Home Effect of varying Nd2O3 contents on the structure and mechanical properties of the radioactive waste form: aluminosilicate glass-ceramics
Article
Licensed
Unlicensed Requires Authentication

Effect of varying Nd2O3 contents on the structure and mechanical properties of the radioactive waste form: aluminosilicate glass-ceramics

  • Pan Tan , Xiaoyan Shu , Lingshuang Li , Yanrong Cheng , Du Liu , Xiaoan Li , Xirui Lu EMAIL logo , Yi Xie , Shunzhang Chen , Bing Liao EMAIL logo and Faqin Dong EMAIL logo
Published/Copyright: April 21, 2023

Abstract

The magmatic diagenetic environment was simulated by high-temperature melting and natural cooling. A series of glass-ceramics with different Nd2O3 contents were prepared by using complex component granite (aluminosilicate material). The phase evolution of the matrix at different temperatures was studied by X-ray diffraction (XRD). The structure of glass-ceramics was analyzed by infrared spectroscopy (IR) and scanning electron microscopy (SEM). The mechanical properties of glass-ceramics were also evaluated. The results showed that the glass transition of pure matrix begins at 1200 °C, and the sample with the highest degree of vitrification is obtained at 1500 °C. The addition of Nd2O3 promoted the melting of Fe3O4 crystal, resulting in the complete amorphous matrix when the Nd2O3 amount is in the range of 20–26 wt.%. With the further increase of Nd2O3 content, Nd-bearing feldspar first appeared. No raw material Nd2O3 was found, indicating that the formation of Nd-bearing feldspar may increase the carrying capacity of the material. The Gaussian fitting results showed that the glass-ceramic samples with Nd2O3 content of 29 wt.% are mainly composed of Q2 and Q3 structural units. In the EDS result, part of neodymium was clustered with small bright spots, while the spots were uniformly distributed on the sample surface as a whole. Meanwhile, the addition of Nd2O3 increased the mechanical properties of the samples (3.20 g/cm3, 8.33 GPa for the sample with 29 wt.% of Nd2O3). The results provide a strategy for the treatment of solid waste with radioactive residual actinides.


Corresponding authors: Xirui Lu, Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Southwest Forestry University, Kunming, Yunnan 650224, P.R. China; State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P.R. China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P.R. China; and National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P.R. China, E-mail: ; Bing Liao, State Key Laboratory for Cooperative Control and Joint Restoration of Soil and Water Pollution for Environmental Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, P.R. China, E-mail: ; and Faqin Dong, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P.R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: No. 21976146

Funding source: Open Foundation of Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province

Award Identifier / Grant number: No. 2020ZD001

Funding source: Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology

Award Identifier / Grant number: No. 22fksy12

Funding source: Open Fund of National Key Laboratory of Soil and Water Pollution Control and Remediation for Environmental Protection

Award Identifier / Grant number: No. GHBK-2020-005

Funding source: Open Foundation of Nuclear Medicine Laboratory of Mianyang Central Hospital

Award Identifier / Grant number: No. 2021HYX028

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by National Natural Science Foundation of China (No. 21976146), Open Foundation of Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province (No. 2020ZD001), Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 22fksy12), Open Fund of National Key Laboratory of Soil and Water Pollution Control and Remediation for Environmental Protection (No. GHBK-2020-005) and Open Foundation of Nuclear Medicine Laboratory of Mianyang Central Hospital (No. 2021HYX028).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Keeney, R. L., Winterfeldt, D. V. Managing nuclear waste from power plants. Risk Anal. 1994, 14, 107–130. https://doi.org/10.1111/j.1539-6924.1994.tb00033.x.Search in Google Scholar

2. Osmanlioglu, A. E. Natural diatomite process for removal of radioactivity from liquid waste. Appl. Radiat. Isot. 2007, 65, 17–20. https://doi.org/10.1016/j.apradiso.2006.08.012.Search in Google Scholar PubMed

3. Gurau, D., Deju, R. The use of chemical gel for decontamination during decommissioning of nuclear facilities. Radiat. Phys. Chem. 2015, 106, 371–375. https://doi.org/10.1016/j.radphyschem.2014.08.022.Search in Google Scholar

4. Koarashi, J., Mikami, S., Akiyama, K., Kobayashi, H., Takeishi, M. A simple and reliable monitoring system for 3H and 14C in radioactive airborne effluent. J. Radioanal. Nucl. Chem. 2006, 268, 475–479. https://doi.org/10.1007/s10967-006-0193-7.Search in Google Scholar

5. Mccombie, C. Nuclear waste management worldwide. Phys. Today 1997, 50, 56–62. https://doi.org/10.1063/1.881779.Search in Google Scholar

6. Ewing, R. C., Weber, W. J., Clinard, F. W. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–127. https://doi.org/10.1016/0149-1970(94)00016-y.Search in Google Scholar

7. Kim, J. S., Kwon, S. K., Sanchez, M., Cho, G. C. Geological storage of high level nuclear waste. KSCE J. Civil Eng. 2011, 15, 721–737. https://doi.org/10.1007/s12205-011-0012-8.Search in Google Scholar

8. Weber, W. J., Navrotsky, A., Stefanovsky, S., Vance, E. R., Vernaz, E. Materials science of high-level nuclear waste immobilization. MRS Bull. 2009, 34, 46–53. https://doi.org/10.1557/mrs2009.12.Search in Google Scholar

9. Shozugawa, K., Nogawa, N., Matsuo, M. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident. Environ. Pollut. 2012, 163, 243–247. https://doi.org/10.1016/j.envpol.2012.01.001.Search in Google Scholar PubMed

10. Grambow, B. Mobile fission and activation products in nuclear waste disposal. J. Contam. Hydrol. 2008, 102, 180–186. https://doi.org/10.1016/j.jconhyd.2008.10.006.Search in Google Scholar PubMed

11. Zhang, J. X., Meng, F. C., Wan, Y. S. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: petrological and U-Pb geochronological constraints. J. Metamorph. Geol. 2007, 25, 285–304. https://doi.org/10.1111/j.1525-1314.2006.00689.x.Search in Google Scholar

12. Grambow, B. Nuclear waste glasses-how durable? Elements 2006, 2, 357–364. https://doi.org/10.2113/gselements.2.6.357.Search in Google Scholar

13. Shi, C., Spence, R. Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes. Crit. Rev. Environ. Sci. Technol. 2004, 34, 391–417. https://doi.org/10.1080/10643380490443281.Search in Google Scholar

14. Wang, L., Liang, T. Ceramics for high level radioactive waste solidification. J. Adv. Ceram. 2012, 1, 194–203. https://doi.org/10.1007/s40145-012-0019-8.Search in Google Scholar

15. Uchida, E., Endo, S., Makino, M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Res. Geol. 2007, 57. https://doi.org/10.1111/j.1751-3928.2006.00004.x.Search in Google Scholar

16. Freeman, T. J., Murray, C. N., Francis, T. J. G., McPhail, S. D., Schultheiss, P. J. Modelling radioactive waste disposal by penetrator experiments in the abyssal Atlantic Ocean. Nature 1984, 310, 130–133. https://doi.org/10.1038/310130a0.Search in Google Scholar

17. Lee, W. E., Ojovan, M. I., Stennett, M. C., Hyatt, N. C. Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram. 2006, 105, 3–12. https://doi.org/10.1179/174367606x81669.Search in Google Scholar

18. Hyatt, N. C., Ojovan, M. I. Special issue: materials for nuclear waste immobilization. Materials 2019, 12, 3611–3615. https://doi.org/10.3390/ma12213611.Search in Google Scholar PubMed PubMed Central

19. Jantzen, C. M. Systems approach to nuclear waste glass development. J. Non Cryst. Solid. 1986, 84, 215–225. https://doi.org/10.1016/0022-3093(86)90780-5.Search in Google Scholar

20. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A. Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 1979, 278, 219–223. https://doi.org/10.1038/278219a0.Search in Google Scholar

21. Ringwood, A. E., Oversby, V. M., Kesson, S. E., Sinclair, W., Ware, N., Hibberson, W., Major, A. Immobilisation of high level nuclear reactor wastes in SYNROC: a current appraisal. Nucl. Chem. Waste Manag. 1979, 2, 287–305. https://doi.org/10.1016/0191-815X(81)90055-3.Search in Google Scholar

22. Vance, E. R. Synroc: a suitable waste form for actinides. MRS Bull. 1994, 19, 28–32. https://doi.org/10.1557/s0883769400048661.Search in Google Scholar

23. Yang, J. W., Luo, S. G., Bao jun, L. I., Tang, B. L. Pyrochlore-rich synroc for immobilization of actinides. At. Energy Sci. Technol. 2001, 35, 104–109.Search in Google Scholar

24. Yanikomer, N., Asal, S., Haciyakupoglu, S., Erenturk, S. A. New solidification materials in nuclear waste management. Int. J. Eng. Technol. 2016, 2, 76–82. https://doi.org/10.19072/ijet.54627.Search in Google Scholar

25. Gregg, D. J., Farzana, R., Dayal, P., Holmes, R., Triani, G. Synroc technology: perspectives and current status. J. Am. Ceram. Soc. 2020, 103, 5424–5441. https://doi.org/10.1111/jace.17322.Search in Google Scholar

26. Nash, J. T., Granger, H. C., Adams, S. S. Geology and concepts of genesis of important types of uranium deposits. Econ. Geol. 1981, 63–116. https://doi.org/10.5382/AV75.04.Search in Google Scholar

27. Ludwig, K. R., Wallace, A. R., Simmons, K. R. The Schwartzwalder uranium deposit; II, Age of uranium mineralization and lead isotope constraints on genesis. J. Heterocycl. Chem. 1985, 80, 1858–1871. https://doi.org/10.2113/gsecongeo.80.7.1858.Search in Google Scholar

28. Wilde, A. R., Wall, V. J. Geology of the Nabarlek uranium deposit, Northern Territory, Australia. Econ. Geol. 1987, 82, 1152–1168. https://doi.org/10.2113/gsecongeo.82.5.1152.Search in Google Scholar

29. Cuney, M. Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types. Econ. Geol. 2010, 105, 553–569. https://doi.org/10.2113/gsecongeo.105.3.553.Search in Google Scholar

30. Keegan, E., Richter, S., Kelly, I., Wong, H., Gadd, P., Kuehn, H., Alonso-Munoz, A. The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl. Geochem. 2008, 23, 765–777. https://doi.org/10.1016/j.apgeochem.2007.12.004.Search in Google Scholar

31. Alexander, W. R., Reijonen, H. M., McKinley, I. G. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories. Swiss J. Geosci. 2015, 108, 1–26. https://doi.org/10.1007/s00015-015-0187-y.Search in Google Scholar

32. Goldfarb, R. J., Snee, L. W., Pickthorn, W. J. Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera. Mineral. Mag. 1993, 57, 375–394. https://doi.org/10.1180/minmag.1993.057.388.03.Search in Google Scholar

33. Yusheng, W., Jianxin, Z., Jingsui, Y., Zhiqin, X. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance. J. Asian Earth Sci. 2006, 28, 174–184. https://doi.org/10.1016/j.jseaes.2005.09.018.Search in Google Scholar

34. Caurant, D., Majérus, O., Fadel, E., Lenoir, M., Gervais, C., Pinet, O. Effect of molybdenum on the structure and on the crystallization of SiO2–Na2O–CaO–B2O3 glasses. J. Am. Ceram. Soc. 2007, 90, 774–783. https://doi.org/10.1111/j.1551-2916.2006.01467.x.Search in Google Scholar

35. Greenwood, J. P., Hess, P. C. Congruent melting kinetics of albite: Theory and experiment. J. Geophys. Res. Solid Earth 1998, 103, 29815–29828. https://doi.org/10.1029/98jb02300.Search in Google Scholar

36. Mackenzie, J. D. Fusion of quartz and cristobalite. J. Am. Ceram. Soc. 2010, 43, 615–619. https://doi.org/10.1111/j.1151-2916.1960.tb13629.x.Search in Google Scholar

37. Yudintsev, S. V., Stefanovsky, S. V., Ewing, R. C. Actinide host phases as radioactive waste forms. Struct. Chem. Inorg. Actinide Compd. 2007, 457–490. https://doi.org/10.1016/B978-044452111-8/50014-4.Search in Google Scholar

38. Takeda, M., Onishi, T., Nakakubo, S., Fujimoto, S. Physical properties of iron-oxide scales on Si-containing steels at high temperature. Mater. Trans. 2009, 50, 2242–2246. https://doi.org/10.2320/matertrans.m2009097.Search in Google Scholar

39. Wie, Y. M., Lee, K. G., Lee, K. H. Chemical design of lightweight aggregate to prevent adhesion at bloating activation temperature. J. Asian Ceram. Soc. 2020, 8, 1–10. https://doi.org/10.1080/21870764.2020.1725259.Search in Google Scholar

40. Get’man, E. I., Borisova, E. V., Loboda, S. N., Ignatov, A. V. Synthesis and study of NaNd9(SiO4)6O2. Russ. J. Inorg. Chem. 2013, 58, 312–315. https://doi.org/10.1134/S0036023613030078.Search in Google Scholar

41. Arcos, D., Rodríguez-Carvajal, J., Vallet-Regí, M. Crystal-chemical characteristics of silicon-neodymium substituted hydroxyapatites studied by combined X-ray and neutron powder diffraction. Chem. Mater. 2005, 17, 57–64. https://doi.org/10.1021/cm0488231.Search in Google Scholar

42. Tan, P., Shu, X. Y., Wen, M. F., Li, L. S., Lu, Y. X., Lu, X. R., Chen, S. P., Dong, F. Q. Characteristics of cerium doped aluminosilicate glass as simulated radioactive waste forms: effect on structures and properties. Prog. Nucl. Energy 2022, 150, 104299. https://doi.org/10.1016/j.pnucene.2022.104299.Search in Google Scholar

43. Sharaf El-Deen, L. M., Al Salhi, M. S., Elkholy, M. M. IR and UV spectral studies for rare earths-doped tellurite glasses. J. Alloys Compd. 2008, 465, 333–339. https://doi.org/10.1016/j.jallcom.2007.10.104.Search in Google Scholar

44. Wang, S. S., Zhou, Y., Lam, Y. L., Kam, C. H., Chan, Y. C., Yao, X. Fabrication and characterisation of neodymium-doped silica glass by sol-gel process. Mater. Res. Innov. 1997, 1, 92–96. https://doi.org/10.1007/s100190050026.Search in Google Scholar

45. Kaur, R., Singh, S., Pandey, O. P. FTIR structural investigation of gamma irradiated BaO-Na2O-B2O3-SiO2 glasses. Phys. B 2012, 407, 4765–4769. https://doi.org/10.1016/j.physb.2012.08.031.Search in Google Scholar

46. Salinigopal, M. S., Gopakumar, N., Anjana, P. S., Pandey, O. P. Synthesis and characterization of 50BaO-(5-x)Al2O3-xR2O3-30B2O3-15SiO2(R=Nd, Gd) glass-ceramics. J. Non-Cryst. Solids 2020, 535, 0022–3093. https://doi.org/10.1016/j.jnoncrysol.2020.119956.Search in Google Scholar

47. Dulina, N. A., Yermolayeva, Y. V., Tolmachev, A. V., Sergienko, Z. P., Vovk, O. M., Vovk, E. A., Matveevskaya, N. A., Mateychenko, P. V. Synthesis and characterization of the crystalline powders on the basis of Lu2O3: Eu3+ spherical submicron-sized particles. J. Eur. Ceram. Soc. 2010, 30, 1717–1724. https://doi.org/10.1016/j.jeurceramsoc.2010.01.019.Search in Google Scholar

48. Umesh, B., Eraiah, B., Nagabhushana, H., Sharma, S. C., Sunitha, D. V., Nagabhushana, B. M., Rao, J. L., Shivakumara, C., Chakradhar, R. P. S. Structural characterization, thermoluminescence and EPR studies of Nd2O3: Co2+ nanophosphors. Mater. Res. Bull. 2013, 48, 180–187. https://doi.org/10.1016/j.materresbull.2012.09.004.Search in Google Scholar

49. Dhamale, G. D., Mathe, V. L., Bhoraskar, S. V., Sahasrabudhe, S. N., Dhole, S. D., Ghorui, S. Synthesis and characterization of Nd2O3 nanoparticles in a radiofrequency thermal plasma reactor. Nanotechnology 2016, 27, 085603. https://doi.org/10.1088/0957-4484/27/8/085603.Search in Google Scholar PubMed

50. Oikonomopoulos, K., Perraki, M., Tougiannidis, N., Perraki, T., Frey, M. J., Antoniadis, P., Ricken, W. A comparative study on structural differences of xylite and matrix lignite lithotypes by means of FT-IR, XRD, SEM and TGA analyses: an example from the Neogene Greek lignite deposits. Int. J. Coal Geol. 2013, 115, 1–12. https://doi.org/10.1016/j.coal.2013.04.002.Search in Google Scholar

51. Çetinkaya, S., Yürüm, Y. Oxidative pyrolysis of Turkish lignites in air up to 500 °C. Fuel Process. Technol. 2000, 67, 177–189; https://doi.org/10.1016/S0378-3820(00)00105-3.Search in Google Scholar

52. Colomban, P., Schreiber, H. D. Raman signature modification induced by copper nanoparticles in silicate glass. J. Raman Spectrosc. 2005, 36, 884–890. https://doi.org/10.1002/jrs.1379.Search in Google Scholar

53. Suszynska, M., Maczka, M., Bukowska, E., Berg, K. J. Structure and IRR spectra of copper-exchanged soda-lime silica glass. J. Phys.: Conf. Ser. 2010, 249, 1–6. https://doi.org/10.1088/1742-6596/249/1/012048.Search in Google Scholar

54. Umesaki, N., Takahashi, M., Tatsumisago, M., Minami, T. Structure of rapidly quenched glasses in the system Li2O-SiO2. J. Mater. Sci. 1993, 28, 3473–3481. https://doi.org/10.1007/bf01159825.Search in Google Scholar

55. Mcmillan, P. A Raman spectroscopic study of glasses in the system CaO–MgO–SiO2. Am. Mineral. 1984, 69, 645–659. https://doi.org/10.1016/0040-1951(85)90292-6.Search in Google Scholar

56. Mysen, B. O., Finger, L. W., Virgo, D., Seifert, F. A. Curve-fitting of Raman spectra of silicate glasses. Am. Mineral. 1982, 67, 686–695.Search in Google Scholar

57. Jeon, S. H., Nam, K., Yoon, H. J., Kim, Y., Cho, D. W., Sohn, Y. Hydrothermal synthesis of Nd2O3 nanorods. Ceram. Int. 2017, 43, 1193–1199. https://doi.org/10.1016/j.ceramint.2016.10.062.Search in Google Scholar

58. Doweidar, H. Density-structure correlations in Na2O-Al2O3-SiO2 glasses. J. Non-Cryst. Solids 1998, 240, 55–65. https://doi.org/10.1016/s0022-3093(98)00719-4.Search in Google Scholar

59. Soo, P. J., Shoji, T., Jun, P. Y. Alkali borosilicate glass by fly ash from a coal-fired power plant. Chemosphere 2009, 74, 320–324. https://doi.org/10.1016/j.chemosphere.2008.08.044.Search in Google Scholar PubMed

60. Tiegel, M., Hosseinabadi, R., Kuhn, S., Herrmann, A., Rüssel, C. Young׳s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses. Ceram. Int. 2015, 41, 7267–7275. https://doi.org/10.1016/j.ceramint.2015.01.144.Search in Google Scholar

61. Park, H. S., Kim, I. T., Cho, Y. Z., Eun, H. C., Kim, J. H. Characteristics of solidified products containing radioactive molten salt waste. Environ. Sci. Technol. 2007, 41, 7536–7542. https://doi.org/10.1021/es0712524.Search in Google Scholar PubMed

62. Huang, Z. Y., Li, Q. Y., Zhang, Y. T., Duan, J. J., Wang, H. M., Tang, Z., Yang, Y., Qi, J. Q., Lu, T. C. Densifications and mechanical properties of single-phase Gd2Zr2O7 ceramic waste forms with improved TRPO waste load. J. Eur. Ceram. Soc. 2020, 40, 4613–4622. https://doi.org/10.1016/j.jeurceramsoc.2020.05.024.Search in Google Scholar

Received: 2021-11-01
Accepted: 2023-02-15
Published Online: 2023-04-21
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1122/html
Scroll to top button