystallization of SiO2–Na2O–CaO–B2O3 glasses. J. Am. Ceram. Soc. 2007, 90, 774–783. https://doi.org/10.1111/j.1551-2916.2006.01467.x.Suche in Google Scholar
35. Greenwood, J. P., Hess, P. C. Congruent melting kinetics of albite: Theory and experiment. J. Geophys. Res. Solid Earth 1998, 103, 29815–29828. https://doi.org/10.1029/98jb02300.Suche in Google Scholar
36. Mackenzie, J. D. Fusion of quartz and cristobalite. J. Am. Ceram. Soc. 2010, 43, 615–619. https://doi.org/10.1111/j.1151-2916.1960.tb13629.x.Suche in Google Scholar
37. Yudintsev, S. V., Stefanovsky, S. V., Ewing, R. C. Actinide host phases as radioactive waste forms. Struct. Chem. Inorg. Actinide Compd. 2007, 457–490. https://doi.org/10.1016/B978-044452111-8/50014-4.Suche in Google Scholar
38. Takeda, M., Onishi, T., Nakakubo, S., Fujimoto, S. Physical properties of iron-oxide scales on Si-containing steels at high temperature. Mater. Trans. 2009, 50, 2242–2246. https://doi.org/10.2320/matertrans.m2009097.Suche in Google Scholar
39. Wie, Y. M., Lee, K. G., Lee, K. H. Chemical design of lightweight aggregate to prevent adhesion at bloating activation temperature. J. Asian Ceram. Soc. 2020, 8, 1–10. https://doi.org/10.1080/21870764.2020.1725259.Suche in Google Scholar
40. Get’man, E. I., Borisova, E. V., Loboda, S. N., Ignatov, A. V. Synthesis and study of NaNd9(SiO4)6O2. Russ. J. Inorg. Chem. 2013, 58, 312–315. https://doi.org/10.1134/S0036023613030078.Suche in Google Scholar
41. Arcos, D., Rodríguez-Carvajal, J., Vallet-Regí, M. Crystal-chemical characteristics of silicon-neodymium substituted hydroxyapatites studied by combined X-ray and neutron powder diffraction. Chem. Mater. 2005, 17, 57–64. https://doi.org/10.1021/cm0488231.Suche in Google Scholar
42. Tan, P., Shu, X. Y., Wen, M. F., Li, L. S., Lu, Y. X., Lu, X. R., Chen, S. P., Dong, F. Q. Characteristics of cerium doped aluminosilicate glass as simulated radioactive waste forms: effect on structures and properties. Prog. Nucl. Energy 2022, 150, 104299. https://doi.org/10.1016/j.pnucene.2022.104299.Suche in Google Scholar
43. Sharaf El-Deen, L. M., Al Salhi, M. S., Elkholy, M. M. IR and UV spectral studies for rare earths-doped tellurite glasses. J. Alloys Compd. 2008, 465, 333–339. https://doi.org/10.1016/j.jallcom.2007.10.104.Suche in Google Scholar
44. Wang, S. S., Zhou, Y., Lam, Y. L., Kam, C. H., Chan, Y. C., Yao, X. Fabrication and characterisation of neodymium-doped silica glass by sol-gel process. Mater. Res. Innov. 1997, 1, 92–96. https://doi.org/10.1007/s100190050026.Suche in Google Scholar
45. Kaur, R., Singh, S., Pandey, O. P. FTIR structural investigation of gamma irradiated BaO-Na2O-B2O3-SiO2 glasses. Phys. B 2012, 407, 4765–4769. https://doi.org/10.1016/j.physb.2012.08.031.Suche in Google Scholar
46. Salinigopal, M. S., Gopakumar, N., Anjana, P. S., Pandey, O. P. Synthesis and characterization of 50BaO-(5-x)Al2O3-xR2O3-30B2O3-15SiO2(R=Nd, Gd) glass-ceramics. J. Non-Cryst. Solids 2020, 535, 0022–3093. https://doi.org/10.1016/j.jnoncrysol.2020.119956.Suche in Google Scholar
47. Dulina, N. A., Yermolayeva, Y. V., Tolmachev, A. V., Sergienko, Z. P., Vovk, O. M., Vovk, E. A., Matveevskaya, N. A., Mateychenko, P. V. Synthesis and characterization of the crystalline powders on the basis of Lu2O3: Eu3+ spherical submicron-sized particles. J. Eur. Ceram. Soc. 2010, 30, 1717–1724. https://doi.org/10.1016/j.jeurceramsoc.2010.01.019.Suche in Google Scholar
48. Umesh, B., Eraiah, B., Nagabhushana, H., Sharma, S. C., Sunitha, D. V., Nagabhushana, B. M., Rao, J. L., Shivakumara, C., Chakradhar, R. P. S. Structural characterization, thermoluminescence and EPR studies of Nd2O3: Co2+ nanophosphors. Mater. Res. Bull. 2013, 48, 180–187. https://doi.org/10.1016/j.materresbull.2012.09.004.Suche in Google Scholar
49. Dhamale, G. D., Mathe, V. L., Bhoraskar, S. V., Sahasrabudhe, S. N., Dhole, S. D., Ghorui, S. Synthesis and characterization of Nd2O3 nanoparticles in a radiofrequency thermal plasma reactor. Nanotechnology 2016, 27, 085603. https://doi.org/10.1088/0957-4484/27/8/085603.Suche in Google Scholar PubMed
50. Oikonomopoulos, K., Perraki, M., Tougiannidis, N., Perraki, T., Frey, M. J., Antoniadis, P., Ricken, W. A comparative study on structural differences of xylite and matrix lignite lithotypes by means of FT-IR, XRD, SEM and TGA analyses: an example from the Neogene Greek lignite deposits. Int. J. Coal Geol. 2013, 115, 1–12. https://doi.org/10.1016/j.coal.2013.04.002.Suche in Google Scholar
51. Çetinkaya, S., Yürüm, Y. Oxidative pyrolysis of Turkish lignites in air up to 500 °C. Fuel Process. Technol. 2000, 67, 177–189; https://doi.org/10.1016/S0378-3820(00)00105-3.Suche in Google Scholar
52. Colomban, P., Schreiber, H. D. Raman signature modification induced by copper nanoparticles in silicate glass. J. Raman Spectrosc. 2005, 36, 884–890. https://doi.org/10.1002/jrs.1379.Suche in Google Scholar
53. Suszynska, M., Maczka, M., Bukowska, E., Berg, K. J. Structure and IRR spectra of copper-exchanged soda-lime silica glass. J. Phys.: Conf. Ser. 2010, 249, 1–6. https://doi.org/10.1088/1742-6596/249/1/012048.Suche in Google Scholar
54. Umesaki, N., Takahashi, M., Tatsumisago, M., Minami, T. Structure of rapidly quenched glasses in the system Li2O-SiO2. J. Mater. Sci. 1993, 28, 3473–3481. https://doi.org/10.1007/bf01159825.Suche in Google Scholar
55. Mcmillan, P. A Raman spectroscopic study of glasses in the system CaO–MgO–SiO2. Am. Mineral. 1984, 69, 645–659. https://doi.org/10.1016/0040-1951(85)90292-6.Suche in Google Scholar
56. Mysen, B. O., Finger, L. W., Virgo, D., Seifert, F. A. Curve-fitting of Raman spectra of silicate glasses. Am. Mineral. 1982, 67, 686–695.Suche in Google Scholar
57. Jeon, S. H., Nam, K., Yoon, H. J., Kim, Y., Cho, D. W., Sohn, Y. Hydrothermal synthesis of Nd2O3 nanorods. Ceram. Int. 2017, 43, 1193–1199. https://doi.org/10.1016/j.ceramint.2016.10.062.Suche in Google Scholar
58. Doweidar, H. Density-structure correlations in Na2O-Al2O3-SiO2 glasses. J. Non-Cryst. Solids 1998, 240, 55–65. https://doi.org/10.1016/s0022-3093(98)00719-4.Suche in Google Scholar
59. Soo, P. J., Shoji, T., Jun, P. Y. Alkali borosilicate glass by fly ash from a coal-fired power plant. Chemosphere 2009, 74, 320–324. https://doi.org/10.1016/j.chemosphere.2008.08.044.Suche in Google Scholar PubMed
60. Tiegel, M., Hosseinabadi, R., Kuhn, S., Herrmann, A., Rüssel, C. Young׳s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses. Ceram. Int. 2015, 41, 7267–7275. https://doi.org/10.1016/j.ceramint.2015.01.144.Suche in Google Scholar
61. Park, H. S., Kim, I. T., Cho, Y. Z., Eun, H. C., Kim, J. H. Characteristics of solidified products containing radioactive molten salt waste. Environ. Sci. Technol. 2007, 41, 7536–7542. https://doi.org/10.1021/es0712524.Suche in Google Scholar PubMed
62. Huang, Z. Y., Li, Q. Y., Zhang, Y. T., Duan, J. J., Wang, H. M., Tang, Z., Yang, Y., Qi, J. Q., Lu, T. C. Densifications and mechanical properties of single-phase Gd2Zr2O7 ceramic waste forms with improved TRPO waste load. J. Eur. Ceram. Soc. 2020, 40, 4613–4622. https://doi.org/10.1016/j.jeurceramsoc.2020.05.024.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Investigation of charged-particle induced reactions on 27Al up to 100 MeV leading to the formation of 22Na and 24Na
- Preparation and potential application of amino-functionalized titanosilicates to removal of Th(IV) in aqueous solutions: optimization using response surface methodology (RSM)
- Radiation fabrication of hybrid activated carbon and functionalized terpolymer hydrogel for sorption of Eu(III) and Sm(III) ions
- Effect of varying Nd2O3 contents on the structure and mechanical properties of the radioactive waste form: aluminosilicate glass-ceramics
- Production of 192Ir sealed sources in Es Salam research reactor for non-destructive testing
- Eco-friendly flaxseed mucilage biofilms fabricated by gamma irradiation
- Grafting of heavy metal oxides onto pure polyester for the interest of enhancing radiation shielding performance
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Investigation of charged-particle induced reactions on 27Al up to 100 MeV leading to the formation of 22Na and 24Na
- Preparation and potential application of amino-functionalized titanosilicates to removal of Th(IV) in aqueous solutions: optimization using response surface methodology (RSM)
- Radiation fabrication of hybrid activated carbon and functionalized terpolymer hydrogel for sorption of Eu(III) and Sm(III) ions
- Effect of varying Nd2O3 contents on the structure and mechanical properties of the radioactive waste form: aluminosilicate glass-ceramics
- Production of 192Ir sealed sources in Es Salam research reactor for non-destructive testing
- Eco-friendly flaxseed mucilage biofilms fabricated by gamma irradiation
- Grafting of heavy metal oxides onto pure polyester for the interest of enhancing radiation shielding performance