Abstract
Distribution of natural and anthropogenic radionuclides (226Ra, 232Th, 137Cs and 40K) was determined in 32 samples from Ghizer, an Eastern Hindukush district at an altitude of 2286 m in Pakistan using high resolution gamma-ray spectrometry. Mineralogical analysis by X-ray diffractometry identified quartz, calcite, albite and anorthite as major phases whereas actinolite, chlorite serpentine and kaolinite as minor phases. The activity concentrations for 226Ra, 232Th, 137Cs and 40K varied from 25.2 ± 1.7 to 145.3 ± 10.1 Bq kg−1, 24.9 ± 1.1 to 197 ± 9 Bq kg−1, 2.03 ± 0.21 to 16.7 ± 1.1 and 252 ± 6 to 1433 ± 35 Bq kg−1, respectively. The samples yielded average radium equivalent activity as 178.4 ± 23.3 Bq kg−1. The majority of the samples revealed external hazard index and representative level index less than one. The average air absorbed dose rate was 91.2 ± 13.6 nGy h−1 corresponding to the annual effective dose rate 111.8 ± 17.4 μSv y−1. These values were higher than the world averages for air absorbed dose rate and outdoor annual effective dose rate. Principal component analysis was applied to obtain distribution pattern within the samples and among the radionuclides.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shahbazi-Gahrouei, D., Gholami, M., Setayandeh, S. A review on natural background radiation. Adv. Biomed. Res. 2013, 2, 65; https://doi.org/10.4103/2277-9175.115821.Suche in Google Scholar
2. United Nations. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR-2000, Effects of Atomic Radiation to the General Assembly with Scientific Annaexes; UNSCEAR: New York, 1, 2000.Suche in Google Scholar
3. Kabata-Pendias, A. Trace Elements in Soils and Plants; Taylor & Francis: New York, 2011.10.1201/b10158Suche in Google Scholar
4. Hedrick, J. B. The global rare-earth cycle. J. Alloys Compd. 1995, 225, 609; https://doi.org/10.1016/0925-8388(94)07134-9.Suche in Google Scholar
5. Borrero, F., Hess, F. S., Hsu, J., Kunze, G., Leslie, S. A., Letro, S., Manga, M., Sharp, L., Snow, T., Zike, D. Earth Science; McGraw-Hill: New York, 2008.Suche in Google Scholar
6. Orgün, Y., Altinsoy, N., Sahin, S. Y., Güngör, Y., Gültekin, A. H., Karahan, G., Karacik, Z. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey. Appl. Radiat. Isot. 2007, 65, 739; https://doi.org/10.1016/j.apradiso.2006.06.011.Suche in Google Scholar PubMed
7. Carvalho, C., Anjos, R. M., Veiga, R., Macario, K. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. J. Environ. Radioact. 2011, 102, 185; https://doi.org/10.1016/j.jenvrad.2010.11.011.Suche in Google Scholar PubMed
8. Yasmin, S., Barua, B. S., Khandaker, M. S., Kamal, M., Rashid, M. A., Sani, S. F. A., Ahmed, H., Nikouravan, B., Bradley, D. A. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results Phys. 2018, 8, 1268; https://doi.org/10.1016/j.rinp.2018.02.013.Suche in Google Scholar
9. Ramasamy, V., Sundarrajan, M., Suresh, G., Paramasivam, K., Meenakshisundaram, V. Role of light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India. Appl. Radiat. Isot. 2014, 85, 1; https://doi.org/10.1016/j.apradiso.2013.11.119.Suche in Google Scholar PubMed
10. Ramasamy, V., Paramasivam, K., Suresh, G., Jose, M. T. Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India–spectroscopical approach. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 117, 340; https://doi.org/10.1016/j.saa.2013.08.022.Suche in Google Scholar PubMed
11. Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., Ponnusamy, V. A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar river sediments, India. J. Environ. Radioact. 2011, 102, 370; https://doi.org/10.1016/j.jenvrad.2011.02.003.Suche in Google Scholar PubMed
12. Biegalski, S. R., Hosticka, B., Mason, L. R. Cesium-137 concentrations, trends, and sources observed in Kuwait City, Kuwait. J. Radioanal. Nucl. Chem. 2001, 248, 643; https://doi.org/10.1023/a:1010676208657.10.1023/A:1010676208657Suche in Google Scholar
13. Hardy, M. X-ray diffraction measurement of the quartz content of clay and silt fractions in soils. Clay Miner. 1992, 27, 47; https://doi.org/10.1180/claymin.1992.027.1.05.Suche in Google Scholar
14. Ali, M., Bano, S., Qureshi, J. A., Wasim, M., Khan, G., Begum, F., Alama, M. Indoor and outdoor gamma radiation level in mud and concrete houses and the annual effective dose and excess life time cancer risk in Gahkuch Ghizer valley of Hindukush Range. J. Himal. Earth Sci. 2019, 52, 177.Suche in Google Scholar
15. Wasim, M., Arif, M. Statistical data analysis of gamma-ray background spectra for quality assurance purposes. Nucleus 2010, 47, 55.Suche in Google Scholar
16. Wasim, M. GammaLab: a suite of programs for k0-NAA and gamma-ray spectrum analysis. J. Radioanal. Nucl. Chem. 2010, 285, 337; https://doi.org/10.1007/s10967-010-0562-0.Suche in Google Scholar
17. Zeb, J., Wasim, M., Rashid, A., Arshed, W. Radiological mapping of the area around two research reactors in Islamabad. J. Radioanal. Nucl. Chem. 2015, 306, 451; https://doi.org/10.1007/s10967-015-4200-8.Suche in Google Scholar
18. Ali, M., Wasim, M., Arif, M., Zaidi, J. H., Anwar, Y., Saif, F. Determination of the natural and anthropogenic radioactivity in the soil of Gilgit—a town in the foothills of Hindukush range. Health Phys. 2010, 98(Suppl. 2), S69; https://doi.org/10.1097/hp.0b013e3181c9f0a9.Suche in Google Scholar
19. Gilmore, G. Practical Gamma-ray Spectroscopy; Wiley: New York, 2011.Suche in Google Scholar
20. Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi, R. QUALX2. 0: a qualitative phase analysis software using the freely available database POW_COD. J. Appl. Crystallogr. 2015, 48, 598; https://doi.org/10.1107/s1600576715002319.Suche in Google Scholar
21. Beretka, J., Mathew, P. J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87; https://doi.org/10.1097/00004032-198501000-00007.Suche in Google Scholar PubMed
22. Khan, R., Islam, H. M. T., Islam, A. Mechanism of elevated radioactivity in Teesta river basin from Bangladesh: radiochemical characterization, provenance and associated hazards. Chemosphere 2021, 264, 128459; https://doi.org/10.1016/j.chemosphere.2020.128459.Suche in Google Scholar PubMed
23. Habib, M. A., Basuki, T., Miyashita, S., Bekelesi, W., Nakashima, S., Phoungthong, K., Khan, R., Rashid, M. B., Islam, A. R. M. T., Techato, K. Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim. Acta 2019, 107, 243; https://doi.org/10.1515/ract-2018-3044.Suche in Google Scholar
24. Lu, X., Zhang, X., Wang, F. Natural radioactivity in sediment of Wei river. Chin. Environ. Geol. 2007, 53, 1475; https://doi.org/10.1007/s00254-007-0756-0.Suche in Google Scholar
25. Veiga, R., Sanches, N., Anjos, R. M., Macario, K., Bastos, J., Iguatemy, M., Aguiar, J. G., Santos, A. M. A., Mosquera, B., Carvalho, C., Baptista Filho, M., Umisedo, N. K. Measurement of natural radioactivity in Brazilian beach sands. Radiat. Meas. 2006, 41, 189; https://doi.org/10.1016/j.radmeas.2005.05.001.Suche in Google Scholar
26. ICRP. Recommendations of the International Commission on Radiological Protection; ICRP Publication No. 60, 1991.Suche in Google Scholar
27. Miller, J. N., Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Education Limited: Essex, 2005.Suche in Google Scholar
28. Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; Wiley: Chichester, 2003.10.1002/0470863242Suche in Google Scholar
29. Ahsan, M. A., Satter, F., Siddique, M. A. B., Akbor, M. A., Ahmed, S., Shajahan, M., Khan, R. Chemical and physicochemical characterization of effluents from the tanning and textile industries in Bangladesh with multivariate statistical approach. Environ. Monit. Assess. 2019, 191, 1; https://doi.org/10.1007/s10661-019-7654-2.Suche in Google Scholar PubMed
30. Eisenbud, M., Gesell, T. Environmental Radioactivity from Natural, Industrial, and Military Sources; Academic Press: San Diego, CA, 1997.10.1016/B978-012235154-9/50010-4Suche in Google Scholar
31. Malczewski, D., Teper, L., Dorda, J. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environs of Swieradow Zdroj in Sudetes, Poland, by in situ gamma-ray spectrometry. J. Environ. Radioact. 2004, 73, 233; https://doi.org/10.1016/j.jenvrad.2003.08.010.Suche in Google Scholar PubMed
32. Shah, S. A., Wasim, M. Mass attenuation coefficients of IAEA soil standards at different gamma-ray energies. Nucleus 2020, 57, 62.Suche in Google Scholar
33. Chambers, J. M., Cleveland, W. S., Tukey, P. A., Kleiner, B. Graphical Methods for Data Analysis; Wadsworth & Brooks: Cole, CA, 1983.Suche in Google Scholar
34. Zeb, J., Wasim, M., Awais, M., Ullah, A., Iqbal, T., Akhtar, S. Evaluation of indoor/outdoor gamma exposure rates and excess life time cancer risk in different cities of Pakistan. Radiat. Protect. Dosim. 2020, 190, 355; https://doi.org/10.1093/rpd/ncaa115.Suche in Google Scholar PubMed
35. Ali, M., Iqbal, S., Wasim, M., Arif, M., Saif, F. Soil radioactivity levels and radiological risk assessment in the highlands of Hunza, Pakistan. Radiat. Protect. Dosim. 2012, 153, 390; https://doi.org/10.1093/rpd/ncs102.Suche in Google Scholar PubMed
36. Wasim, M., Ali, M., Iqbal, S. Assessment of the risk associated with the gamma-emitting radionuclides from the soil of two cities in Central Karakorum. J. Radioanal. Nucl. Chem. 2015, 303, 985; https://doi.org/10.1007/s10967-014-3613-0.Suche in Google Scholar
37. Ali, M., Wasim, M., Iqbal, S., Arif, M., Saif, F. Determination of the risk associated with the natural and anthropogenic radionuclides from the soil of Skardu in Central Karakoram. Radiat. Protect. Dosim. 2013, 156, 213; https://doi.org/10.1093/rpd/nct057.Suche in Google Scholar PubMed
38. Tahir, S., Jamil, K., Zaidi, J., Arif, M., Ahmed, N., Ahmad, S. A. Measurements of activity concentrations of naturally occurring radionuclides in soil samples from Punjab province of Pakistan and assessment of radiological hazards. Radiat. Protect. Dosim. 2005, 113, 421; https://doi.org/10.1093/rpd/nch484.Suche in Google Scholar PubMed
39. Tufail, M., Asghar, M., Akram, M., Javied, S., Khan, K., Mujahid, S. A. Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. J. Radioanal. Nucl. Chem. 2013, 298, 1085; https://doi.org/10.1007/s10967-013-2619-3.Suche in Google Scholar
40. Kumar, A., Vij, R., Sharma, S., Sarin, A., Narang, S. Assessment of radionuclide concentration and exhalation studies in soil of lesser Himalayas of Jammu and Kashmir, India. Acta Geophys. 2018, 66, 1195; https://doi.org/10.1007/s11600-018-0119-0.Suche in Google Scholar
41. Miah, F. K., Roy, S., Touhiduzzaman, M., Alam, B. Distribution of radionuclides in soil samples in and around Dhaka City. Appl. Radiat. Isot. 1998, 49, 133; https://doi.org/10.1016/s0969-8043(97)00232-7.Suche in Google Scholar
42. Lu, J., Huang, Y., Li, F., Wang, L., Li, S., Hsia, Y. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J. Environ. Radioact. 2006, 90, 89; https://doi.org/10.1016/j.jenvrad.2006.06.002.Suche in Google Scholar
43. Kamath, R. R., Menon, M. R., Shukla, V. K., Sadasivan, S., Nambi, K. S. V. Natural and fallout radioactivity measure of Indian soils by gamma spectrometric technique. In Fifth National Symposium on Environmental Issues Related to Mining, Milling and Metallurgy, Calcutta, India, 1996.Suche in Google Scholar
44. Abdi, M. R., Faghihian, H., Mostajaboddavati, M., Hasanzadeh, A., Kamali, M. Distribution of natural radionuclides and hot points in coasts of Hormozgan, Persian Gulf, Iran. J. Radioanal. Nucl. Chem. 2006, 270, 319; https://doi.org/10.1007/s10967-006-0351-y.Suche in Google Scholar
45. Saad, H. R., Al-Azmi, D. Radioactivity concentrations in sediments and their correlation to the coastal structure in Kuwait. Appl. Radiat. Isot. 2002, 56, 991; https://doi.org/10.1016/s0969-8043(02)00061-1.Suche in Google Scholar
46. Marčiulionienė, D., Lukšienė, B., Montvydienė, D., Jefanova, O., Mažeika, J., Taraškevičius, R., Stakėnienė, R., Petrošius, R., Maceika, E., Tarasiuk, N., Žukauskaitė, Z. 137Cs and plutonium isotopes accumulation/retention in bottom sediments and soil in Lithuania: a case study of the activity concentration of anthropogenic radionuclides and their provenance before the start of operation of the Belarusian Nuclear Power Plant (NPP). J. Environ. Radioact. 2017, 178, 253; https://doi.org/10.1016/j.jenvrad.2017.07.024.Suche in Google Scholar PubMed
47. Karakelle, B., Ozturk, N., Kose, A., Varinlioglu, A., Erkol, A. Y., Yılmaz, F. Natural radioactivity in soil samples of Kocaeli Basin, Turkey. J. Radioanal. Nucl. Chem. 2002, 254, 649; https://doi.org/10.1023/a:1021635415222.10.1023/A:1021635415222Suche in Google Scholar
48. Gastberger, M., Steinhäusler, F., Gerzabek, M. H., Hubmer, A., Lettner, H. 90Sr and 137Cs in environmental samples from Dolon near the Semipalatinsk nuclear test site. Health Phys. 2000, 79, 257; https://doi.org/10.1097/00004032-200009000-00005.Suche in Google Scholar PubMed
49. Plant, J.A., Saunders, A. D. The radioactive earth. Radiat. Protect. Dosim. 1996, 68, 25; https://doi.org/10.1093/oxfordjournals.rpd.a031847.Suche in Google Scholar
50. Zeb, J., Wasim, M., Shah, S. A., Khanam, S., Tahir, H., Qadri, M. Characterization of sand samples from Karachi beaches using gamma spectrometry and XRD. Radiat. Protect. Dosim. 2020, 189, 234; https://doi.org/10.1093/rpd/ncaa035.Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste
- A new way to ensure selective zirconium ion adsorption
- Determination of radioprotective and genotoxic properties of sulfamide derivatives
- Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model
- Instrumental neutron activation analysis (INAA) of zinc concentrations in scalp hair and fingernails samples of Algerian females with breast cancer
- Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan
- Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste
- A new way to ensure selective zirconium ion adsorption
- Determination of radioprotective and genotoxic properties of sulfamide derivatives
- Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model
- Instrumental neutron activation analysis (INAA) of zinc concentrations in scalp hair and fingernails samples of Algerian females with breast cancer
- Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan
- Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey