Preparation, biological evaluation and radiolabeling of [99mTc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice
-
M. H. Sanad
, Fawzy A. Marzook
, Sudip Kumar Mandal
Abstract
This study focuses on the synthesis and preliminary bio-evaluation of [99mTc]-technetium tricarbonyl procainamide ([99mTc]-technetium tricarbony PA) as a viable cardiac imaging agent. The compound, [99mTc]-technetium tricarbony PA, was synthesized by labelling procainamide with a [99mTc]-technetium tricarbonyl core, yielding a high radiochemical yield and radiochemical purity of 98%. Under optimal circumstances, high radiochemical yield and purity were obtained utilizing [99mTc]-technetium tricarbonyl core within 30 min of incubation at pH 9, 200 µg substrate concentration, and 100 °C reaction temperature. The heart showed a high absorption of 32.39 ± 0.88% of the injected dose/g organ (ID/g), confirming the suitability of [99mTc]-technetium tricarbonyl PA as a viable complex for heart imaging.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Koch-Weser, J., Klein, S. W. Procainamide dosage schedules, plasma concentrations, and clinical effects. J. Am. Med. Assoc. 1971, 215, 1454; https://doi.org/10.1001/jama.1971.03180220036006.Search in Google Scholar
2. Bigger, J. T., Heissenbuttel, R. H. The use of procaineamide and lidocaine in the treatment of cardiac arrhythmias. Prog. Cardiovasc. Dis. 1969, 11, 515; https://doi.org/10.1016/0033-0620(69)90004-8.Search in Google Scholar
3. Koch-Weser, J. Antiarrhythmic prophylaxis in ambulatory patients with coronary heart disease. Arch. Intern. Med. 1972, 129, 763; https://doi.org/10.1001/archinte.1972.00320050087009.Search in Google Scholar
4. Interian, A., Zaman, L., Velez-Robinson, E., Kozlovskis, P., Castel-Lanos, A., Myerburg, R. J. Paired comparisons of efficacy of intravenous and oral procainamide in patients with inducible sustained ventricular tachyarrhythmias. J. Am. Coll. Cardiol. 1991, 17, 1581; https://doi.org/10.1016/0735-1097(91)90651-o.Search in Google Scholar
5. Brugada, R., Brugada, J., Antzelevitch, C., Kirsch, G. E., Potenza, D., Towbin, J. A., Brugada, P. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000, 101, 510; https://doi.org/10.1161/01.cir.101.5.510.Search in Google Scholar
6. Mian, M. S., El-Obeid, H. A., Al-Badr, A. A. In H. G. Brittain (Ed.), Analytical Profiles of Drug Substances and Excipients. Academic Press: California, 26, 1–508, 1999.10.1016/S0099-5428(08)60620-6Search in Google Scholar
7. Mikołajczak, R., Garnuszek, P. Radiopharmaceuticals in cardiology. Nucl. Med. Rev. Cent. E Eur. 2012, 15, 39.10.5603/NMR.2012.0008Search in Google Scholar
8. Baggish, A. L., Boucher, C. A. Radiopharmaceutical agents for myocardial perfusion imaging. Circulation 2008, 118, 1668; https://doi.org/10.1161/circulationaha.108.778860.Search in Google Scholar
9. Gibbons, R. J. Myocardial perfusion imaging. Heart 2000, 83, 355; https://doi.org/10.1136/heart.83.3.355.Search in Google Scholar PubMed PubMed Central
10. Jovanović, V., Maksin, T., Konstantinovska, D., Zmbova, B., Čvorić, J. Radiochemical quality control of 99mTc-labelled radiopharmaceuticals. J. Radioanal. Nucl. Chem. 1980, 59, 239.10.1007/BF02516852Search in Google Scholar
11. Yurt Kilcar, A., Biber Muftuler, F. Z. Crucial role of radio-chromatography in clinical chemistry of nuclear medicine and radiopharmaceutical research. Austin Chromatogr. 2014, 1, 2.Search in Google Scholar
12. Arano, Y. Recent advances in 99mTc radiopharmaceuticals. Ann. Nucl. Med. 2002, 16, 79; https://doi.org/10.1007/bf02993710.Search in Google Scholar PubMed
13. Zolle, I. Technetium-99m Pharmaceuticals: Preparation and Quality Control in Nuclear Medicine; Springer: New York, 2007.10.1007/978-3-540-33990-8Search in Google Scholar
14. Guo, H. X., Zhang, J. B., Ma, Z., Wang, Z. B. Synthesis and biodistribution of 99mTcN-isopentyl xanthate as a potential myocardial perfusion imaging agent. J. Radioanal. Nucl. Chem. 2008, 275, 121; https://doi.org/10.1007/s10967-007-6994-5.Search in Google Scholar
15. Chen, X., Guo, Y., Zhang, Q., Hao, G., Jia, H., Liu, B. Preparation and biological evaluation of 99mTc-CO-MIBI as myocardial perfusion imaging agent. J. Organomet. Chem. 2008, 693, 1822; https://doi.org/10.1016/j.jorganchem.2008.02.006.Search in Google Scholar
16. Hatada, K., Riou, L. M., Ruiz, M., Yamamichi, Y., Duatti, A., Lima, R. L., Goode, R. A., Watson, D. D., Beller, G. A., Glover, D. K. 99mTc-N-DBODC5, a new myocardial perfusion imaging agent with rapid liver clearance: comparison with 99mTc-sestamibi and 99mTc-tetrofosmin in rats. J. Nucl. Med. 2004, 45, 2095.Search in Google Scholar
