Determination of radioprotective and genotoxic properties of sulfamide derivatives
-
Bünyamin Aygün
, Burak Alaylar, Akın Akıncıoğlu
, Bünyamin Alım , Ebu Talip Kocaman , Mehmet Karadayı , Mohammed Ibrahim Abu Al-Sayyed , Şeyma Aksu , Erdem Şakar , Özgür Fırat Özpolat , Süleyman Göksu , Medine Güllüce und Abdulhalik Karabulut
Abstract
Some potential drug active substances with the ability to reduce the effects of radiation on human tissues and cells were investigated. For this purpose, eight different types of sulfamide derivatives were synthesized and nuclear radiation protection parameters were determined. Neutron radiation reduction parameters such as the half-value layer effective removal cross-sections, mean free path, and the number of particles passing through the sample were determined with GEANT4 code. Additionally, the gamma radiation attenuation parameters of the materials examined were determined using Phy-X/PSD software in the energy area of 0.015–15 MeV. These parameters are the half-value layer, mass attenuation coefficient, mean free path, exposure buildup factor and effective atomic number. Neutron radiation absorption experiments were applied using an 241Am-Be fast neutron source. All results obtained for neutron radiation were compared with paraffin and water. It has been found that the ability of sulfamide derivatives to absorb these radiations is superior to reference materials. To determine whether these derivatives could have adverse effects on human health, their genotoxic potential was determined using the Ames/Salmonella bacterial reversion test. The results showed that these derivatives can be considered genotoxically safe in tests at concentrations up to 5 mM. Thus, it is suggested that the derivative materials examined in this study can be used as active substances for a drug to be made for protection against both neutron and gamma radiation.
Funding source: Scientific and Technological Research Council of Turkey
Award Identifier / Grant number: Grant No. 112T881
Funding source: Ataturk University
-
Author contributions: Burak Alaylar, Bünyamin Aygün, Akın Akıncıoğlu and Mehmet Karadayı designed and conducted the experiments. Süleyman Göksu, Akın Akıncıoğlu and Ebu Talip Kocaman synthesized sulfamide derivatives. Mehmet Karadayı, Burak ALAYLAR and Şeyma Aksu tested to geno-toxic potential of sulfamide derivatives. Bünyamin Aygün, Bünyamin Alım, Mohammed Ibrahim Abu Al-Sayyed, Erdem Şakar, Özgür Fırat Özpolat analysed neutron and gamma experiment data. Abdulhalik Karabulut, Medine Güllüce and Süleyman Göksu analyzed data. Burak Alaylar, Bünyamin Aygün, Akın Akıncıoğlu and Bünyamin Alım wrote the manuscript. All authors read and approved the manuscript.
-
Research funding: The authors are indebted to the Scientific and Technological Research Council of Turkey (TÜBITAK, Grant No. 112T881) and Ataturk University for their financial support of this work.
-
Conflict of interest statement: No potential conflict of interest was reported by the author(s).
References
1. Hilas, O., Ezzo, D. C., Jodlowski, T. Z. Doripenem (Doribax), a new carbapenem antibacterial agent. Pharmacol. Ther. 2018, 33, 134–136.Suche in Google Scholar
2. Barlier, A., Jaquet, P. Quinagolide--a valuable treatment option for hyperprolactinaemia. Eur. J. Endocrinol. 2006, 154, 187–195; https://doi.org/10.1530/eje.1.02075.Suche in Google Scholar PubMed
3. Di Fiore, A., De Simone, G., Alterio, V., Riccio, V., Winum, J. Y., Carta, F., Supuran, C. T. The anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog strongly inhibit carbonic anhydrases: solution and X-ray crystallographic studies. Org. Biomol. Chem. 2016, 14, 4853–4858; https://doi.org/10.1039/c6ob00803h.Suche in Google Scholar PubMed
