Home Preparation, biological evaluation and radiolabeling of [99mTc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice
Article
Licensed
Unlicensed Requires Authentication

Preparation, biological evaluation and radiolabeling of [99mTc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice

  • M. H. Sanad EMAIL logo , Fawzy A. Marzook , Ayman B. Farag EMAIL logo , Sudip Kumar Mandal , Syed F. A. Rizvi and Jeetendra Kumar Gupta
Published/Copyright: January 31, 2022

Abstract

This study focuses on the synthesis and preliminary bio-evaluation of [99mTc]-technetium tricarbonyl procainamide ([99mTc]-technetium tricarbony PA) as a viable cardiac imaging agent. The compound, [99mTc]-technetium tricarbony PA, was synthesized by labelling procainamide with a [99mTc]-technetium tricarbonyl core, yielding a high radiochemical yield and radiochemical purity of 98%. Under optimal circumstances, high radiochemical yield and purity were obtained utilizing [99mTc]-technetium tricarbonyl core within 30 min of incubation at pH 9, 200 µg substrate concentration, and 100 °C reaction temperature. The heart showed a high absorption of 32.39 ± 0.88% of the injected dose/g organ (ID/g), confirming the suitability of [99mTc]-technetium tricarbonyl PA as a viable complex for heart imaging.


Corresponding author: M. H. Sanad, Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt; and Department of Physics and Engineering Mathematics, Faculty of Engineering, Ain Shams University, P.O. Box 11566, Cairo, Egypt; and Ayman B. Farag, Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt, E-mail: (M.H.S), (A.B.F)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Koch-Weser, J., Klein, S. W. Procainamide dosage schedules, plasma concentrations, and clinical effects. J. Am. Med. Assoc. 1971, 215, 1454; https://doi.org/10.1001/jama.1971.03180220036006.Search in Google Scholar

2. Bigger, J. T., Heissenbuttel, R. H. The use of procaineamide and lidocaine in the treatment of cardiac arrhythmias. Prog. Cardiovasc. Dis. 1969, 11, 515; https://doi.org/10.1016/0033-0620(69)90004-8.Search in Google Scholar

3. Koch-Weser, J. Antiarrhythmic prophylaxis in ambulatory patients with coronary heart disease. Arch. Intern. Med. 1972, 129, 763; https://doi.org/10.1001/archinte.1972.00320050087009.Search in Google Scholar

4. Interian, A., Zaman, L., Velez-Robinson, E., Kozlovskis, P., Castel-Lanos, A., Myerburg, R. J. Paired comparisons of efficacy of intravenous and oral procainamide in patients with inducible sustained ventricular tachyarrhythmias. J. Am. Coll. Cardiol. 1991, 17, 1581; https://doi.org/10.1016/0735-1097(91)90651-o.Search in Google Scholar

5. Brugada, R., Brugada, J., Antzelevitch, C., Kirsch, G. E., Potenza, D., Towbin, J. A., Brugada, P. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000, 101, 510; https://doi.org/10.1161/01.cir.101.5.510.Search in Google Scholar

6. Mian, M. S., El-Obeid, H. A., Al-Badr, A. A. In H. G. Brittain (Ed.), Analytical Profiles of Drug Substances and Excipients. Academic Press: California, 26, 1–508, 1999.10.1016/S0099-5428(08)60620-6Search in Google Scholar

7. Mikołajczak, R., Garnuszek, P. Radiopharmaceuticals in cardiology. Nucl. Med. Rev. Cent. E Eur. 2012, 15, 39.10.5603/NMR.2012.0008Search in Google Scholar

8. Baggish, A. L., Boucher, C. A. Radiopharmaceutical agents for myocardial perfusion imaging. Circulation 2008, 118, 1668; https://doi.org/10.1161/circulationaha.108.778860.Search in Google Scholar

9. Gibbons, R. J. Myocardial perfusion imaging. Heart 2000, 83, 355; https://doi.org/10.1136/heart.83.3.355.Search in Google Scholar PubMed PubMed Central

10. Jovanović, V., Maksin, T., Konstantinovska, D., Zmbova, B., Čvorić, J. Radiochemical quality control of 99mTc-labelled radiopharmaceuticals. J. Radioanal. Nucl. Chem. 1980, 59, 239.10.1007/BF02516852Search in Google Scholar

11. Yurt Kilcar, A., Biber Muftuler, F. Z. Crucial role of radio-chromatography in clinical chemistry of nuclear medicine and radiopharmaceutical research. Austin Chromatogr. 2014, 1, 2.Search in Google Scholar

12. Arano, Y. Recent advances in 99mTc radiopharmaceuticals. Ann. Nucl. Med. 2002, 16, 79; https://doi.org/10.1007/bf02993710.Search in Google Scholar PubMed

13. Zolle, I. Technetium-99m Pharmaceuticals: Preparation and Quality Control in Nuclear Medicine; Springer: New York, 2007.10.1007/978-3-540-33990-8Search in Google Scholar

14. Guo, H. X., Zhang, J. B., Ma, Z., Wang, Z. B. Synthesis and biodistribution of 99mTcN-isopentyl xanthate as a potential myocardial perfusion imaging agent. J. Radioanal. Nucl. Chem. 2008, 275, 121; https://doi.org/10.1007/s10967-007-6994-5.Search in Google Scholar

15. Chen, X., Guo, Y., Zhang, Q., Hao, G., Jia, H., Liu, B. Preparation and biological evaluation of 99mTc-CO-MIBI as myocardial perfusion imaging agent. J. Organomet. Chem. 2008, 693, 1822; https://doi.org/10.1016/j.jorganchem.2008.02.006.Search in Google Scholar

16. Hatada, K., Riou, L. M., Ruiz, M., Yamamichi, Y., Duatti, A., Lima, R. L., Goode, R. A., Watson, D. D., Beller, G. A., Glover, D. K. 99mTc-N-DBODC5, a new myocardial perfusion imaging agent with rapid liver clearance: comparison with 99mTc-sestamibi and 99mTc-tetrofosmin in rats. J. Nucl. Med. 2004, 45, 2095.Search in Google Scholar

17. Hao, G. Y., Zang, J. Y., Zhu, L., Guo, Y. Z., Liu, B. L. Synthesis, separation and biodistribution of 99mTc-CO-MIBI complex. J. Label. Compd. Radiopharm. 2004, 47, 513; https://doi.org/10.1002/jlcr.839.Search in Google Scholar

18. Sanad, M. H., Sallam, K. M., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J. Label. Compd. Radiopharm. 2016, 59, 484; https://doi.org/10.1002/jlcr.3435.Search in Google Scholar PubMed

19. Sanad, M. H., Ebtisam, A. M., Safaa, B. C. Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging. Radiochim. Acta 2018, 106, 329; https://doi.org/10.1515/ract-2017-2830.Search in Google Scholar

20. Ibrahim, I. T., Sanad, M. H. Radiolabeling and biological evaluation of losartan as a possible cardiac imaging agent. Radiochemistry 2013, 55, 336; https://doi.org/10.1134/s1066362213030168.Search in Google Scholar

21. Tamer, M. S., Sanad, M. H., Walaa, H. A., Dina, H. S., Gehan, M. S. Radioiodinated esmolol as a highly selective radiotracer for myocardial perfusion imaging: in silico study and preclinical evaluation. Appl. Radiat. Isot. 2018, 137, 41.10.1016/j.apradiso.2018.03.006Search in Google Scholar PubMed

22. Safaa, B. C., Fawzy, A. M., Ayman, M. Synthesis of radioiodinated carnosine for hepatotoxicity imaging induced by carbon tetrachloride and its biological assessment in rats. Radiochim. Acta 2021, 108, 397.10.1515/ract-2019-3162Search in Google Scholar

23. Massoud, A., Challan, S. B., Maziad, N. Characterization of polyvinylpyrrolidone (PVP) with technetium-99m and its accumulation in mice. J. Macromol. Sci. A. 58, 408–418. https://doi.org/10.1134/s1066362218030141.Search in Google Scholar

24. Mathur, A., Mallia, M. B., Subramanian, S., Banerjee, S., Kothari, K., Dhotare, B., Sarmad, H. D., Venkatesh, M. 99mTc-N complexes of tertbutyl dithiocarbamate and methoxyisobutyl dithiocarbamate as myocardial and brain imaging agents. Nucl. Med. Commun 2005, 26, 1013; https://doi.org/10.1007/s10967-011-1303-8.Search in Google Scholar

25. Farid, O. M, Ojovan, M. I., Massoud, A., Shokry, S., Rahman, R. O. Abdel. An Assessment of Initial Leaching Characteristics of Alkali-Borosilicate Glasses for Nuclear Waste Immobilization. Mater. 2019, 12, 1462; https://doi.org/10.4236/ns.2013.54066.Search in Google Scholar

26. Bissessor, N., White, H. Valsartan in the treatment of heart failure or left ventricular dysfunction after myocardial infarction. Vasc. Health Risk Manag. 2007, 3, 425.Search in Google Scholar

27. Mohammed El-Sharawy, D. M. Radioiodination and Bioevaluation of Some Cardiovascular Drugs for Nuclear Medicine Application. Thesis, Department of Pharmaceutics &Industrialpharmacy Faculty of Pharmacy. Cairo University, Egypt, 2013.Search in Google Scholar

28. Massoud, A., Mahmoud, H. H. Evaluation of hybrid polymeric resin containing nanoparticles of iron oxide for selective separation of In (III) from Ga (III). J. Inorg. Organomet. Polym 2017, 27, 1806; https://doi.org/10.1515/ract-2015-2558.Search in Google Scholar

29. Tejería, M. E., Giglio, J., Dematteis, S., Ana, R. A. Development and characterization of a 99mTc-tricarbonyl–labelled estradiol derivative obtained by “Click Chemistry” with potential application in estrogen receptors imaging. J. Label. Compd. Radiopharm. 2017, 60, 521–527.10.1002/jlcr.3527Search in Google Scholar PubMed

30. Kothari, K., Joshi, S., Venkatesh, M., Ramamoorthy, N., Pillai, M. R. A. Synthesis of 99mTc(CO)3-mebrofenin via 99mTc- [(CO)3(H2O)3]+, precursor and comparative pharmacokinetics studies with 99mTc-mebrofenin. J. Label. Compd. Radiopharm. 2003, 46, 633; https://doi.org/10.1002/jlcr.704.Search in Google Scholar

31. Satpati, D., Mallia, M., Kothari, K., Pillai, M. R. A. Comparative evaluation of 99mTc- [(CO)3(H2O)3]+ precursor synthesized by conventional method and by using carbonyl kit. J. Label. Compd. Radiopharm. 2004, 47, 657; https://doi.org/10.1002/jlcr.852.Search in Google Scholar

32. He, H., Morley, J. E., Twamley, B., Groeneman, R. H., Bucar, D. K., MacGillivray, L. R., Benny, P. D. Investigation of the coordination interactions of S-(pyridin-2-ylmethyl)-L-cysteine ligands with M(CO)3 (M=Re, 99mTc). Inorg. Chem. 2009, 48, 10625–10634; https://doi.org/10.1021/ic901159r.Search in Google Scholar PubMed

33. Jeffrey, K., Malgorzata, L., Andrew, T. T., Luigi, G. M. Synthesis and characterization of fac-Re(CO)3-aspartic-Nmonoacetic acid, a structural analogue of a potential new renal tracer, fac-99mTc(CO)3(ASMA). Eur. J. Inorg. Chem. 2012, 2012, 4334; https://doi.org/10.1002/ejic.201200599.Search in Google Scholar PubMed PubMed Central

34. Alberto, R., Schibli, R., Schubiger, A. P. First application of fac [99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure and invitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J. Am. Chem. Soc. 1999, 121, 6076; https://doi.org/10.1021/ja990765a.Search in Google Scholar

35. Sanad, M. H., El-Bayoumy, A. S. A., Ibrahim, A. A. Comparative biological evaluation between 99mTc(CO)3 and 99mTc-Sn (II) complexes of novel quinoline derivative: a promising infection radiotracer. J. Radioanal. Nucl. Chem. 2017, 311, 1; https://doi.org/10.1007/s10967-016-4945-8.Search in Google Scholar

36. Malgorzata, L., Jeffrey, K., Luigi, G., Marzilli, A., Taylor, T. Preclinical evaluation of 99mTc (CO)3-aspartic-N-monoacetic acid, 99mTc(CO)3(ASMA), a new renal radiotracer with pharmacokinetic properties comparable to 131I-OIH. J. Nucl. Med. 2012, 53, 1277.10.2967/jnumed.111.102236Search in Google Scholar

37. Sanad, M. H., Emad, H. B. Comparative biological evaluation between 99mTc tricarbonyl and 99mTc-Sn(II) levosalbutamol as a β2-adrenoceptor agonist. Radiochim. Acta 2015, 103, 879; https://doi.org/10.1515/ract-2015-2428.Search in Google Scholar

38. Rhodes, B. A. Considerations in the radiolabeling of albumin. Semin. Nucl. Med. 1974, 4, 281; https://doi.org/10.1016/s0001-2998(74)80015-2.Search in Google Scholar

39. Hupf, H. B., Eldridge, J. S., Beaver, J. E. Production of iodine-123 for medical applications. Int. J. Appl. Radiat. Isot. 1968, 19, 345; https://doi.org/10.1016/0020-708x(68)90178-6.Search in Google Scholar

40. Amin, A. M., Sanad, M. H., Abd-Elhaliem, S. M. Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 2013, 55, 624; https://doi.org/10.1134/s1066362213060118.Search in Google Scholar

41. Yuan, Z., Yue, W., Syed, F., Askari, R., Yida, Z., Yintang, Z., Xiaoyan, L., Haixia, Z. Detection of DNA 3′-phosphatase activity based on exonuclease III-assisted cascade recycling amplification reaction. J. Talanta 2019, 204, 499; https://doi.org/10.1016/j.talanta.2019.06.027.Search in Google Scholar PubMed

42. Siddons, C. J. Metal Ion Complexing Properies of Amide Donating Ligands. Doctoral Dissertation, University of North Carolina, Wilmington, 2004.Search in Google Scholar

43. Massoud, A., Waly, S. A., Abou El-Nour, F., Removal of U (VI) from simulated liquid waste using synthetic organic resin. Radiochemistry 2017, 59, 272–279.10.1134/S1066362217030092Search in Google Scholar

44. Sanad, M. H. Labeling and biological evaluation of 99mTc-azithromycin for infective inflammation diagnosis. Radiochemistry 2013, 55, 539544.10.1134/S1066362213050159Search in Google Scholar

45. Sanad, M. H. Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 2013, 55, 605609.10.1134/S1066362213060076Search in Google Scholar

46. Sanad, M. H. Novel radiochemical and biological characterization of 99mTc-histamine as a model for brain imaging. J. Anal. Sci.Technol. 2014, 5, 23.10.1186/s40543-014-0023-4Search in Google Scholar

47. Sanad, M. H., El-Tawoosy, M. Labeling of ursodeoxycholic acid with Technetium-99m for hepatobiliary imaging. J. Radioanal. Nucl. Chem. 2013, 298, 11051109.10.1007/s10967-013-2512-0Search in Google Scholar

48. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m pantoprazole. Radiochemistry 2013, 55, 341345.10.1134/S106636221303017XSearch in Google Scholar

49. Motaleb, M. A., Adli, A. S. A., El-Tawoosy, M., Sanad, M. H., AbdAllah, M. An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J.Label Compd. Radiopharm. 2016, 59, 157163.10.1002/jlcr.3384Search in Google Scholar PubMed

50. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m labeled rabeprazole. Radiochemistry 2015, 57, 425430.10.1134/S1066362215040165Search in Google Scholar

51. Sanad, M. H., Salama, D. H., Marzook, F. A. Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution. Radiochim. Acta 2017, 105, 389–398.10.1515/ract-2016-2683Search in Google Scholar

52. Abdel-Ghaney, I. Y., Sanad, M. H. Synthesis of 99mTc-erythromycin complex as a model for infection sites imaging. Radiochemistry 2013, 55, 418–422.10.1134/S1066362213040139Search in Google Scholar

53. Borai, E. H., Sanad, M. H., Fouzy, A. S. M. Optimized chromatographic separation and biological evaluation of 99mTc-clarithromycin for infective inflammation diagnosis. Radiochemistry 2016, 58, 84–91.10.1134/S1066362216010136Search in Google Scholar

54. Sanad, M. H., Challan, S. B. Radioiodination and biological evaluation of rabeprazole as a peptic ulcer localization radiotracer. Radiochemistry 2017, 59, 307–312.10.1134/S1066362217030158Search in Google Scholar

55. Sanad, M. H., Saleh, G. M., Marzook, F. A. Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection. J. Label. Compd. Radiopharm. 2017, 60, 600–607.10.1002/jlcr.3541Search in Google Scholar PubMed

56. El-Kawy, O., Sanad, M. H., Marzook, F. 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: labelling, characterisation and biological evaluation. J.Radioanal. Nucl. Chem. 2016, 308, 279–286.10.1007/s10967-015-4338-4Search in Google Scholar

57. Sanad, M. H., Amin, A. M. Optimization of labeling conditions and bioevalution of 99mTc-meloxicam for inflammation imaging. Radiochemistry 2013, 55, 521–526.10.1134/S1066362213050123Search in Google Scholar

58. Sanad, M. H., Talaat, H. M. Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole. Radiochemistry 2017, 59, 396–401.10.1134/S1066362217040129Search in Google Scholar

59. Sanad, M. H., Alhussein, A. I. Preparation and biological evaluation of 99mTc-N-histamine as a model for brain imaging: in silico study and preclinical evaluation. Radiochim. Acta 2018, 106, 229–238.10.1515/ract-2017-2804Search in Google Scholar

60. Sanad, M. H., Farouk, N., Fouzy, A. S. M. Radiocomplexation and bioevaluation of 99mTc-nitrido-piracetam as a model for brain imaging. Radiochim. Acta 2017, 105, 729–737.10.1515/ract-2016-2714Search in Google Scholar

61. Sanad, M. H., Sakr, T. M., Walaa, H. A. A., Marzook, E. A. In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors. J. Radioanal. Nucl.Chem., 2017, 314, 1505–1515.10.1007/s10967-016-5120-ySearch in Google Scholar

62. Sanad, M. H., Shweeta, H A. Preparation and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for heptobiliary Imaging. J Mol Imag Dynamic, 2015, 5, 1–6.Search in Google Scholar

63. Sanad, M. H., Emad, H. B. Performance characteristics of biodistribution of 99mTc-cefprozil for in-vivo infection imaging. J. Anal. Sci. Technol. 2014, 5, 32.10.1186/s40543-014-0032-3Search in Google Scholar

64. Sanad, M. H., Abelrahman, M. A., Marzook, F. M. A. Radioiodination and biological evaluation of levalbuterol as a new selective radiotracer: a β2-adrenoceptor agonist. Radiochim. Acta 2016, 104, 345–353.10.1515/ract-2015-2518Search in Google Scholar

65. Sanad, M. H., Farag, A. B., Dina, H. S. J. Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: in silico study, molecular modeling and gamma scintigraphy. J. Label Compd. Radiopharm. 2018, 61, 501–508.10.1002/jlcr.3614Search in Google Scholar PubMed

66. Motaleb, M. A., Selim, A. A., El-Tawoosy, M., Sanad, M. H., El-Hashash, M. A. Synthesis, radiolabeling and biological distribution of a new dioxime derivative as a potential tumor imaging agent. J. Radioanal. Nucl. Chem. 2017, 314, 1517–1522.10.1007/s10967-017-5310-2Search in Google Scholar

67. Sanad, H. M., Ibrahim A. A. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging. Radiochim. Acta 2018, 106, 843–850.10.1515/ract-2018-2960Search in Google Scholar

68. Moustapha, M. E., Motaleb, M. A. & Sanad, M. H. Synthesis and biological evaluation of 99mTc-labetalol for β1-adrenoceptormediated cardiac imaging. J. Radioanal. Nucl. Chem. 2016, 309, 511–516.10.1007/s10967-015-4622-3Search in Google Scholar

69. Sanad, M. H., Ibrahim, A. A., Talaat, H. M. Synthesis, bioevaluation and gamma scintigraphy of 99mTc-N-2-(Furylmethyl iminodiacetic acid) complex as a new renal radiopharmaceutical. J. Radioanal. Nucl. Chem. 2018, 315, 57–63.10.1007/s10967-017-5617-zSearch in Google Scholar

70. Sanad, M. H., Fouzy, A. S. M., Sobhy, H. M., Hathout, A. S., Hussain, O. A. Tracing the protective activity of Lactobacillus plantarum using technetium-99m-labeled zearalenone for organ toxicity. Int. J. Radiat. Biol. 2018, 94, 1151–1158.10.1080/09553002.2019.1524990Search in Google Scholar PubMed

71. Motaleb, M. A., Sanad, M. H., Selim, A. A., El-Tawoosy, M., El-Hashash, M. A. Synthesis, characterization, radiolabeling and biodistribution of a novel cyclohexane dioxime derivative as a potential candidate for tumor imaging. Int. J. Radiat. Biol. 2018, 94, 590–596.10.1080/09553002.2018.1466067Search in Google Scholar PubMed

72. Sanad, M. H., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of irbesartan as a tracer for cardiac imaging. Radiochim. Acta 2021, 109, 41–46.10.1515/ract-2020-0025Search in Google Scholar

73. Sanad, M. H., Farag, A. B., Saleh, G. M. Radiosynthesis and biological evaluation of 188Re-5,10,15,20–Tetra (4-pyridyl)- 21H,23H-porphyrin complex as a tumor-targeting agent. Radiochemistry 2019, 61, 347–351.10.1134/S106636221903010XSearch in Google Scholar

74. Sanad, M. H., Talaat, H. M., Fouzy, A.S.M. Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging .Radiochim. Acta, 2018, 106, 393–400.10.1515/ract-2017-2840Search in Google Scholar

75. Sanad, M. H., Sallam, K. M., Salama, D.H. 99mTc-Oxiracetam as a Potential Agent for Diagnostic Imaging of Brain: Labeling, Characterization, and Biological Evaluation. Radiochemistry 2018, 60, 58–63.10.1134/S1066362218010101Search in Google Scholar

76. Motaleb, MA., Sanad, M. H. Preparation and quality control of 99mTc-6-{[2-amino- 2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl- 7-oxo- 4-thia- 1-azabicyclo-heptane- 2-carboxylic acid complex as a model for detecting sites of infection. Arab Journal of Nuclear Sciences and Applications, 2012, 45, 71–77.Search in Google Scholar

77. Sanad, M. H., Rizvi, F. A., Kumar, R. R. Radiosynthesis and bioevaluation of ranitidine as highly selective radiotracer for peptic ulcer disorder detection. Radiochemistry 2020, 62, 119–124.10.1134/S1066362220010154Search in Google Scholar

78. Sanad, M. H., Marzook, E. A., O. A. El-Kawy, O. A. Radiochemical and biological characterization of 99mTc-Oxiracetam as a model for brain imaging. Radiochemistry, 2017, 59, 624–629.10.1134/S1066362217060011XSearch in Google Scholar

79. Sanad, M. H., Sallam, K. M., Marzook, F. Labeling and biological evaluation of 99mTc-tricarbonyl-chenodiol for hepatobiliary imaging. Radiochemistry 2017, 59, 525–529.10.1134/S10663622170500149Search in Google Scholar

80. Sanad, M. H., Safaa, B. C., Fawzy, A. M., Sayed, M. A. A., Ebtisam, A. M. Radioiodination and biological evaluation of cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection. Radiochim. Acta 2021, 109, 109–117.10.1515/ract-2020-0046Search in Google Scholar

81. Sanad, M. H., Marzook, F. A., Gehan, S., Farag, A. B., Talaat, H. M. Radiolabeling, preparation, and bioevaluation of 99mTc-Azathioprine as a potential targeting agent for solid tumor imaging. Radiochemistry 2019, 61, 478–482.10.1134/S106636221904012XSearch in Google Scholar

82. Ibrahim, I. T., Abdelhalim, S. M., Sanad, M. H., Motaleb, M. A. Radioiodination of 3-Amino-2-quinoxalinecarbonitrile 1,4-Dioxide and its biological distribution in erhlich ascites cancer bearing mice as a preclinical tumor imaging agent. Radiochemistry 2017, 59, 301–306.10.1134/S1066362217030146Search in Google Scholar

83. Rizvi, S. F. A., Zhang, H., Mehmood, S., Sanad, M. H. Synthesis of 99mTc-labeled 2-Mercaptobenzimidazole as a novel radiotracer to diagnose tumor hypoxia. Translational Oncology 2020, 13, 100854.10.1016/j.tranon.2020.100854Search in Google Scholar PubMed PubMed Central

84. Sanad, M. H., Hanan, T., Ibrahim, I. T., Gehan, S., Abozaid, L. A. Radioiodinated celiprolol as a new highly selective radiotracer for β1-adrenoceptormyocardial perfusion imaging. Radiochim. Acta 2018, 106, 751–757.10.1515/ract-2017-2903Search in Google Scholar

85. Sanad, M. H., Eyssa, H. M., Gomaa, N. M., Marzook, F. A., Bassem, S. A. Radioiodinated esomeprazole as a model for peptic ulcer localization. Radiochimica Acta 2021, 109, 711–718.10.1515/ract-2021-1056Search in Google Scholar

86. Sanad, M. H., Rizvi, F. A., Kumar, R. R., Ibrahim, A. A. Synthesis and preliminary biological evaluation of 99mTc-Tricarbonyl ropinirole as a potential brain imaging agent. Radiochemistry 2019, 61, 754–758.10.1134/S1066362219060195Search in Google Scholar

87. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Synthesis, characterization, and bioevaluation of 99mTc nitrido-oxiracetam as a brain imaging model. Radiochim. Acta 2021, 109, 477–483.10.1515/ract-2021-0003Search in Google Scholar

88. Motaleb, M. A., Sanad, M. H., Selim, A. A., El-Tawoosy, M., El-Hashash, M. A. Synthesis, characterization, and radiolabeling of heterocyclic bisphosphonate derivative as a potential agent for bone imaging. Radiochemistry 2018, 60, 201–207.10.1134/S106636221802011XSearch in Google Scholar

89. Sanad, M. H., El-Tawoosy, M., Ibrahim, I. T. Preparation and biological evaluation of 99mTc-Timonacic acid as a new complex for hepatobiliary imaging. Radiochemistry 2017, 59, 92–97.10.1134/S106636221701012XSearch in Google Scholar

90. Sanad, M. H., Saad, M. M., Fouzy, A. S. M., Marzook, F., Ibrahim, I. T. Radiochemical and biological evaluation of 99mTc-Labeling of phthalic acid using 99mTc-Tricabonyl and 99mTc-Sn (II) as a model for potential hazards imaging. J Mol Imag Dynamic 2016, 6, 1.Search in Google Scholar

91. Sanad, M. H., Ayman, F., Dina, H. Radioiodination, molecular modelling and biological evaluation of aniracetam as a tracer for brain imaging. Egypt. J. Rad. Sci. Applic. 2017, 30, 131–143.Search in Google Scholar

92. Motaleb, M. A., Wanis, K. F., Sanad, M. H. Synthesis, characterization and labeling of 2-{N, N-dicarboxymethyl (aminoacetyl)} aminothiazole with technetium-99m. Arab Journal of Nuclear Sciences and Applications 2005, 38, 137–145.Search in Google Scholar

93. Motaleb, M. A., Wanis, K. F., Sanad, M. H. Labeling and Biological Distribution of 99mTc-DCMA-AP. Arab Journal of Nuclear Sciences and Applications 2006, 39, 84–91.Search in Google Scholar

94. Sanad, M. H., Gizawy, M .A., Motaleb, M. A., Ibrahim, I. T., Saad, E. A. A comparative study between stannous chloride and sodium borohydrideas a reducing agents for the radiolabeling of 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine with technetium-99m for tumor imaging. Radiochemistry 2021, 63, 507–514.10.1134/S1066362221040159Search in Google Scholar

95. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Radiosynthesis and in silico bioevaluation of 131I-Sulfasalazine as a highly selective radiotracer for imaging of ulcerative colitis. Chem Biol Drug Des., 2021, 98, 751–761.10.1111/cbdd.13929Search in Google Scholar PubMed

96. Sanad, M. H., Emam, A., Amal, S. H., Omaima, H., Magdy, R., Ahmed, F. Distribution of iodine125 labeled parathion and the protective effect of dried banana peel in experimental mice. Egyptian Journal of Chemistry, 2022, 65, 1–2.10.21608/ejchem.2021.92646.4387Search in Google Scholar

97. Sanad, H. M., Farag, A. B., Motaleb, M. A. Radioiodination and biological evaluation of landiolol as a tracer for myocardial perfusion imaging: preclinical evaluation and diagnostic nuclear imaging. Radiochim. Acta 2018, 106, 1001–1008.10.1515/ract-2018-2980Search in Google Scholar

98. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Design of novel radiotracer 99mTcN-tetrathiocarbamate as SPECT imaging agent: a preclinical study for GFR renal function. Chemical Papers, 2022, https://doi.org/10.1007/s11696-021-01926-y.Search in Google Scholar

99. Sanad, M. H., Eyssa, H. M., Marzook, F. A., et al. Radiosynthesis and biological evaluation of 99mTc-Nitrido-Levetiracetam as a brain imaging agent. Radiochemistry, 2021, 63, 635–641.10.1134/S106636222105012XSearch in Google Scholar

100. Sanad, M. H., Eyssa, H. M., Marzook, F. A.,et al.. Comparative bioevaluation of 99mTc-Tricarbonyl and 99mTc-Sn (II) Lansoprazole as a model for peptic ulcer localization. Radiochemistry, 2021, 63 , 642–650.10.1134/S1066362221050131Search in Google Scholar

101. Sanad, M. H., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M. Radioiodinated azilsartan as a new highly selective radiotracer for myocardial perfusion imaging Radiochemistry, 2021, 63, 520–525.10.1134/S1066362221040160Search in Google Scholar

102. Sanad, M. H., Farag, A. B., Marzook, F. A., Mandal, S. K. Preparation, characterization, and bioevaluation of 99mTc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice. Radiochim. Acta, 2022, https://doi.org/10.1515/ract-2021-1105.Search in Google Scholar

103. Sanad, M. H., Farag, A. B., Rizvi, S. F. A. In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice Radiochimica Acta, 2021, 109, 575–582.10.1515/ract-2020-0125Search in Google Scholar

104. EI-Wetery, A.S.A., Fayz, M. A. A., Sanad, M. H., EI-Hashash, M. A. M. Study on the preparation of 99mTc-N-(pyrimidine-2-yl- carbamoyl methyl) iminodiacetic acid as a new complex for hepatobiliary imaging agent. Arab Journal of Nuclear Sciences and Applications 2007, 40, 109–118.Search in Google Scholar

105. Sanad, M. H. , Hanan, T., Gehan, S. In silico study and preclinical evaluation of radioiodinated procaterol as a potential scintigraphic agent for lung imaging. Egypt. J. Rad. Sci. Applic., 2017, 30, 117–130.Search in Google Scholar

106. Sanad, M. H., Eyssa, H. M., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M., Sabry, A. B., Alhussein, A. I. Synthesis, radiolabeling, and biological evaluation of 99mTc-Tricarbonyl mesalamine as a potential ulcerative colitis imaging agent. Radiochemistry 2021, 63, 6, 833–840.10.1134/S1066362221060163Search in Google Scholar

107. Sanad, M. H., Eyssa, H. M., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M., Mandal, S. K., Patnaik, S. S. Optimized chromatographic separation and bioevalution of radioiodinated ilaprazole as a new labeled compound for peptic ulcer localization in mice. Radiochemistry, 2021, 63, 6, 811–818.10.1134/S1066362221060138Search in Google Scholar

108. Sanad, M. H. MSc thesis, Faculty of Science, Ain-Shams University, Cairo, Egypt, 2007.Search in Google Scholar

109. Sanad, M. H. MSc thesis, Faculty of Science, Zagazig University, Cairo, Egypt, 2004.Search in Google Scholar

110. Sanad, M. H., Nermien, M. G., Nermeen, M. E., , Ismail, T. I., Ayman, M. Radioiodination of balsalazide, bioevaluation and characterization as a highly selective radiotracer for imaging of ulcerative colitis in mice. J. Label Compd. Radiopharm. 2022, https://doi.org/10.1002/JLCR.3961.Search in Google Scholar PubMed

111. Sanad, M. H., Eyssa, H. M., Heba, M. E. Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation. Radiochim. Acta, 2022, https://doi.org/10.1515/ract-2021-1091.Search in Google Scholar

112. Sanad, M. H. Ulcerative colitis and peptic ulcer imaging , 1st edn. LAP LAMBERT Academic Publishing, Germany 2017, 1–160.Search in Google Scholar

113. Sanad, M. H. Nuclear medicine and brain imaging, 1st edn. LAP LAMBERT Academic Publishing, Germany. 2017, 1–166.Search in Google Scholar

114. Sanad, M. H., Abdel Rahim, E. A., Rashed, M. M., Fouzy, A. S. M., Omaima, A. H., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of parathion as a new radiotracer to study in experimental mice. World Journal of Pharmacy and Pharmaceutical Sciences 2020, 9, 148–158.Search in Google Scholar

115. Ayman, F., Ping, W., Mahmoud, A., Hesham, S. Biological and Medical Chemistry, 2021, 12003930, https://doi. org/10.26434/chemrxiv.Search in Google Scholar

116. Galal, H. E., Nahed, M. F., Ayman, B., Sheikha, A. A. Nucleosides, Nucleotides and Nucleic Acids, 2018, 37, 186–198.10.1080/15257770.2018.1450508Search in Google Scholar PubMed

117. Massoud, A., Farid, O. M., Maree, R. M., Allan, K. F., Tian, Z. R., An improved metal cation capture on polymer with graphene oxide synthesized by gamma radiation. Reactive and Functional Polymers, 2020, 151, 104564.10.1016/j.reactfunctpolym.2020.104564Search in Google Scholar

118. Challan, S. B., Massoud, A. Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. Journal of Radioanalytical and Nuclear Chemistry 2017, 314, 2189–2199.10.1007/s10967-017-5561-ySearch in Google Scholar

119. Elgemeie, G. H., Fathy, N. M., Farag, A. B.,Yahab, I. B. Design and synthesis of new class indeno[1,2-b]pyridine thioglycosides,Nucleoside & Nucleotide and Nucleic acid, 2020, 39, 1–16.10.1080/15257770.2020.1780436Search in Google Scholar PubMed

120. Farag, A. B.,Ewida, H. E., Ahmed, M. S., Design, synthesis, and biological evaluation of novel amide and hydrazide based thioether analogs targeting Histone deacteylase (HDAC) enzymes, European journal of medicinal chemistry, 2018, 148, 73–85.10.1016/j.ejmech.2018.02.011Search in Google Scholar PubMed

121. Elgemeie, G. H., Fathy, N. M., Farag, A. B.,Kursani, S. A.Design, synthesis, molecular docking and anti-hepatocellular carcinoma evaluation of novel acyclic pyridine thioglycosides, Nucleoside & Nucleotide and Nucleic acid 2018, 37, 186–198.10.1080/15257770.2018.1450508Search in Google Scholar PubMed

122. Farag, A. B., Magdi, A., Spectrophotometric study of the interaction between a novel benzothiazolethioglycoside as antimicrobial agent with bovine serum albumin, Chemistry Research Journal, 2017, 2, 66–72.Search in Google Scholar

123. Elgemeie, G. H., Farag, A. B.,Design, synthesis, and in vitro anti-hepatocellular carcinoma of novel thymine thioglycoside analogs as new antimetabolic agents, Nucleoside & Nucleotide and Nucleic acid., 2017, 36, 328–342.10.1080/15257770.2017.1287377Search in Google Scholar PubMed

124. Elgemeie, G. H., Fathy, N. M., Farag, A. B., Kursani, S. A.Novel synthesis of dihydropyridine thioglycosides and their cyctotoxic activity, Nucleoside & Nucleotide and Nucleic acid., 2017, 36, 355–377.10.1080/15257770.2016.1257807Search in Google Scholar PubMed

125. Elgemeie, G. H., Fathy, N. M., Zaghary, W. A., Farag, A. B.,S-Glycosides in Medicinal Chemistry: Novel Synthesis of CyanoethyleneThioglycosides and Their Pyrazole Derivatives, Nucleoside & Nucleotide and Nucleic acid, 2017, 36, 198–212.10.1080/15257770.2016.1257807Search in Google Scholar

126. Farag, A. B., Wang, P., Boys, I., Schoggins, J., Sadek, H., Identification of Atovaquone, Ouabain and Mebendazole as FDA Approved drugs targeting SARS-COV-2, ChemRxiv, 2020.10.26434/chemrxiv.12003930.v4Search in Google Scholar

127. White, R. L., White, C. M., Turgut, H., Massoud, A., Tian, Z. R., Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles, J Taiwan Inst Chem Eng 2018, 85, 18–28.10.1016/j.jtice.2018.01.036Search in Google Scholar

128. Bekheet, S., El-Tawoosy, M., Massoud, A., Borei, I. H., Ghanem, H. M., 99mTc-labeled ceftazidime and biological evaluation in experimental animals for detection of bacterial infection. Am. J. Biochem 2014, 4,15–24.Search in Google Scholar

129. Massoud, A., Rizk, H. E., Attallah, M. F., Selective separation of Y(III) from Sr(II) using hybrid polymer: synthesis, characterization, batch and column study, Polym. Bull. 2021, 78, 7053–7069.10.1007/s00289-020-03479-8Search in Google Scholar

130. Zaky, M. M., Eyssa, H. M., Sadek, R. F. Improvement of the magnesium battery electrolyte properties through gamma irradiation of nano polymer electrolytes doped with magnesium oxide nanoparticles. J. Vinyl Addit. Technol. 2019, 25, 243.10.1002/vnl.21683Search in Google Scholar

131. Senna, M. M., Youssef, H. A., Eyssa, H. M. Effect of electron beam irradiation, EPDM and azodicarbonamide on the foam properties of LDPE sheet. Polym. Plast. Technol. Eng. 2007, 46, 1093.10.1080/03602550701525271Search in Google Scholar

132. Eyssa, H. M., El Mogy, S. A., Youssef, H. A. Impact of foaming agent and nanoparticle fillers on the properties of irradiated rubber. Radiochim. Acta 2021, 109, 127.10.1515/ract-2020-0015Search in Google Scholar

133. Hegazi, E. M., Eyssa, H. M., Abd El-Megeed, A. A. Effect of nanofiller on the ageing of rubber seal materials under gamma irradiation. J. Compos. Mater. 2019, 53, 2065.10.1177/0021998318819178Search in Google Scholar

134. Eyssa, H. M., Osman, M., Kandil, S. A., Abdelrahman, M. M. Effect of ion and electron beam irradiation on surface morphology and optical properties of PVA. Nucl. Sci. Tech. 2015, 26, 060306.Search in Google Scholar

135. Eyssa, H. M., Elnaggar, M. Y., Zaky, M. M. Impact of graphene oxide nanoparticles and carbon black on the gamma radiation sensitization of acrylonitrile–butadiene rubber seal materials. Polym. Eng. Sci. 2021, 61, 2843.10.1002/pen.25804Search in Google Scholar

136. Youssef, H. A., Senna, M. M., Eyssa, H. M., Sarhan, A. Fabrication of sponge nitrile butadiene rubber (NBR) by subsequent sulphur and electron beam irradiation. Mans. J. Chem. 2010, 37, 155.Search in Google Scholar

137. Senna, M. M., Mostafa, A. B., Mahdy, S. R., El-Naggar, A. M. Characterization of blend hydrogels based on plasticized starch/ cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl. Instrum. Methods Phys. Res. B 2016, 386, 22–29.10.1016/j.nimb.2016.09.020Search in Google Scholar

138. Eyssa, H. M., Sawires, S. G., Senna, M. M. Gamma irradiation of polyethylene nanocomposites for food packaging applications against stored-product insect pests. J. Vinyl Addit. Technol. 2019, 25, 120.10.1002/vnl.21660Search in Google Scholar

139. Eyssa, H. M., Abulyazied, D. E., Abo-State, M. A. M. Application of polyurethane /gamma-irradiated carbon nanotubes composites as antifouling coat. Polym. Compos. 2018, 39, E1196.10.1002/pc.24718Search in Google Scholar

140. Eyssa, H. M., Mohamed, W. S., El-Zayat, M. M. Irradiated rubber composite with nano and microfillers for mining rock application. Radiochim. Acta. 2019, 107, 737.10.1515/ract-2018-2989Search in Google Scholar

141. Youssef, A. H., Senna, M. M., Eyssa, H. M. Characterization of LDPE and LDPE/EVA blends crosslinked by electron beamirradiation and foamed with chemical foaming agent. J. Polym. Res. 2007, 14, 351.10.1007/s10965-007-9117-7Search in Google Scholar

142. Eyssa, H. M., Abulyazied, D. E., Abdulrahman, M., Youssef, H. A. Mechanical and physical properties of nanosilica/nitrile butadienerubber composites cured by gamma irradiation. Egypt. J. Petro. 2018, 27, 383.10.1016/j.ejpe.2017.06.004Search in Google Scholar

143. Youssef, H. A., Abdel-Monem, Y. K., El-Sherbiny, I. M., Eyssa, H. M., El-Raheem, H. M. Effect of ionizing radiation on the properties ofsome synthesized polyurethanes. J. Pharm. Biol. Chem. Sci. 2016, 7, 855.Search in Google Scholar

144. Eyssa, H. M., Hassan, M. S. Surface characteristics of cotton/ polyester fabric coated with poly-urethane elastomers cured thermally or by using gamma irradiation. Egypt. J. Rad. Sci. Applic. 2014, 27, 91.10.21608/ejrsa.2014.1511Search in Google Scholar

Received: 2021-07-16
Accepted: 2022-01-10
Published Online: 2022-01-31
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1079/html?lang=en
Scroll to top button