Home Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite
Article
Licensed
Unlicensed Requires Authentication

Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite

  • Faten Ismail Abou El Fadl ORCID logo EMAIL logo , Maysa A. Mohamed , Magida Mamdouh Mahmoud and Sayeda M. Ibrahim
Published/Copyright: November 22, 2021

Abstract

Nanocomposites have received voluminous interest due to the combination of unique properties of organic and inorganic component in one material. In this class, magnetic polymer nanocomposites are of particular interest because of the combination of excellent magnetic properties, stability, and good biocompatibility. This paper reports the preparation and characterization of nanocomposites films based on natural rubber in latex state (NRL) loaded with different concentrations of semiconducting magnetite nanoparticles (Fe3O4) (MNPs) (5, 10, 15, 20, and 30%). NRL (100%) and NRL/Fe3O4 nanocomposites were prepared by solution casting technique then, exposed to various irradiation doses (50, 70, 100 kGy).The nanocomposite’s morphological, and physical properties were investigated through various spectroscopic techniques such as Fourier-transformed infrared, X-ray diffraction, scanning electron, and transmission electron microscopies. The mechanical properties, including the tensile strength and elongation at break percentage (E b %) of the nanocomposites were also studied and compared with the 100% NRL films. Based on the results obtained from the mechanical study, it is found that the NRL/20% Fe3O4 nanocomposite film exhibited the highest tensile strength at 100 kGy. On the other hand, based on the conductivity study, it is found that, NRL/Fe3O4 nanocomposite with 10% magnetite exhibit the highest conductivity as the content of magnetite plays an important and effective role based on the high and homogeneous dispersity.


Corresponding author: Faten Ismail Abou El Fadl, Department of Polymer Chemistry, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt, E-mail:

Acknowledgments

Authors would to thank National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority for facilitating experiments of preparation, irradiation and apparatus used for characterization.

  1. Author contributions: Faten I. Abou El Fadl: Visualization, Methodology, Software, Writing original and reviewing. Maysa A. Mohamed: Visualization, Writing review and editing. M. M. Mageda: Software, Writing original draft. Sayeda M. Ibrahim: Methodology, Writing original draft and reviewing.

  2. Research funding: Not applicable.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Consent to publish: Not applicable. All authors approved for publication.

  5. Data availability statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

  6. Code availability: Software used for all calculations and figures drawings is Sigma plot 10.

References

1. AlFannakh, H., Arafat, S. S., Ibrahim, S. S. Synthesis, electrical properties, and kinetic thermal analysis of polyaniline/polyvinyl alcohol-magnetite nanocomposites film. IEEE J. Sel. Top. Quantum. Electron. 2019, 26, 347–359. https://doi.org/10.1515/secm-2019-0020.Search in Google Scholar

2. El-Nemr, K. F., Hassan, M. M., Ali, M. A. Effect of electron beam irradiation on mechanical and thermal properties of waste polyamide copolymer blended with nitrile-butadiene rubber. Polym. Adv. Technol. 2010, 21, 735–741. https://doi.org/10.1002/pat.1497.Search in Google Scholar

3. Yurkov, G. Y., Fionov, A. S., Koksharov, Y. A., Koleso, V. V., Gubin, S. P. Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles. Inorg. Mater. 2007, 43, 834–844. https://doi.org/10.1134/S0020168507080055.Search in Google Scholar

4. Park, J., An, K., Hwang, Y., Park, J. E. G., Noh, H. J., Kim, J. Y., Kim, J. Y., Park, J. H., Hwang, N. M., Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895. https://doi.org/10.1038/nmat1251.Search in Google Scholar PubMed

5. Peng, J., Zhao, J., Long, Y., Xie, Y., Nie, J., Chen, L. Magnetic materials in promoting bone regeneration. Front. Mater. 2019, 6, 1–14. https://doi.org/10.3389/fmats.2019.00268.Search in Google Scholar

6. Omidi, M. H., Alibeygi, M., Piri, F., Masoudifarid, M. Polystyrene/magnetite nanocomposite synthesis and characterization: investigation of magnetic and electrical properties for using as microelectromechanical systems (MEMS). Mater. Sci. Pol. 2017, 35, 105–110. https://doi.org/10.1515/msp-2017-0011.Search in Google Scholar

7. Abou El Fadl, F. I. Synthesis and study of superparamagnetic (Fe3O4/(chitosan/alginate)-co-acrylic acid) nanocomposite for different applications. Int. J. Nanomater. Chem. 2016, 2, 5–10. https://doi.org/10.18576/ijnc/020102.Search in Google Scholar

8. Abou El Fadl, F. I., Mahmoud, G. A., Mohamed, A. A. Effect of metal nanoparticles on the catalytic activity of pectin (poly vinyl alcohol-co-polyacrylamide) nanocomposite hydrogels. J. Inorg. Organomet. Polym. Mater. 2019, 29, 332–339. https://doi.org/10.1007/s10904-018-1003-8.Search in Google Scholar

9. Carvalho, A. J. F., Job, A. E., Alves, N., Curvelo, A. A. S., Gandini, A., Embuscado, K. C. H. M. E., Chaowamalee, S., Ngamcharussrivichai, C., Srivastava, S. K., Mishra, Y. K., Derick, M., Ananda, S., Lanka, S., Process, L. M., Wang, Y., Ma, Y., Sun, Y., Guo, G., Liu, Y., Srivastava, S. K., Mishra, Y. K., Kurniawan, C., Eko, A. S., Ayu, Y. S., Sihite, P. T. A., Ginting, M., Simamora, P., Sebayang, P., Chan, C. H., Joy, J., Maria, H. J., Thomas, S., Jayaraj, S., Egodage, S. M., Walpalage, S., Mahendra, I., Linh, M., Thang, N., Thuy, V., Trang, L., Thinh, L., Phuong, N., Ha, N., Thuong, N., Kawahara, S., Yamamoto, Y., Nghia, P., Rezende, C. A., Bragança, F. C., Doi, T. R., Lee, L. T., Galembeck, F., Boué, F., Berki, P., László, K., Tung, N. T., Karger-Kocsis, J. Nanocarbon reinforced rubber nanocomposites: detailed insights about mechanical, dynamical mechanical properties, Payne, and Mullin effects. Nanomaterials 2017, 8, 95–99; https://doi.org/10.3390/nano8110945.Search in Google Scholar PubMed PubMed Central

10. Zhan, Y., Lavorgna, M., Buonocore, G., Xia, H. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J. Mater. Chem. 2012, 22, 10464–10468. https://doi.org/10.1039/c2jm31293j.Search in Google Scholar

11. Naghdi, S., Rhee, K. Y., Hui, D., Park, S. J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings 2018, 8, 278–295. https://doi.org/10.3390/coatings8080278.Search in Google Scholar

12. Kampioti, K., Matos, C. F., Galembeck, F., Jaillet, C., Derré, A., Zarbin, A. J. G., Penicaud, A. Highly conducting, sustainable, nanographitic rubber composites. ACS Omega 2018, 3, 1367–1373. https://doi.org/10.1021/acsomega.7b01848.Search in Google Scholar PubMed PubMed Central

13. Venkatanarasimhan, S., Raghavachari, D. Epoxidized natural rubber-magnetite nanocomposites for oil spill recovery. J. Mater. Chem. A 2013, 1, 868–876. https://doi.org/10.1039/c2ta00445c.Search in Google Scholar

14. Abou Hussein, E. M., Abd Elaziz, T. D., El-Alaily, N. A. Effect of gamma radiation on some optical and electrical properties of lithium bismuth silicate glasses. J. Mater. Sci. Mater. Electron. 2019, 30, 12054–12064. https://doi.org/10.1007/s10854-019-01563-y.Search in Google Scholar

15. K. Bautista, Thin Film Deposition In Four-point probe operation 2004, pp. 1–8 (accessed on Jul 18, 2011).Search in Google Scholar

16. Fang, C., Zhang, J., Chen, X., Weng, G. J. Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a Monte Carlo method. Nanomaterials 2020, 10, 1–15. https://doi.org/10.3390/nano10061129.Search in Google Scholar PubMed PubMed Central

17. Casillas, P. E. G., Gonzalez, C. A. R., Pérez, C. A. M. Infrared spectroscopy of functionalized magnetic nanoparticles. Infrared Spectrosc - Mater. Sci. Eng. Technol. 2012. https://doi.org/10.5772/35481.Search in Google Scholar

18. Stoia, M., Istratie, R., Păcurariu, C. Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. J. Therm. Anal. Calorim. 2016, 125, 1185–1198. https://doi.org/10.1007/s10973-016-5393-y.Search in Google Scholar

19. Abou El Fadl, F. I., Maziad, N. A., El-Hamouly, S. H., Hassan, H. R. Synthesis and characterizations of various polyvinyl pyrrolidon/hydroxyl ethyl methacrylate nanocomposite hydrogels as drug delivery systems. J. Macromol. Sci. Part A. Pure. Appl. Chem. 2018, 55, 107–115. https://doi.org/10.1080/10601325.2017.1387496.Search in Google Scholar

20. Abou El Fadl, F. I. Synthesis and characterization of chitosan–poly(acrylamide–co-acrylic acid) magnetic nanocomposite hydrogels for use in catalysis. Russ. J. Appl. Chem. 2016, 89, 1673–1680. https://doi.org/10.1134/S1070427216100177.Search in Google Scholar

21. Yang, L., Tian, J., Meng, J., Zhao, R., Li, C., Ma, J., Jin, T. Modification and characterization of Fe3O4 nanoparticles for use in adsorption of alkaloids. Molecules 2018, 23, 562. https://doi.org/10.3390/molecules23030562.Search in Google Scholar PubMed PubMed Central

22. Zhao, G., Qin, N., Pan, A., Wu, X., Peng, C., Ke, F., Iqbal, M., Ramachandraiah, K., Zhu, J. Magnetic Nanoparticles@Metal-organic framework composites as sustainable environment adsorbents. J. Nanomater. 2019, 2019, 1–11; https://doi.org/10.1155/2019/1454358.Search in Google Scholar

23. Donoclift, T. The Radiolytic Steady-State and Factors Controlling H2 Production; University of Manchester: Manchester, 191, 2016.Search in Google Scholar

24. Abedini, A., Daud, A. R., Hamid, M. A. A., Othman, N. K. Radiolytic formation of Fe3O4 nanoparticles: influence of radiation dose on structure and magnetic properties. PLoS One 2014, 9, 90047–90055; https://doi.org/10.1371/journal.pone.0090055.Search in Google Scholar PubMed PubMed Central

25. Bellucci, F. S., Lobato De Almeida, F. C., Lima Nobre, M. A., Rodríguez-Pérez, M. A., Paschoalini, A. T., Job, A. E. Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Compos. Part. B. Eng. 2016, 85, 196–206. https://doi.org/10.1016/j.compositesb.2015.09.013.Search in Google Scholar

26. Wang, Y., Ma, Y., Sun, Y., Guo, G., Liu, Y. In situ latex synthesis of magnetic polymer nanocomposites for application in magnetorheological materials. Polym. Adv. Technol. 2019, 30, 2005–2016. https://doi.org/10.1002/pat.4633.Search in Google Scholar

27. Tanasa, E., Zaharia, C., Radu, I. C., Surdu, V. A., Vasile, B. S., Damian, C. M., Andronescu, E. Novel nanocomposites based on functionalized magnetic nanoparticles and polyacrylamide: preparation and complex characterization. Nanomaterials 2019, 9, 1384. https://doi.org/10.3390/nano9101384.Search in Google Scholar PubMed PubMed Central

28. Visakh, P. M., Mathew, A. P., Thomas, S. Natural polymers: their blends, composites and nanocomposites: state of art, new challenges and opportunities. Adv. Nat. Polym. 2013, 18, 1–20; https://doi.org/10.1007/978-3-642-20940-6-1.Search in Google Scholar

29. Srivastava, S. K. Chapter 18. Metal Oxide Filled Micro and Nano Natural Rubber Composites; Royal society of chemistry: Switzerland, Basel, 2, 2013.10.1039/9781849737654-00504Search in Google Scholar

30. Li, M. Y., Yang, M., Vargas, E., Neff, K., Vanli, A., Liang, R. Analysis of variance on thickness and electrical conductivity measurements of carbon nanotube thin films. Meas. Sci. Technol. 2016, 27, 1–12; https://doi.org/10.1088/0957-0233/27/9/095004.Search in Google Scholar

31. Rossi, L. M., Costa, N. J. S., Silva, F. P., Wojcieszak, R. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 2014, 16, 2906–2933. https://doi.org/10.1039/c4gc00164h.Search in Google Scholar

32. Zhang, H., wang, Liu. Y., heng, Sun. S. Synthesis and assembly of magnetic nanoparticles for information and energy storage applications. Front. Phys. China 2010, 5, 347–356. https://doi.org/10.1007/s11467-010-0104-9.Search in Google Scholar

33. Li, X. B., Gao, Y. J., Wang, Y., Zhan, F., Zhang, X. Y., Kong, Q. Y., Zhao, N. J., Guo, Q., Wu, H. L., Li, Z. J., Tao, Y., Zhang, J. P., Chen, B., Tung, C. H., Wu, L. Z. Self-Assembled framework enhances electronic communication of ultrasmall-sized nanoparticles for exceptional solar hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 4789–4796. https://doi.org/10.1021/jacs.6b12976.Search in Google Scholar PubMed

34. Lu, Y. L., Ma, J., Xu, T. Y., Wang, W. C., Jiang, Y., Zhang, L. Q. Preparation and properties of natural rubber reinforced with polydopamine-coating modified carbon nanotubes. Express Polym. Lett. 2017, 11, 21–34. https://doi.org/10.3144/expresspolymlett.2017.4.Search in Google Scholar

35. Todoran, D., Todoran, R., Szakács, Z., Anitas, E. Electrical conductivity and optical properties of pulsed laser deposited LaNi5 nanoscale films. Materials. (Basel) 2018, 11, 1475–1494; https://doi.org/10.3390/ma11081475.Search in Google Scholar PubMed PubMed Central

Received: 2021-07-17
Accepted: 2021-10-31
Published Online: 2021-11-22
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1080/html
Scroll to top button