4. Göksu, S., Naderi, A., Akbaba, Y., Kalin, P., Akincioǧlu, A., Gülçin, I., Durdagi, S., Salmas, R. E. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg. Chem. 2014, 56, 75–82; https://doi.org/10.1016/j.bioorg.2014.07.009.Suche in Google Scholar PubMed
5. Ax, A., Schaal, W., Vrang, L., Samuelsson, B., Hallberg, A., Karlén, A. Cyclic sulfamide HIV-1 protease inhibitors, with sidechains spanning from P2/P2′ to P1/P1′. Bioorg. Med. Chem. 2005, 13, 755–764; https://doi.org/10.1016/j.bmc.2004.10.042.Suche in Google Scholar PubMed
6. Brodney, M. A., Barreiro, G., Ogilvie, K., Hajos-Korcsok, E., Murray, J., Vajdos, F., Ambroise, C., Christoffersen, C., Fisher, K., Lanyon, L., Liu, J., Nolan, C. E., Withka, J. M., Borzilleri, K. A., Efremov, I., Oborski, C. E., Varghese, A., Oneill, B. T. Spirocyclic sulfamides as β-secretase 1 (BACE-1) inhibitors for the treatment of Alzheimers disease: utilization of structure based drug design, watermap, and cns penetration studies to identify centrally efficacious inhibitors. J. Med. Chem. 2012, 55, 9224–9239; https://doi.org/10.1021/jm3009426.Suche in Google Scholar PubMed
7. Bolli, M. H., Boss, C., Binkert, C., Buchmann, S., Bur, D., Hess, P., Iglarz, M., Meyer, S., Rein, J., Rey, M., Treiber, A., Clozel, M., Fischli, W., Weller, T. The discovery of N-[5-(4-bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N′ propylsulfamide (Macitentan), an orally active, potent dual endothelin receptor antagonist. J. Med. Chem. 2012, 55, 7849–7861; https://doi.org/10.1021/jm3009103.Suche in Google Scholar PubMed
8. Boufas, W., Dupont, N., Berredjem, M., Berrezag, K., Becheker, I., Berredjem, H., Aouf, N. E. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies. J. Mol. Struct. 2014, 1074, 180–185; https://doi.org/10.1016/j.molstruc.2014.05.066.Suche in Google Scholar
9. Chris Krueger, A., Madigan, D. L., Jiang, W. W., Kati, W. M., Liu, D., Liu, Y., Maring, C. J., Masse, S., McDaniel, K. F., Middleton, T., Mo, H., Molla, A., Montgomery, D., Pratt, J. K., Rockway, T. W., Zhang, R., Kempf, D. J. Inhibitors of HCV NS5B polymerase: synthesis and structure-activity relationships of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine sulfamides. Bioorg. Med. Chem. Lett. 2006, 16, 3367–3370; https://doi.org/10.1016/j.bmcl.2006.04.015.Suche in Google Scholar PubMed
10. Akincioglu, A., Akincioglu, H., Gülçin, I., Durdagi, S., Supuran, C. T., Göksu, S. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg. Med. Chem. 2015, 23, 3592–3602.10.1016/j.bmc.2015.04.019Suche in Google Scholar PubMed
11. Göcer, H., Akincioğlu, A., Göksu, S., Gülçin, I., Supuran, C. T. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J. Enzym. Inhib. Med. Chem. 2015, 30, 316–320; https://doi.org/10.3109/14756366.2014.928704.Suche in Google Scholar PubMed
12. Akıncıoğlu, A., Kocaman, E., Akıncıoğlu, H., Salmas, R. E., Durdagi, S., Gülçin, İ., Supuran, C. T., Göksu, S. The synthesis of novel sulfamides derived from β-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorg. Chem. 2017, 74, 238–250; https://doi.org/10.1016/j.bioorg.2017.08.012.Suche in Google Scholar
13. Guidez, J., May, R., Moss, R., Askienazy, S., Hildebrand, J. Neutron use in nuclear medicine. Radiol. Nucl. Med. 1999, 1, 10–14.Suche in Google Scholar
14. Morgan, W. F., Sowa, M. B. Non-targeted effects induced by ionizing radiation: Mechanisms and potential impact on radiation induced health effects. Cancer Lett. 2015, 356, 17–21. https://doi.org/10.1016/j.canlet.2013.09.009 Suche in Google Scholar
15. Kaewkhao, J., Korkut, T., Korkut, H., Aygün, B., Yasaka, P., Tuscharoen, S., Insiripong, S., Karabulut, A. Monte Carlo design and experiments on the neutron shielding performances of B2O3–ZnO–Bi2O3 glass system. Glass. Phys. Chem. 2017, 43, 560–563; https://doi.org/10.1134/s1087659617060050.Suche in Google Scholar
16. Sayyed, M. I. Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys. Compd. 2017, 695, 3191–3197; https://doi.org/10.1016/j.jallcom.2016.11.318.Suche in Google Scholar
17. Alım, B. Determination of radiation protection features of the Ag2O doped boro-tellurite glasses using Phy-X/PSD software. J. Inst. Sci. Technol. 2020, 10, 202–213; https://doi.org/10.21597/jist.640027.Suche in Google Scholar
18. Aygün, B., Şakar, E., Cinan, E., Yorgun, N. Y., Sayyed, M. I., Agar, O., Karabulut, A. Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiat. Phys. Chem. 2020, 174, 108897; https://doi.org/10.1016/j.radphyschem.2020.108897.Suche in Google Scholar
19. Cinan, E., Aygün, B., Sayyed, M. I., Özdemir, Y. Measurement of L X-ray production cross sections and relative intensities of some lanthanide compounds depending on the temperature. Radiochim. Acta. 2019, 108, 415–423; https://doi.org/10.1515/ract-2019-3198.Suche in Google Scholar
20. Rammah, Y. S., Özpolat, F., Alım, B., Şakar, E., El-Mallawany, R., El-Agawany, F. I. Assessment of gamma-ray attenuation features for La+3 co-doped zinc borotellurite glasses. Radiat. Phys. Chem. 2020, 176, 109069; https://doi.org/10.1016/j.radphyschem.2020.109069.Suche in Google Scholar
21. Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., Kurudirek, M. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496.10.1016/j.radphyschem.2019.108496Suche in Google Scholar
22. Delnavaz, A., Salavatiha, A., Kalhor, A. Effective parameters in gamma radiation transmission rate from heavy concrete with iron oxide and barite aggregates. J. Mater. Civ. Eng. 2017, 29, 04017140; https://doi.org/10.1061/(asce)mt.1943-5533.0001979.Suche in Google Scholar
23. Aygün, B. Neutron and gamma radiation shielding properties of high-temperature-resistant heavy concretes including chromite and wolframite. J. Radiat. Res. Appl. Sci. 2019, 12, 352–359; https://doi.org/10.1080/16878507.2019.1672312.Suche in Google Scholar
24. Khan, M. U., Ahmad, S., Naqvi, A. A., Al-Gahtani, H. J. Shielding performance of heavy-weight ultra-high-performance concrete against nuclear radiation. Prog. Nucl. Energy 2020, 130, 103550; https://doi.org/10.1016/j.pnucene.2020.103550.Suche in Google Scholar
25. Sayyed, M. I. Investigation of shielding parameters for smart polymers. Chin. J. Phys. 2016, 3, 408–415; https://doi.org/10.1016/j.cjph.2016.05.002.Suche in Google Scholar
26. Bel, T., Arslan, C., Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2019, 221, 58–67; https://doi.org/10.1016/j.matchemphys.2018.09.014.Suche in Google Scholar
27. Aygün, B., Şakar, E., Singh, V. P., Sayyed, M. I., Korkut, T., Karabulut, A. Experimental and Monte Carlo simulation study on potential new composite materials to moderate neutron-gamma radiation. Prog. Nucl. Energy 2020, 130, 103538; https://doi.org/10.1016/j.pnucene.2020.103538.Suche in Google Scholar
28. Nagaraja, N., Manjunatha, H. C., Seenappa, L., Sridhar, K. N., Ramalingam, H. B. Radiation shielding properties of silicon polymers. Radiat. Phys. Chem. 2020, 171, 108723; https://doi.org/10.1016/j.radphyschem.2020.108723.Suche in Google Scholar
29. Singh, V. P., Medhat, M. E., Shirmardi, S. P. Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem. 2015, 106, 255–260; https://doi.org/10.1016/j.radphyschem.2014.07.002.Suche in Google Scholar
30. Aygün, B., Şakar, E., Korkut, T., Sayyed, M. I., Karabulut, A., Zaid, M. H. M. Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results Phys. 2019, 12, 1–6; https://doi.org/10.1016/j.rinp.2018.11.038.Suche in Google Scholar
31. Alım, B., Şakar, E., Baltakesmez, A., Han, İ., Sayyed, M. I., Demir, L. Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: part I. Radiat. Phys. Chem. 2020, 166, 108455.10.1016/j.radphyschem.2019.108455Suche in Google Scholar
32. Aygün, B. High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 2020, 52, 647–653; https://doi.org/10.1016/j.net.2019.08.017.Suche in Google Scholar