17. Hao, G. Y., Zang, J. Y., Zhu, L., Guo, Y. Z., Liu, B. L. Synthesis, separation and biodistribution of 99mTc-CO-MIBI complex. J. Label. Compd. Radiopharm. 2004, 47, 513; https://doi.org/10.1002/jlcr.839.Search in Google Scholar
18. Sanad, M. H., Sallam, K. M., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J. Label. Compd. Radiopharm. 2016, 59, 484; https://doi.org/10.1002/jlcr.3435.Search in Google Scholar PubMed
19. Sanad, M. H., Ebtisam, A. M., Safaa, B. C. Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging. Radiochim. Acta 2018, 106, 329; https://doi.org/10.1515/ract-2017-2830.Search in Google Scholar
20. Ibrahim, I. T., Sanad, M. H. Radiolabeling and biological evaluation of losartan as a possible cardiac imaging agent. Radiochemistry 2013, 55, 336; https://doi.org/10.1134/s1066362213030168.Search in Google Scholar
21. Tamer, M. S., Sanad, M. H., Walaa, H. A., Dina, H. S., Gehan, M. S. Radioiodinated esmolol as a highly selective radiotracer for myocardial perfusion imaging: in silico study and preclinical evaluation. Appl. Radiat. Isot. 2018, 137, 41.10.1016/j.apradiso.2018.03.006Search in Google Scholar PubMed
22. Safaa, B. C., Fawzy, A. M., Ayman, M. Synthesis of radioiodinated carnosine for hepatotoxicity imaging induced by carbon tetrachloride and its biological assessment in rats. Radiochim. Acta 2021, 108, 397.10.1515/ract-2019-3162Search in Google Scholar
23. Massoud, A., Challan, S. B., Maziad, N. Characterization of polyvinylpyrrolidone (PVP) with technetium-99m and its accumulation in mice. J. Macromol. Sci. A. 58, 408–418. https://doi.org/10.1134/s1066362218030141.Search in Google Scholar
24. Mathur, A., Mallia, M. B., Subramanian, S., Banerjee, S., Kothari, K., Dhotare, B., Sarmad, H. D., Venkatesh, M. 99mTc-N complexes of tertbutyl dithiocarbamate and methoxyisobutyl dithiocarbamate as myocardial and brain imaging agents. Nucl. Med. Commun 2005, 26, 1013; https://doi.org/10.1007/s10967-011-1303-8.Search in Google Scholar
25. Farid, O. M, Ojovan, M. I., Massoud, A., Shokry, S., Rahman, R. O. Abdel. An Assessment of Initial Leaching Characteristics of Alkali-Borosilicate Glasses for Nuclear Waste Immobilization. Mater. 2019, 12, 1462; https://doi.org/10.4236/ns.2013.54066.Search in Google Scholar
26. Bissessor, N., White, H. Valsartan in the treatment of heart failure or left ventricular dysfunction after myocardial infarction. Vasc. Health Risk Manag. 2007, 3, 425.Search in Google Scholar
27. Mohammed El-Sharawy, D. M. Radioiodination and Bioevaluation of Some Cardiovascular Drugs for Nuclear Medicine Application. Thesis, Department of Pharmaceutics &Industrialpharmacy Faculty of Pharmacy. Cairo University, Egypt, 2013.Search in Google Scholar
28. Massoud, A., Mahmoud, H. H. Evaluation of hybrid polymeric resin containing nanoparticles of iron oxide for selective separation of In (III) from Ga (III). J. Inorg. Organomet. Polym 2017, 27, 1806; https://doi.org/10.1515/ract-2015-2558.Search in Google Scholar
29. Tejería, M. E., Giglio, J., Dematteis, S., Ana, R. A. Development and characterization of a 99mTc-tricarbonyl–labelled estradiol derivative obtained by “Click Chemistry” with potential application in estrogen receptors imaging. J. Label. Compd. Radiopharm. 2017, 60, 521–527.10.1002/jlcr.3527Search in Google Scholar PubMed
30. Kothari, K., Joshi, S., Venkatesh, M., Ramamoorthy, N., Pillai, M. R. A. Synthesis of 99mTc(CO)3-mebrofenin via 99mTc- [(CO)3(H2O)3]+, precursor and comparative pharmacokinetics studies with 99mTc-mebrofenin. J. Label. Compd. Radiopharm. 2003, 46, 633; https://doi.org/10.1002/jlcr.704.Search in Google Scholar
31. Satpati, D., Mallia, M., Kothari, K., Pillai, M. R. A. Comparative evaluation of 99mTc- [(CO)3(H2O)3]+ precursor synthesized by conventional method and by using carbonyl kit. J. Label. Compd. Radiopharm. 2004, 47, 657; https://doi.org/10.1002/jlcr.852.Search in Google Scholar
32. He, H., Morley, J. E., Twamley, B., Groeneman, R. H., Bucar, D. K., MacGillivray, L. R., Benny, P. D. Investigation of the coordination interactions of S-(pyridin-2-ylmethyl)-L-cysteine ligands with M(CO)3 (M=Re, 99mTc). Inorg. Chem. 2009, 48, 10625–10634; https://doi.org/10.1021/ic901159r.Search in Google Scholar PubMed
33. Jeffrey, K., Malgorzata, L., Andrew, T. T., Luigi, G. M. Synthesis and characterization of fac-Re(CO)3-aspartic-Nmonoacetic acid, a structural analogue of a potential new renal tracer, fac-99mTc(CO)3(ASMA). Eur. J. Inorg. Chem. 2012, 2012, 4334; https://doi.org/10.1002/ejic.201200599.Search in Google Scholar PubMed PubMed Central
34. Alberto, R., Schibli, R., Schubiger, A. P. First application of fac [99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure and invitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J. Am. Chem. Soc. 1999, 121, 6076; https://doi.org/10.1021/ja990765a.Search in Google Scholar
35. Sanad, M. H., El-Bayoumy, A. S. A., Ibrahim, A. A. Comparative biological evaluation between 99mTc(CO)3 and 99mTc-Sn (II) complexes of novel quinoline derivative: a promising infection radiotracer. J. Radioanal. Nucl. Chem. 2017, 311, 1; https://doi.org/10.1007/s10967-016-4945-8.Search in Google Scholar
36. Malgorzata, L., Jeffrey, K., Luigi, G., Marzilli, A., Taylor, T. Preclinical evaluation of 99mTc (CO)3-aspartic-N-monoacetic acid, 99mTc(CO)3(ASMA), a new renal radiotracer with pharmacokinetic properties comparable to 131I-OIH. J. Nucl. Med. 2012, 53, 1277.10.2967/jnumed.111.102236Search in Google Scholar
37. Sanad, M. H., Emad, H. B. Comparative biological evaluation between 99mTc tricarbonyl and 99mTc-Sn(II) levosalbutamol as a β2-adrenoceptor agonist. Radiochim. Acta 2015, 103, 879; https://doi.org/10.1515/ract-2015-2428.Search in Google Scholar
38. Rhodes, B. A. Considerations in the radiolabeling of albumin. Semin. Nucl. Med. 1974, 4, 281; https://doi.org/10.1016/s0001-2998(74)80015-2.Search in Google Scholar
39. Hupf, H. B., Eldridge, J. S., Beaver, J. E. Production of iodine-123 for medical applications. Int. J. Appl. Radiat. Isot. 1968, 19, 345; https://doi.org/10.1016/0020-708x(68)90178-6.Search in Google Scholar
40. Amin, A. M., Sanad, M. H., Abd-Elhaliem, S. M. Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 2013, 55, 624; https://doi.org/10.1134/s1066362213060118.Search in Google Scholar
41. Yuan, Z., Yue, W., Syed, F., Askari, R., Yida, Z., Yintang, Z., Xiaoyan, L., Haixia, Z. Detection of DNA 3′-phosphatase activity based on exonuclease III-assisted cascade recycling amplification reaction. J. Talanta 2019, 204, 499; https://doi.org/10.1016/j.talanta.2019.06.027.Search in Google Scholar PubMed
42. Siddons, C. J. Metal Ion Complexing Properies of Amide Donating Ligands. Doctoral Dissertation, University of North Carolina, Wilmington, 2004.Search in Google Scholar
43. Massoud, A., Waly, S. A., Abou El-Nour, F., Removal of U (VI) from simulated liquid waste using synthetic organic resin. Radiochemistry 2017, 59, 272–279.10.1134/S1066362217030092Search in Google Scholar
44. Sanad, M. H. Labeling and biological evaluation of 99mTc-azithromycin for infective inflammation diagnosis. Radiochemistry 2013, 55, 539544.10.1134/S1066362213050159Search in Google Scholar
45. Sanad, M. H. Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 2013, 55, 605609.10.1134/S1066362213060076Search in Google Scholar
46. Sanad, M. H. Novel radiochemical and biological characterization of 99mTc-histamine as a model for brain imaging. J. Anal. Sci.Technol. 2014, 5, 23.10.1186/s40543-014-0023-4Search in Google Scholar
47. Sanad, M. H., El-Tawoosy, M. Labeling of ursodeoxycholic acid with Technetium-99m for hepatobiliary imaging. J. Radioanal. Nucl. Chem. 2013, 298, 11051109.10.1007/s10967-013-2512-0Search in Google Scholar
48. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m pantoprazole. Radiochemistry 2013, 55, 341345.10.1134/S106636221303017XSearch in Google Scholar
49. Motaleb, M. A., Adli, A. S. A., El-Tawoosy, M., Sanad, M. H., AbdAllah, M. An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J.Label Compd. Radiopharm. 2016, 59, 157163.10.1002/jlcr.3384Search in Google Scholar PubMed
50. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m labeled rabeprazole. Radiochemistry 2015, 57, 425430.10.1134/S1066362215040165Search in Google Scholar
51. Sanad, M. H., Salama, D. H., Marzook, F. A. Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution. Radiochim. Acta 2017, 105, 389–398.10.1515/ract-2016-2683Search in Google Scholar
52. Abdel-Ghaney, I. Y., Sanad, M. H. Synthesis of 99mTc-erythromycin complex as a model for infection sites imaging. Radiochemistry 2013, 55, 418–422.10.1134/S1066362213040139Search in Google Scholar
53. Borai, E. H., Sanad, M. H., Fouzy, A. S. M. Optimized chromatographic separation and biological evaluation of 99mTc-clarithromycin for infective inflammation diagnosis. Radiochemistry 2016, 58, 84–91.10.1134/S1066362216010136Search in Google Scholar
54. Sanad, M. H., Challan, S. B. Radioiodination and biological evaluation of rabeprazole as a peptic ulcer localization radiotracer. Radiochemistry 2017, 59, 307–312.10.1134/S1066362217030158Search in Google Scholar
55. Sanad, M. H., Saleh, G. M., Marzook, F. A. Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection. J. Label. Compd. Radiopharm. 2017, 60, 600–607.10.1002/jlcr.3541Search in Google Scholar PubMed
56. El-Kawy, O., Sanad, M. H., Marzook, F. 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: labelling, characterisation and biological evaluation. J.Radioanal. Nucl. Chem. 2016, 308, 279–286.10.1007/s10967-015-4338-4Search in Google Scholar
57. Sanad, M. H., Amin, A. M. Optimization of labeling conditions and bioevalution of 99mTc-meloxicam for inflammation imaging. Radiochemistry 2013, 55, 521–526.10.1134/S1066362213050123Search in Google Scholar
58. Sanad, M. H., Talaat, H. M. Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole. Radiochemistry 2017, 59, 396–401.10.1134/S1066362217040129Search in Google Scholar
59. Sanad, M. H., Alhussein, A. I. Preparation and biological evaluation of 99mTc-N-histamine as a model for brain imaging: in silico study and preclinical evaluation. Radiochim. Acta 2018, 106, 229–238.10.1515/ract-2017-2804Search in Google Scholar
60. Sanad, M. H., Farouk, N., Fouzy, A. S. M. Radiocomplexation and bioevaluation of 99mTc-nitrido-piracetam as a model for brain imaging. Radiochim. Acta 2017, 105, 729–737.10.1515/ract-2016-2714Search in Google Scholar
61. Sanad, M. H., Sakr, T. M., Walaa, H. A. A., Marzook, E. A. In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors. J. Radioanal. Nucl.Chem., 2017, 314, 1505–1515.10.1007/s10967-016-5120-ySearch in Google Scholar
62. Sanad, M. H., Shweeta, H A. Preparation and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for heptobiliary Imaging. J Mol Imag Dynamic, 2015, 5, 1–6.Search in Google Scholar
63. Sanad, M. H., Emad, H. B. Performance characteristics of biodistribution of 99mTc-cefprozil for in-vivo infection imaging. J. Anal. Sci. Technol. 2014, 5, 32.10.1186/s40543-014-0032-3Search in Google Scholar
64. Sanad, M. H., Abelrahman, M. A., Marzook, F. M. A. Radioiodination and biological evaluation of levalbuterol as a new selective radiotracer: a β2-adrenoceptor agonist. Radiochim. Acta 2016, 104, 345–353.10.1515/ract-2015-2518Search in Google Scholar
65. Sanad, M. H., Farag, A. B., Dina, H. S. J. Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: in silico study, molecular modeling and gamma scintigraphy. J. Label Compd. Radiopharm. 2018, 61, 501–508.10.1002/jlcr.3614Search in Google Scholar PubMed
66. Motaleb, M. A., Selim, A. A., El-Tawoosy, M., Sanad, M. H., El-Hashash, M. A. Synthesis, radiolabeling and biological distribution of a new dioxime derivative as a potential tumor imaging agent. J. Radioanal. Nucl. Chem. 2017, 314, 1517–1522.10.1007/s10967-017-5310-2Search in Google Scholar
67. Sanad, H. M., Ibrahim A. A. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging. Radiochim. Acta 2018, 106, 843–850.10.1515/ract-2018-2960Search in Google Scholar
68. Moustapha, M. E., Motaleb, M. A. & Sanad, M. H. Synthesis and biological evaluation of 99mTc-labetalol for β1-adrenoceptormediated cardiac imaging. J. Radioanal. Nucl. Chem. 2016, 309, 511–516.10.1007/s10967-015-4622-3Search in Google Scholar
69. Sanad, M. H., Ibrahim, A. A., Talaat, H. M. Synthesis, bioevaluation and gamma scintigraphy of 99mTc-N-2-(Furylmethyl iminodiacetic acid) complex as a new renal radiopharmaceutical. J. Radioanal. Nucl. Chem. 2018, 315, 57–63.10.1007/s10967-017-5617-zSearch in Google Scholar
70. Sanad, M. H., Fouzy, A. S. M., Sobhy, H. M., Hathout, A. S., Hussain, O. A. Tracing the protective activity of Lactobacillus plantarum using technetium-99m-labeled zearalenone for organ toxicity. Int. J. Radiat. Biol. 2018, 94, 1151–1158.10.1080/09553002.2019.1524990Search in Google Scholar PubMed
71. Motaleb, M. A., Sanad, M. H., Selim, A. A., El-Tawoosy, M., El-Hashash, M. A. Synthesis, characterization, radiolabeling and biodistribution of a novel cyclohexane dioxime derivative as a potential candidate for tumor imaging. Int. J. Radiat. Biol. 2018, 94, 590–596.10.1080/09553002.2018.1466067Search in Google Scholar PubMed
72. Sanad, M. H., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of irbesartan as a tracer for cardiac imaging. Radiochim. Acta 2021, 109, 41–46.10.1515/ract-2020-0025Search in Google Scholar
73. Sanad, M. H., Farag, A. B., Saleh, G. M. Radiosynthesis and biological evaluation of 188Re-5,10,15,20–Tetra (4-pyridyl)- 21H,23H-porphyrin complex as a tumor-targeting agent. Radiochemistry 2019, 61, 347–351.10.1134/S106636221903010XSearch in Google Scholar
74. Sanad, M. H., Talaat, H. M., Fouzy, A.S.M. Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging .Radiochim. Acta, 2018, 106, 393–400.10.1515/ract-2017-2840Search in Google Scholar
75. Sanad, M. H., Sallam, K. M., Salama, D.H. 99mTc-Oxiracetam as a Potential Agent for Diagnostic Imaging of Brain: Labeling, Characterization, and Biological Evaluation. Radiochemistry 2018, 60, 58–63.10.1134/S1066362218010101Search in Google Scholar
76. Motaleb, MA., Sanad, M. H. Preparation and quality control of 99mTc-6-{[2-amino- 2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl- 7-oxo- 4-thia- 1-azabicyclo-heptane- 2-carboxylic acid complex as a model for detecting sites of infection. Arab Journal of Nuclear Sciences and Applications, 2012, 45, 71–77.Search in Google Scholar
77. Sanad, M. H., Rizvi, F. A., Kumar, R. R. Radiosynthesis and bioevaluation of ranitidine as highly selective radiotracer for peptic ulcer disorder detection. Radiochemistry 2020, 62, 119–124.10.1134/S1066362220010154Search in Google Scholar
78. Sanad, M. H., Marzook, E. A., O. A. El-Kawy, O. A. Radiochemical and biological characterization of 99mTc-Oxiracetam as a model for brain imaging. Radiochemistry, 2017, 59, 624–629.10.1134/S1066362217060011XSearch in Google Scholar
79. Sanad, M. H., Sallam, K. M., Marzook, F. Labeling and biological evaluation of 99mTc-tricarbonyl-chenodiol for hepatobiliary imaging. Radiochemistry 2017, 59, 525–529.10.1134/S10663622170500149Search in Google Scholar
80. Sanad, M. H., Safaa, B. C., Fawzy, A. M., Sayed, M. A. A., Ebtisam, A. M. Radioiodination and biological evaluation of cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection. Radiochim. Acta 2021, 109, 109–117.10.1515/ract-2020-0046Search in Google Scholar
81. Sanad, M. H., Marzook, F. A., Gehan, S., Farag, A. B., Talaat, H. M. Radiolabeling, preparation, and bioevaluation of 99mTc-Azathioprine as a potential targeting agent for solid tumor imaging. Radiochemistry 2019, 61, 478–482.10.1134/S106636221904012XSearch in Google Scholar
82. Ibrahim, I. T., Abdelhalim, S. M., Sanad, M. H., Motaleb, M. A. Radioiodination of 3-Amino-2-quinoxalinecarbonitrile 1,4-Dioxide and its biological distribution in erhlich ascites cancer bearing mice as a preclinical tumor imaging agent. Radiochemistry 2017, 59, 301–306.10.1134/S1066362217030146Search in Google Scholar
83. Rizvi, S. F. A., Zhang, H., Mehmood, S., Sanad, M. H. Synthesis of 99mTc-labeled 2-Mercaptobenzimidazole as a novel radiotracer to diagnose tumor hypoxia. Translational Oncology 2020, 13, 100854.10.1016/j.tranon.2020.100854Search in Google Scholar PubMed PubMed Central
84. Sanad, M. H., Hanan, T., Ibrahim, I. T., Gehan, S., Abozaid, L. A. Radioiodinated celiprolol as a new highly selective radiotracer for β1-adrenoceptormyocardial perfusion imaging. Radiochim. Acta 2018, 106, 751–757.10.1515/ract-2017-2903Search in Google Scholar
85. Sanad, M. H., Eyssa, H. M., Gomaa, N. M., Marzook, F. A., Bassem, S. A. Radioiodinated esomeprazole as a model for peptic ulcer localization. Radiochimica Acta 2021, 109, 711–718.10.1515/ract-2021-1056Search in Google Scholar
86. Sanad, M. H., Rizvi, F. A., Kumar, R. R., Ibrahim, A. A. Synthesis and preliminary biological evaluation of 99mTc-Tricarbonyl ropinirole as a potential brain imaging agent. Radiochemistry 2019, 61, 754–758.10.1134/S1066362219060195Search in Google Scholar
87. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Synthesis, characterization, and bioevaluation of 99mTc nitrido-oxiracetam as a brain imaging model. Radiochim. Acta 2021, 109, 477–483.10.1515/ract-2021-0003Search in Google Scholar
88. Motaleb, M. A., Sanad, M. H., Selim, A. A., El-Tawoosy, M., El-Hashash, M. A. Synthesis, characterization, and radiolabeling of heterocyclic bisphosphonate derivative as a potential agent for bone imaging. Radiochemistry 2018, 60, 201–207.10.1134/S106636221802011XSearch in Google Scholar
89. Sanad, M. H., El-Tawoosy, M., Ibrahim, I. T. Preparation and biological evaluation of 99mTc-Timonacic acid as a new complex for hepatobiliary imaging. Radiochemistry 2017, 59, 92–97.10.1134/S106636221701012XSearch in Google Scholar
90. Sanad, M. H., Saad, M. M., Fouzy, A. S. M., Marzook, F., Ibrahim, I. T. Radiochemical and biological evaluation of 99mTc-Labeling of phthalic acid using 99mTc-Tricabonyl and 99mTc-Sn (II) as a model for potential hazards imaging. J Mol Imag Dynamic 2016, 6, 1.Search in Google Scholar
91. Sanad, M. H., Ayman, F., Dina, H. Radioiodination, molecular modelling and biological evaluation of aniracetam as a tracer for brain imaging. Egypt. J. Rad. Sci. Applic. 2017, 30, 131–143.Search in Google Scholar
92. Motaleb, M. A., Wanis, K. F., Sanad, M. H. Synthesis, characterization and labeling of 2-{N, N-dicarboxymethyl (aminoacetyl)} aminothiazole with technetium-99m. Arab Journal of Nuclear Sciences and Applications 2005, 38, 137–145.Search in Google Scholar
93. Motaleb, M. A., Wanis, K. F., Sanad, M. H. Labeling and Biological Distribution of 99mTc-DCMA-AP. Arab Journal of Nuclear Sciences and Applications 2006, 39, 84–91.Search in Google Scholar
94. Sanad, M. H., Gizawy, M .A., Motaleb, M. A., Ibrahim, I. T., Saad, E. A. A comparative study between stannous chloride and sodium borohydrideas a reducing agents for the radiolabeling of 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine with technetium-99m for tumor imaging. Radiochemistry 2021, 63, 507–514.10.1134/S1066362221040159Search in Google Scholar
95. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Radiosynthesis and in silico bioevaluation of 131I-Sulfasalazine as a highly selective radiotracer for imaging of ulcerative colitis. Chem Biol Drug Des., 2021, 98, 751–761.10.1111/cbdd.13929Search in Google Scholar PubMed
96. Sanad, M. H., Emam, A., Amal, S. H., Omaima, H., Magdy, R., Ahmed, F. Distribution of iodine125 labeled parathion and the protective effect of dried banana peel in experimental mice. Egyptian Journal of Chemistry, 2022, 65, 1–2.10.21608/ejchem.2021.92646.4387Search in Google Scholar
97. Sanad, H. M., Farag, A. B., Motaleb, M. A. Radioiodination and biological evaluation of landiolol as a tracer for myocardial perfusion imaging: preclinical evaluation and diagnostic nuclear imaging. Radiochim. Acta 2018, 106, 1001–1008.10.1515/ract-2018-2980Search in Google Scholar
98. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Design of novel radiotracer 99mTcN-tetrathiocarbamate as SPECT imaging agent: a preclinical study for GFR renal function. Chemical Papers, 2022, https://doi.org/10.1007/s11696-021-01926-y.Search in Google Scholar
99. Sanad, M. H., Eyssa, H. M., Marzook, F. A., et al. Radiosynthesis and biological evaluation of 99mTc-Nitrido-Levetiracetam as a brain imaging agent. Radiochemistry, 2021, 63, 635–641.10.1134/S106636222105012XSearch in Google Scholar
100. Sanad, M. H., Eyssa, H. M., Marzook, F. A.,et al.. Comparative bioevaluation of 99mTc-Tricarbonyl and 99mTc-Sn (II) Lansoprazole as a model for peptic ulcer localization. Radiochemistry, 2021, 63 , 642–650.10.1134/S1066362221050131Search in Google Scholar
101. Sanad, M. H., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M. Radioiodinated azilsartan as a new highly selective radiotracer for myocardial perfusion imaging Radiochemistry, 2021, 63, 520–525.10.1134/S1066362221040160Search in Google Scholar
102. Sanad, M. H., Farag, A. B., Marzook, F. A., Mandal, S. K. Preparation, characterization, and bioevaluation of 99mTc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice. Radiochim. Acta, 2022, https://doi.org/10.1515/ract-2021-1105.Search in Google Scholar
103. Sanad, M. H., Farag, A. B., Rizvi, S. F. A. In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice Radiochimica Acta, 2021, 109, 575–582.10.1515/ract-2020-0125Search in Google Scholar
104. EI-Wetery, A.S.A., Fayz, M. A. A., Sanad, M. H., EI-Hashash, M. A. M. Study on the preparation of 99mTc-N-(pyrimidine-2-yl- carbamoyl methyl) iminodiacetic acid as a new complex for hepatobiliary imaging agent. Arab Journal of Nuclear Sciences and Applications 2007, 40, 109–118.Search in Google Scholar
105. Sanad, M. H. , Hanan, T., Gehan, S. In silico study and preclinical evaluation of radioiodinated procaterol as a potential scintigraphic agent for lung imaging. Egypt. J. Rad. Sci. Applic., 2017, 30, 117–130.Search in Google Scholar
106. Sanad, M. H., Eyssa, H. M., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M., Sabry, A. B., Alhussein, A. I. Synthesis, radiolabeling, and biological evaluation of 99mTc-Tricarbonyl mesalamine as a potential ulcerative colitis imaging agent. Radiochemistry 2021, 63, 6, 833–840.10.1134/S1066362221060163Search in Google Scholar
107. Sanad, M. H., Eyssa, H. M., Marzook, F. A., Rizvi, S. F. A., Farag, A. B., Fouzy, A. S. M., Mandal, S. K., Patnaik, S. S. Optimized chromatographic separation and bioevalution of radioiodinated ilaprazole as a new labeled compound for peptic ulcer localization in mice. Radiochemistry, 2021, 63, 6, 811–818.10.1134/S1066362221060138Search in Google Scholar
108. Sanad, M. H. MSc thesis, Faculty of Science, Ain-Shams University, Cairo, Egypt, 2007.Search in Google Scholar
109. Sanad, M. H. MSc thesis, Faculty of Science, Zagazig University, Cairo, Egypt, 2004.Search in Google Scholar
110. Sanad, M. H., Nermien, M. G., Nermeen, M. E., , Ismail, T. I., Ayman, M. Radioiodination of balsalazide, bioevaluation and characterization as a highly selective radiotracer for imaging of ulcerative colitis in mice. J. Label Compd. Radiopharm. 2022, https://doi.org/10.1002/JLCR.3961.Search in Google Scholar PubMed
111. Sanad, M. H., Eyssa, H. M., Heba, M. E. Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation. Radiochim. Acta, 2022, https://doi.org/10.1515/ract-2021-1091.Search in Google Scholar
112. Sanad, M. H. Ulcerative colitis and peptic ulcer imaging , 1st edn. LAP LAMBERT Academic Publishing, Germany 2017, 1–160.Search in Google Scholar
113. Sanad, M. H. Nuclear medicine and brain imaging, 1st edn. LAP LAMBERT Academic Publishing, Germany. 2017, 1–166.Search in Google Scholar
114. Sanad, M. H., Abdel Rahim, E. A., Rashed, M. M., Fouzy, A. S. M., Omaima, A. H., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of parathion as a new radiotracer to study in experimental mice. World Journal of Pharmacy and Pharmaceutical Sciences 2020, 9, 148–158.Search in Google Scholar
115. Ayman, F., Ping, W., Mahmoud, A., Hesham, S. Biological and Medical Chemistry, 2021, 12003930, https://doi. org/10.26434/chemrxiv.Search in Google Scholar
116. Galal, H. E., Nahed, M. F., Ayman, B., Sheikha, A. A. Nucleosides, Nucleotides and Nucleic Acids, 2018, 37, 186–198.10.1080/15257770.2018.1450508Search in Google Scholar PubMed
117. Massoud, A., Farid, O. M., Maree, R. M., Allan, K. F., Tian, Z. R., An improved metal cation capture on polymer with graphene oxide synthesized by gamma radiation. Reactive and Functional Polymers, 2020, 151, 104564.10.1016/j.reactfunctpolym.2020.104564Search in Google Scholar
118. Challan, S. B., Massoud, A. Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. Journal of Radioanalytical and Nuclear Chemistry 2017, 314, 2189–2199.10.1007/s10967-017-5561-ySearch in Google Scholar
119. Elgemeie, G. H., Fathy, N. M., Farag, A. B.,Yahab, I. B. Design and synthesis of new class indeno[1,2-b]pyridine thioglycosides,Nucleoside & Nucleotide and Nucleic acid, 2020, 39, 1–16.10.1080/15257770.2020.1780436Search in Google Scholar PubMed
120. Farag, A. B.,Ewida, H. E., Ahmed, M. S., Design, synthesis, and biological evaluation of novel amide and hydrazide based thioether analogs targeting Histone deacteylase (HDAC) enzymes, European journal of medicinal chemistry, 2018, 148, 73–85.10.1016/j.ejmech.2018.02.011Search in Google Scholar PubMed
121. Elgemeie, G. H., Fathy, N. M., Farag, A. B.,Kursani, S. A.Design, synthesis, molecular docking and anti-hepatocellular carcinoma evaluation of novel acyclic pyridine thioglycosides, Nucleoside & Nucleotide and Nucleic acid 2018, 37, 186–198.10.1080/15257770.2018.1450508Search in Google Scholar PubMed
122. Farag, A. B., Magdi, A., Spectrophotometric study of the interaction between a novel benzothiazolethioglycoside as antimicrobial agent with bovine serum albumin, Chemistry Research Journal, 2017, 2, 66–72.Search in Google Scholar
123. Elgemeie, G. H., Farag, A. B.,Design, synthesis, and in vitro anti-hepatocellular carcinoma of novel thymine thioglycoside analogs as new antimetabolic agents, Nucleoside & Nucleotide and Nucleic acid., 2017, 36, 328–342.10.1080/15257770.2017.1287377Search in Google Scholar PubMed
124. Elgemeie, G. H., Fathy, N. M., Farag, A. B., Kursani, S. A.Novel synthesis of dihydropyridine thioglycosides and their cyctotoxic activity, Nucleoside & Nucleotide and Nucleic acid., 2017, 36, 355–377.10.1080/15257770.2016.1257807Search in Google Scholar PubMed
125. Elgemeie, G. H., Fathy, N. M., Zaghary, W. A., Farag, A. B.,S-Glycosides in Medicinal Chemistry: Novel Synthesis of CyanoethyleneThioglycosides and Their Pyrazole Derivatives, Nucleoside & Nucleotide and Nucleic acid, 2017, 36, 198–212.10.1080/15257770.2016.1257807Search in Google Scholar
126. Farag, A. B., Wang, P., Boys, I., Schoggins, J., Sadek, H., Identification of Atovaquone, Ouabain and Mebendazole as FDA Approved drugs targeting SARS-COV-2, ChemRxiv, 2020.10.26434/chemrxiv.12003930.v4Search in Google Scholar
127. White, R. L., White, C. M., Turgut, H., Massoud, A., Tian, Z. R., Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles, J Taiwan Inst Chem Eng 2018, 85, 18–28.10.1016/j.jtice.2018.01.036Search in Google Scholar
128. Bekheet, S., El-Tawoosy, M., Massoud, A., Borei, I. H., Ghanem, H. M., 99mTc-labeled ceftazidime and biological evaluation in experimental animals for detection of bacterial infection. Am. J. Biochem 2014, 4,15–24.Search in Google Scholar
129. Massoud, A., Rizk, H. E., Attallah, M. F., Selective separation of Y(III) from Sr(II) using hybrid polymer: synthesis, characterization, batch and column study, Polym. Bull. 2021, 78, 7053–7069.10.1007/s00289-020-03479-8Search in Google Scholar
130. Zaky, M. M., Eyssa, H. M., Sadek, R. F. Improvement of the magnesium battery electrolyte properties through gamma irradiation of nano polymer electrolytes doped with magnesium oxide nanoparticles. J. Vinyl Addit. Technol. 2019, 25, 243.10.1002/vnl.21683Search in Google Scholar
131. Senna, M. M., Youssef, H. A., Eyssa, H. M. Effect of electron beam irradiation, EPDM and azodicarbonamide on the foam properties of LDPE sheet. Polym. Plast. Technol. Eng. 2007, 46, 1093.10.1080/03602550701525271Search in Google Scholar
132. Eyssa, H. M., El Mogy, S. A., Youssef, H. A. Impact of foaming agent and nanoparticle fillers on the properties of irradiated rubber. Radiochim. Acta 2021, 109, 127.10.1515/ract-2020-0015Search in Google Scholar
133. Hegazi, E. M., Eyssa, H. M., Abd El-Megeed, A. A. Effect of nanofiller on the ageing of rubber seal materials under gamma irradiation. J. Compos. Mater. 2019, 53, 2065.10.1177/0021998318819178Search in Google Scholar
134. Eyssa, H. M., Osman, M., Kandil, S. A., Abdelrahman, M. M. Effect of ion and electron beam irradiation on surface morphology and optical properties of PVA. Nucl. Sci. Tech. 2015, 26, 060306.Search in Google Scholar
135. Eyssa, H. M., Elnaggar, M. Y., Zaky, M. M. Impact of graphene oxide nanoparticles and carbon black on the gamma radiation sensitization of acrylonitrile–butadiene rubber seal materials. Polym. Eng. Sci. 2021, 61, 2843.10.1002/pen.25804Search in Google Scholar
136. Youssef, H. A., Senna, M. M., Eyssa, H. M., Sarhan, A. Fabrication of sponge nitrile butadiene rubber (NBR) by subsequent sulphur and electron beam irradiation. Mans. J. Chem. 2010, 37, 155.Search in Google Scholar
137. Senna, M. M., Mostafa, A. B., Mahdy, S. R., El-Naggar, A. M. Characterization of blend hydrogels based on plasticized starch/ cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl. Instrum. Methods Phys. Res. B 2016, 386, 22–29.10.1016/j.nimb.2016.09.020Search in Google Scholar
138. Eyssa, H. M., Sawires, S. G., Senna, M. M. Gamma irradiation of polyethylene nanocomposites for food packaging applications against stored-product insect pests. J. Vinyl Addit. Technol. 2019, 25, 120.10.1002/vnl.21660Search in Google Scholar
139. Eyssa, H. M., Abulyazied, D. E., Abo-State, M. A. M. Application of polyurethane /gamma-irradiated carbon nanotubes composites as antifouling coat. Polym. Compos. 2018, 39, E1196.10.1002/pc.24718Search in Google Scholar
140. Eyssa, H. M., Mohamed, W. S., El-Zayat, M. M. Irradiated rubber composite with nano and microfillers for mining rock application. Radiochim. Acta. 2019, 107, 737.10.1515/ract-2018-2989Search in Google Scholar
141. Youssef, A. H., Senna, M. M., Eyssa, H. M. Characterization of LDPE and LDPE/EVA blends crosslinked by electron beamirradiation and foamed with chemical foaming agent. J. Polym. Res. 2007, 14, 351.10.1007/s10965-007-9117-7Search in Google Scholar
142. Eyssa, H. M., Abulyazied, D. E., Abdulrahman, M., Youssef, H. A. Mechanical and physical properties of nanosilica/nitrile butadienerubber composites cured by gamma irradiation. Egypt. J. Petro. 2018, 27, 383.10.1016/j.ejpe.2017.06.004Search in Google Scholar
143. Youssef, H. A., Abdel-Monem, Y. K., El-Sherbiny, I. M., Eyssa, H. M., El-Raheem, H. M. Effect of ionizing radiation on the properties ofsome synthesized polyurethanes. J. Pharm. Biol. Chem. Sci. 2016, 7, 855.Search in Google Scholar
144. Eyssa, H. M., Hassan, M. S. Surface characteristics of cotton/ polyester fabric coated with poly-urethane elastomers cured thermally or by using gamma irradiation. Egypt. J. Rad. Sci. Applic. 2014, 27, 91.10.21608/ejrsa.2014.1511Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Unique transport behaviour of Am(III)/Eu(III) ions across a supported liquid membrane containing a TREN-based diglycolamide dendrimer ligand
- A novel CPE procedure by oil-in-water microemulsion for preconcentrating and analyzing thorium and uranium
- Separation of 103Pd from a Rh target using an alloying pretreatment with bismuth
- Experimental and computational study of rafoxanide radioiodination via isotopic exchange reaction
- Preparation, biological evaluation and radiolabeling of [99mTc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice
- Gamma radiation shielding performance and physico-chemical properties of poly (vinyl alcohol)/Cd(NO3)2 composite films
Articles in the same Issue
- Frontmatter
- Original Papers
- Unique transport behaviour of Am(III)/Eu(III) ions across a supported liquid membrane containing a TREN-based diglycolamide dendrimer ligand
- A novel CPE procedure by oil-in-water microemulsion for preconcentrating and analyzing thorium and uranium
- Separation of 103Pd from a Rh target using an alloying pretreatment with bismuth
- Experimental and computational study of rafoxanide radioiodination via isotopic exchange reaction
- Preparation, biological evaluation and radiolabeling of [99mTc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice
- Gamma radiation shielding performance and physico-chemical properties of poly (vinyl alcohol)/Cd(NO3)2 composite films