Enhancing the physico-mechanical properties of ethylene propylene diene monomer rubber via ץ-radiation in the presence of bi-functional and tri-functional monomers
Abstract
This study, uses two polyfunctional monomers (PFMs) namely ethylene glycol dimethacrylate (EGDMA) as a bifunctional monomer and trimethylolpropane triacrylate (TMPTA) as a trifunctional monomer were used as co-agents in irradiation crosslinking of Ethylene Propylene Diene Monomer Rubber (EPDM). The effect of concentration of each PFM and irradiation dose on the crosslinking density, gel content, swelling behavior in motor and brake oils, in addition to the mechanical and thermal stability properties of EPDM was investigated in detailed. The results showed a remarkable increase in the gel content, crosslinking density and mechanical properties as the concentration of PFMs increased from 1 to 5 phr (parts per hundred parts of rubber). The various blends of EPDM with the trifunctional monomer express the highest gel content and crosslinking density than those with the bifunctional monomer. The addition of 5 phr of TMPTA to EPDM causes a dramatic improvement in tensile strength (TS) of the prepared blend reached to 188% compared to neat EPDM at 50 kGy. At the same time, the maximum TS of the blend containing 5 phr of EGDMA achieved only 41% compared to neat EPDM at an irradiation dose of 100 kGy. The swelling of irradiated samples in brake oil revealed a stronger oil resistance than motor oil. For all irradiated samples, the oil uptake decreased with the irradiation dose up to 100 kGy. The EPDM samples containing 5 phr of TMPTA recorded the highest oil resistance at 100 kGy. The results also showed that the addition of PFMs and irradiation treatment of the various prepared blends improved the thermal stability of EPDM. Finally, neat EPDM and the blends containing 1 and 3 phr of EGDMA can be used as radiation dosimeters in the very high dose range (50–200 kGy).
-
Author contributions: Category 1. Conception and design of study: Mai M. El-Zayat, Maysa A. Mohamed, Eslam Aboelezz. Acquisition of data: Mai M. El-Zayat, Maysa A. Mohamed, Esalm Aboelezz. Analysis and/or interpretation of data: Mai M. El-Zayat, Maysa A. Mohamed, Esalm Aboelezz. Category 2. Drafting the manuscript: Mai M. El-Zayat, Maysa A. Mohamed, Esalm Aboelezz. Revising the manuscript critically for important intellectual content: Mai M. El-Zayat, Maysa A. Mohamed, Esalm Aboelezz. Category 3. Approval of the version of the manuscript to be published: Mai M. El-Zayat, Maysa A. Mohamed, Esalm Aboelezz.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Van Duin, M., Orza, R., Peters, R., Chechik, V. Mechanism of peroxide cross-linking of EPDM rubber. Macromol. Symp. 2010, 74, 291. Wiley Online Library. https://doi.org/10.1002/masy.201050508.Suche in Google Scholar
2. Rajkumar, K., Dwivedi, C., Thavamani, P., Jeyanthi, P., Pazhanisamy, P. Effect of nanosilica on ethylene propylene diene monomer rubber nanocomposites. Int. J. Innov. Res. Dev. 2013, 2, 2278.Suche in Google Scholar
3. Homocianu, M., Airinei, A., Stelescu, D. M., Timpu, D., Ioanid, A. Morphological structure and surface properties of maleated ethylene propylene dien monomer/organoclay nanocomposites. Polym. Compos. 2012, 33, 379. https://doi.org/10.1002/pc.22159.Suche in Google Scholar
4. Stelescu, M. D., Manaila, E., Craciun, G. Vulcanization of ethylene propylene terpolymer-based rubber mixtures by radiation processing. J. Appl. Polym. Sci. 2013, 128, 2325. https://doi.org/10.1002/app.38231.Suche in Google Scholar
5. Ashok, N., Balachandran, M., Lawrence, F., Sebastian, N. EPDM–chlorobutyl rubber blends in γ-radiation and hydrocarbon environment: mechanical, transport, and ageing behavior. J. Appl. Polym. Sci. 2017, 134, 45195. https://doi.org/10.1002/app.45195.Suche in Google Scholar
6. Celette, N., Stevenson, I., David, L., Davenas, J., Vigier, G., Seytre, G. Irradiation effects on the relaxation behaviour of EPDM elastomers. Polym. Int. 2004, 53, 495. https://doi.org/10.1002/pi.1425.Suche in Google Scholar
7. Yasin, T., Khan, S., Shafiq, M., Gill, R. Radiation crosslinking of styrene–butadiene rubber containing waste tire rubber and polyfunctional monomers. Radiat. Phys. Chem. 2015, 106, 343. https://doi.org/10.1016/j.radphyschem.2014.08.017.Suche in Google Scholar
8. Wu, J., Soucek, M. D. The effect of multifunctional monomers/oligomers Additives on electron beam radiation crosslinking of poly (styrene-block-isoprene/butadiene-block-styrene)(SIBS). Radiat. Phys. Chem. 2016, 119, 55. https://doi.org/10.1016/j.radphyschem.2015.09.012.Suche in Google Scholar
9. Aziz, M. M. A., Basfar, A. A. Proceedings of 7th Conference of Nuclear Science and Applications, Cairo, Egypt, January, 28, 2000.Suche in Google Scholar
10. Abdel-Hakim, A., El-Mogy, S. A., El-Zayat, M. M. Radiation crosslinking of acrylic rubber/styrene butadiene rubber blends containing polyfunctional monomers. Radiat. Phys. Chem. 2019, 157, 91. https://doi.org/10.1016/j.radphyschem.2019.01.004.Suche in Google Scholar
11. Khalaf, A. I., Yehia, A. A., Ismail, M. N., El-Sabbagh, S. H. High performance oil resistant rubber. Open J. Org. Polym. Mater. 2012, 2, 88. https://doi.org/10.4236/ojopm.2012.24013.Suche in Google Scholar
12. Ismail, H., Yusof, A. M. M. Blend of waste poly (vinylchloride) (PVCw)/acrylonitrile butadiene-rubber (NBR): the effect of maleic anhydride (MAH). Polym. Test. 2004, 23, 675. https://doi.org/10.1016/j.polymertesting.2004.01.008.Suche in Google Scholar
13. Pracella, M. Blends and alloys. In Modification of Polymer Properties; Elsevier: Oxford, 2017; p. 155. https://doi.org/10.1016/b978-0-323-44353-1.00007-5.Suche in Google Scholar
14. Omran, A. M., Youssef, A. M., Ahmed, M. M., Abdel-Bary, E. M., Hellipolis, R. T. L. Mechanical and oil resistance characteristics of rubber blends based on nitrile butadiene rubber. KGK - Kautsch. Gummi Kunstst. 2010, 63, 197.Suche in Google Scholar
15. Chmielewski, A. G., Haji-Saeid, M. Radiation technologies: past, present and future. Radiat. Phys. Chem. 2004, 71, 16. https://doi.org/10.1016/j.radphyschem.2004.05.040.Suche in Google Scholar
16. Yasin, T., Ahmed, S., Ahmed, M., Yoshii, F. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile–butadiene rubber under electron-beam irradiation. Radiat. Phys. Chem. 2005, 73, 155. https://doi.org/10.1016/j.radphyschem.2004.07.009.Suche in Google Scholar
17. Flory, P. J., Rehner, J. Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 1943, 11, 521. https://doi.org/10.1063/1.1723792.Suche in Google Scholar
18. Zhang, M., Fan, M., Peng, S., He, J., Deng, M., Gong, P., Wang, K., Zhang, X. J. R. A. Synthesis and properties of EPDM-based oil-absorptive gels with different types of EPDM and styrene derivatives. RSC Adv. 2021, 11, 1605. https://doi.org/10.1039/d0ra08409c.Suche in Google Scholar
19. Manaila, E., Craciun, G., Stelescu, M. D., Ighigeanu, D., Ficai, M. Radiation vulcanization of natural rubber with polyfunctional monomers. Polym. Bull. 2014, 71, 57. https://doi.org/10.1007/s00289-013-1045-6.Suche in Google Scholar
20. Abdel-Hakim, A., El-Gamal, A. A., EL-Zayat, M. M., Sadek, A. M. Effect of novel sucrose based polyfunctional monomer on physico-mechanical and electrical properties of irradiated EPDM. Radiat. Phys. Chem. 2021, 189, 109729. https://doi.org/10.1016/j.radphyschem.2021.109729.Suche in Google Scholar
21. Banik, I., Bhowmick, A. K. Influence of electron beam irradiation on the mechanical properties and crosslinking of fluorocarbon elastomer. Radiat. Phys. Chem. 1999, 54, 135. https://doi.org/10.1016/s0969-806x(98)00218-7.Suche in Google Scholar
22. Banik, I., Bhowmick, A. K. Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiat. Phys. Chem. 2000, 58, 293. https://doi.org/10.1016/s0969-806x(99)00371-0.Suche in Google Scholar
23. Van Duin, M., Dikland, H. A chemical modification approach for improving the oil resistance of ethylene–propylene copolymers. Polym. Degrad. Stabil. 2007, 92, 2287. https://doi.org/10.1016/j.polymdegradstab.2007.04.018.Suche in Google Scholar
24. Treloar, L. R. G. The Physics of Rubber Elasticity, 3rd ed.; Clarendon Press: Oxford, 1975; p. 46.Suche in Google Scholar
25. Dikland, H. G., Van der Does, L., Bantjes, A. FT-IR spectroscopy, a major tool for the analysis of peroxide vulcanization processes in the presence of coagents. I. Mechanism of EPM peroxide vulcanization with aromatic bis (allyl) esters as coagents. Rubber Chem. Technol. 1993, 66, 196. https://doi.org/10.5254/1.3538306.Suche in Google Scholar
26. Dikland, H. G., Hulskotte, R. J. M., Van der Does, L., Bantjes, A. The mechanism of EPDM peroxide vulcanisations in the presence of triallylcyanurate as a coagent. Kautsch. Gummi Kunstst. 1993, 46, 608.Suche in Google Scholar
27. Dikland, H. G., Ruardy, T., Van der Does, L., Bantjes, A. New coagents in peroxide vulcanization of EPM. Rubber Chem. Technol. 1993, 66, 693. https://doi.org/10.5254/1.3538338.Suche in Google Scholar
28. Manshaie, R., Khorasani, S. N., Veshare, S. J., Abadchi, M. R. Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene–butadiene rubber (SBR) blend. Radiat. Phys. Chem. 2011, 80, 100. https://doi.org/10.1016/j.radphyschem.2010.08.015.Suche in Google Scholar
29. Hassan, M. M., Mahmoud, G. A., El-Nahas, H. H., Hegazy, E. A. Reinforced material from reclaimed rubber/natural rubber, using electron beam and thermal treatment. J. Appl. Polym. Sci. 2007, 104, 2569. https://doi.org/10.1002/app.25297.Suche in Google Scholar
30. Ali, M. A. M., El-Nemr, K. F., Hassan, M. M., Abd-Elhady, W. S. Mechanical properties of gamma-irradiated EPDM/Waste newsprint microfibers composites treated using acrylic styrene emulsion as a coupling agent. Polym. Compos. 2019, 40, 1209. https://doi.org/10.1002/pc.24836.Suche in Google Scholar
31. Yasin, T., Khan, S., Nho, Y. C., Ahmad, R. Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend. Radiat. Phys. Chem. 2012, 81, 421. https://doi.org/10.1016/j.radphyschem.2011.12.008.Suche in Google Scholar
32. Manaila, E., Stelescu, M. D., Craciun, G. Degradation studies realized on natural rubber and plasticized potato starch based eco-composites obtained by peroxide cross-linking. Int. J. Mol. Sci. 2018, 19, 2862. https://doi.org/10.3390/ijms19102862.Suche in Google Scholar
33. Ahmed, S., Basfar, A. A., Abdel Aziz, M. M. Comparison of thermal stability of sulfur, peroxide and radiation cured NBR and SBR vulcanizates. Polym. Degrad. Stabil. 2000, 67, 319. https://doi.org/10.1016/s0141-3910(99)00133-0.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Application of a novel gas phase synthesis approach to carbonyl complexes of accelerator-produced 5d transition metals
- Studies on nucleation and crystal growth kinetics of plutonium(IV) oxalatex
- Uranium sorption from waste solutions by Talc Phosphogypsum ferri-silicate synthetic new sorbent
- Investigation of Re(VII) diffusion in Tamusu clayrock core by through-diffusion method
- Elaboration of composite based on the incorporation of marble particles into polymeric framework for the removal of Co(II) and Eu(III)
- Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite
- Enhancing the physico-mechanical properties of ethylene propylene diene monomer rubber via ץ-radiation in the presence of bi-functional and tri-functional monomers
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Application of a novel gas phase synthesis approach to carbonyl complexes of accelerator-produced 5d transition metals
- Studies on nucleation and crystal growth kinetics of plutonium(IV) oxalatex
- Uranium sorption from waste solutions by Talc Phosphogypsum ferri-silicate synthetic new sorbent
- Investigation of Re(VII) diffusion in Tamusu clayrock core by through-diffusion method
- Elaboration of composite based on the incorporation of marble particles into polymeric framework for the removal of Co(II) and Eu(III)
- Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite
- Enhancing the physico-mechanical properties of ethylene propylene diene monomer rubber via ץ-radiation in the presence of bi-functional and tri-functional monomers