33. Korkut, T., Aygün, B., Bayram, Ö., Karabulut, A. Study of neutron attenuation properties of super alloys with added rhenium. J. Radioanal. Nucl. Chem. 2015, 306, 119–122; https://doi.org/10.1007/s10967-015-4063-z.Suche in Google Scholar
34. Akman, F., Kaçal, M. R., Sayyed, M. I., Karataş, H. A. Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 2019, 782, 315–322; https://doi.org/10.1016/j.jallcom.2018.12.221.Suche in Google Scholar
35. Manjunatha, H. C., Sathish, K. V., Seenappa, L., Gupta, D., Cecil Raj, S. A. A study of X-ray, gamma and neutron shielding parameters in Si-alloys. Radiat. Phys. Chem. 2019, 165, 108414; https://doi.org/10.1016/j.radphyschem.2019.108414.Suche in Google Scholar
36. Şakar, E., Büyükyıldız, M., Alım, B., Şakar, B. C., Kurudirek, M. Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem. 2019, 159, 64–69.10.1016/j.radphyschem.2019.02.042Suche in Google Scholar
37. Reisz, J. A., Bansal, N., Qian, J., Zhao, W., Furdui, C. M. Effects of ionizing radiation on biological molecules – mechanisms of damage and emerging methods of detection. Antioxidants Redox Signal. 2014, 21, 260–292; https://doi.org/10.1089/ars.2013.5489.Suche in Google Scholar PubMed PubMed Central
38. Baldacchino, G., Brun, E., Denden, I., Bouhadoun, S., Roux, R., Khodja, H., Sicard-Roselli, C. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Nanotechnol. 2019, 10, 1–21; https://doi.org/10.1186/s12645-019-0047-y.Suche in Google Scholar
39. Alaylar, B., Aygün, B., Turhan, K., Karadayi, G., Şakar, E., Singh, V. P., Sayyed, M. I., Pelit, E., Karabulut, A., Güllüce, M., Turgut, Z., Isaoglu, M. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem. 2021, 184, 109471; https://doi.org/10.1016/j.radphyschem.2021.109471.Suche in Google Scholar
40. Jin-Song, W., Hai-Juan, W., Hai-Li, Q. Biological effects of radiation on cancer cells. Mil. Med. Res. 2018, 5, 20; https://doi.org/10.1186/s40779-018-0167-4.Suche in Google Scholar PubMed PubMed Central
41. Raviraj, J., Bokkasam, V. K., Kumar, V. S., Reddy, U. S., Suman, V. Radiosensitizers, radioprotectors, and radiation mitigators. Indian J. Dent. Res. 2014, 25, 83–90; https://doi.org/10.4103/0970-9290.131142.Suche in Google Scholar PubMed
42. Kuefner, M. A., Brand, M., Engert, C., Schwab, S. A., Uder, M. Radiation induced DNA double-strand breaks in radiology. Rofo 2015, 187, 872–878; https://doi.org/10.1055/s-0035-1553209.Suche in Google Scholar PubMed
43. Smith, T. A., Kirkpatrick, D. R., Smith, S., Smith, T. K., Pearson, T., Kailasam, A., Herrmann, K. Z., Schubert, J., Agrawal, D. K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med. 2017, 15, 232; https://doi.org/10.1186/s12967-017-1338-x.Suche in Google Scholar PubMed PubMed Central
44. Hosseinimehr, S. J. Potential utility of radioprotective agents in the practice of nuclear medicine. Cancer Biother. Radiopharm. 2009, 24, 723–731; https://doi.org/10.1089/cbr.2009.0635.Suche in Google Scholar PubMed
45. Jagetia, G. C., Shirwaikar, A., Rao, S. K., Bhilegaonkar, P. M. Evaluation of the radioprotective effect of Ageratum conyzoides Linn. extract in mice exposed to different doses of gamma radiation. J. Pharm. Pharmacol. 2003, 55, 1151–1158; https://doi.org/10.1211/0022357021576.Suche in Google Scholar PubMed
46. Jagetia, G. C., Venkatesh, P., Baliga, M. S. Evaluation of the radioprotective effect of bael leaf (Aegle marmelos) extract in mice. Int. J. Radiat. Biol. 2004, 80, 281–290; https://doi.org/10.1080/09553000410001679776.Suche in Google Scholar PubMed
47. Jagetia, G. C. Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr. 2007, 40, 74–81; https://doi.org/10.3164/jcbn.40.74.Suche in Google Scholar PubMed PubMed Central
48. Aygün, B., Alaylar, B., Turhan, K., Şakar, E., Karadayı, M., Sayyed, M. I., Pelit, E., Güllüce, M., Karabulut, A., Turgut, Z., Alım, B. Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Int. J. Radiat. Biol. 2020, 11, 1423–1434; https://doi.org/10.1080/09553002.2020.1811421.Suche in Google Scholar PubMed
49. Almenas, K., Lee, R., Almenas, K., Lee, R. Neutron interaction with matter. Nucl. Eng. 1992, 1, 53–82; https://doi.org/10.1007/978-3-642-48876-4_3.Suche in Google Scholar
50. El-Khayatt, A. M., Akkurt, I. Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann. Nucl. Energy 2013, 60, 8–14; https://doi.org/10.1016/j.anucene.2013.04.021.Suche in Google Scholar
51. Zhang, X., Yang, M., Zhang, X., Wu, H., Guo, S., Wang, Y. Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure. Compos. Sci. Technol. 2017, 150, 16–23; https://doi.org/10.1016/j.compscitech.2017.06.007.Suche in Google Scholar
52. Alım, B., Şakar, E., Han, İ., Sayyed, M. I. Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: part II. Radiat. Phys. Chem. 2020, 166, 108454.10.1016/j.radphyschem.2019.108454Suche in Google Scholar
53. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gomez Cadenas, J. J., Gonzalez, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F. W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M. G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J. P., Wenaus, T., Williams, D. C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D. GEANT4 – a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303; https://doi.org/10.1016/s0168-9002(03)01368-8.Suche in Google Scholar
54. Tuğcu, F. T., Turhan, K., Karadayi, M., Güllüce, M. Synthesis of 4-thiazolidinone derivatives and assessment of their toxicological properties. Rom. Biotechnol. Lett. 2018, 23, 13276–13286.Suche in Google Scholar
55. Turhan, K., Ozturkcan, S. A., Turgut, Z., Karadayi, M., Gulluce, M. Protective properties of five newly synthesized cyclic compounds against sodium azide and N-methyl-N′-nitro-N-nitrosoguanidine genotoxicity. Toxicol. Ind. Health 2012, 28, 605–613; https://doi.org/10.1177/0748233711416954.Suche in Google Scholar
56. Mortelmans, K., Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000, 455, 29–60; https://doi.org/10.1016/s0027-5107(00)00064-6.Suche in Google Scholar
57. Maron, D., Ames, B. N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215; https://doi.org/10.1016/0165-1161(83)90010-9.Suche in Google Scholar
58. Turhan, K., Ozturkcan, S. A., Turgut, Z., Karadayi, M., Aslan, A., Gulluce, M. Genotoxic and antigenotoxic assessment of four newly synthesized dihydropyridine derivatives. Toxicol. Ind. Health 2014, 30, 275–783; https://doi.org/10.1177/0748233712456060.Suche in Google Scholar PubMed
59. Ozturkcan, S. A., Turhan, K., Turgut, Z., Karadayi, M., Gulluce, M. Ultrasonic synthesis, characterization of β-aminoketones by bismuth(III) triflate and determination of antigenotoxic properties. Toxicol. Ind. Health 2015, 31, 911–919; https://doi.org/10.1177/0748233713484649.Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste
- A new way to ensure selective zirconium ion adsorption
- Determination of radioprotective and genotoxic properties of sulfamide derivatives
- Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model
- Instrumental neutron activation analysis (INAA) of zinc concentrations in scalp hair and fingernails samples of Algerian females with breast cancer
- Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan
- Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste
- A new way to ensure selective zirconium ion adsorption
- Determination of radioprotective and genotoxic properties of sulfamide derivatives
- Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model
- Instrumental neutron activation analysis (INAA) of zinc concentrations in scalp hair and fingernails samples of Algerian females with breast cancer
- Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan
- Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey