Startseite Adsorption and separation behavior of palladium(II) from simulated high-level liquid waste using a novel silica-based adsorbents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adsorption and separation behavior of palladium(II) from simulated high-level liquid waste using a novel silica-based adsorbents

  • Hao Wu , Naoki Osawa , Masahiko Kubota und Seong-Yun Kim EMAIL logo
Veröffentlicht/Copyright: 4. März 2021

Abstract

Aiming at selective adsorption and separation of Pd(II) in nitric acid solution, a hybrid soft N and hard O donor adsorbent (TAMIA-EH+TOA)/SiO2–P (P = Polymer) was successfully synthesized. The adsorption performances of (TAMIA-EH+TOA)/SiO2–P adsorbent towards Pd(II) were systematically investigated as a function of contact time, effect of concentration of nitric acid, effect of temperature etc. Adsorption speed of Pd(II) was fairly fast and can reach equilibrium state within only 0.5 h. The distribution coefficient of Pd(II) was more than 103 when [HNO3] = 0.1. Though it decreased gradually with an increase in the concentration of HNO3, the adsorption selectivity of (TAMIA-EH+TOA)/SiO2–P adsorbent towards Pd(II) was still significant than other co-existing metal ions in the whole HNO3 range from 0.1 to 5 M. The adsorption isotherm of Pd(II) onto (TAMIA-EH+TOA)/SiO2–P adsorbent fitted well with Langmuir adsorption model but Freundlich isotherm model. The calculated results of adsorption thermodynamic parameters indicated that the adsorption process of Pd(II) was exothermic and happened in a natural way. Furthermore, the separation chromatography experiment by utilizing (TAMIA-EH+TOA)/SiO2–P adsorbent packed column was carried out. Based on the results of plotted elution curves, it was found that the successful recovery of Pd(II) (96.27%) was achieved by eluting with thiourea solution.


Corresponding author: Seong-Yun Kim, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi980-8579, Japan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rahimpour, M. R., Samimi, F., Babapoor, A., Tohidian, T., Mohebi, S. Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem. Eng. Process 2017, 121, 24; https://doi.org/10.1016/j.cep.2017.07.021.Suche in Google Scholar

2. Adhikari, A. K., Lin, K. S. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chem. Eng. J. 2016, 284, 1348; https://doi.org/10.1016/j.cej.2015.09.086.Suche in Google Scholar

3. Ngcephe, A. M., Sinha, M. K., Purcell, W. Solvent extraction and separation of palladium from platinum group elements: synthesis and characterization of 2-mercaptopyridine N-oxide-palladium (II) complex. J. Mol. Struct. 2020, 1199, 127009; https://doi.org/10.1016/j.molstruc.2019.127009.Suche in Google Scholar

4. Hasegawa, H., Barua, S., Wakabayashi, T., Mashio, A., Maki, T., Furusho, Y., Rahman, I. Selective recovery of gold, palladium, or platinum from acidic waste solution. Microchem. J. 2018, 139, 174; https://doi.org/10.1016/j.microc.2018.02.025.Suche in Google Scholar

5. Nguyen, T. H., Sonu, C. H., Lee, M. S. Separation of platinum(IV) and palladium(II) from concentrated hydrochloric acid solutions by mixtures of amines with neutral extractants. J. Ind. Eng. Chem. 2015, 32, 238; https://doi.org/10.1016/j.jiec.2015.08.022.Suche in Google Scholar

6. Gandhi, M. R., Yamada, M., Kondo, Y., Shibayama, A., Hamada, F. p-Sulfonatothiacalix[6]arene- impregnated resins for the sorption of platinum group metals and effective separation of palladium from automotive catalyst residue. J. Ind. Eng. Chem. 2015, 30, 20.10.1016/j.jiec.2015.04.024Suche in Google Scholar

7. Ning, S. Y., Zhang, S. C., Zhang, W., Zhou, J., Wang, S. Y., Wang, X. P., Wei, Y. Z. Separation and recovery of Rh, Ru and Pd from nitrate solution with a silica based IsoBu-BTP/SiO2-P adsorbent. Hydrometallurgy 2020, 191, 105207; https://doi.org/10.1016/j.hydromet.2019.105207.Suche in Google Scholar

8. Bush, R. P. Recovery of platinum group metals from high level radioactive waste. Platinum Metals Rev. 1991, 35, 202.Suche in Google Scholar

9. Zhang, S. C., Ning, S. Y., Zhou, J., Zhang, W., Wang, X. P., Wei, Y. Z. New insight into the adsorption of ruthenium, rhodium, and palladium from nitric acid solution by a silica-polymer adsorbent. Nucl. Sci. Tech. 2020, 31, 34; https://doi.org/10.1007/s41365-020-0744-6.Suche in Google Scholar

10. Locke, C. R., Kobayashi, T., Nakajima, T., Midorikawa, K. Application of an orthogonally polarized laser scheme for selective photoionization of palladium isotopes. Appl. Phys. B 2016, 122, 246; https://doi.org/10.1007/s00340-016-6508-7.Suche in Google Scholar

11. Uruga, K., Sawada, K., Enokida, Y., Yamamoto, I. Vitrification of high-level radioactive waste considering the behavior of platinum group metals. Prog. Nucl. Energy 2008, 50, 514; https://doi.org/10.1016/j.pnucene.2007.11.036.Suche in Google Scholar

12. Dakshinamoorthy, A., Dhami, P. S., Naik, P. W., Dudwadkar, N. L., Munshi, S. K., Dey, P. K., Venugopal, V. Separation of palladium from high level liquid waste of PUREX origin by solvent extraction and precipitation methods using oximes. Desalination 2008, 232, 26; https://doi.org/10.1016/j.desal.2007.11.052.Suche in Google Scholar

13. Pyrzynska, K. Recent advances in solid-phase extraction of platinum and palladium. Talanta 1998, 47, 841; https://doi.org/10.1016/s0039-9140(98)00158-1.Suche in Google Scholar

14. Fontas, C., Antico, E., Vocanson, F., Lamartine, R., Seta, P. Efficient thiacalix[4]arenes for the extraction and separation of Au(III), Pd(II) and Pt(IV) metal ions from acidic media incorporated in membranes and solid phases. Sep. Purif. Technol. 2007, 54, 322; https://doi.org/10.1016/j.seppur.2006.10.003.Suche in Google Scholar

15. Lee, J. Y., Raju, B., Kumar, B. N., Kumar, J. R., Park, H. K., Reddy, B. R. Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Sep. Purif. Technol. 2010, 73, 213; https://doi.org/10.1016/j.seppur.2010.04.003.Suche in Google Scholar

16. Tuzen, M., Saygi, K. O., Soylak, M. Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination. J. Hazard. Mater. 2008, 156, 591; https://doi.org/10.1016/j.jhazmat.2007.12.062.Suche in Google Scholar

17. Zha, M. Q., Liu, J., Wong, Y. L., Xu, Z. T. Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. J. Mater. Chem. A 2015, 3, 3928; https://doi.org/10.1039/c4ta06678b.Suche in Google Scholar

18. Sharma, S., Rajesh, N. Augmenting the adsorption of palladium from spent catalyst using a thiazole ligand tethered on an amine functionalized polymeric resin. Chem. Eng. J. 2016, 283, 999; https://doi.org/10.1016/j.cej.2015.08.061.Suche in Google Scholar

19. Xu, Y. L., Kim, S. Y., Ito, T., Tokuda, H., Hitomi, K., Ishii, K. Adsorption behavior of platinum group metals onto a silica-based (Crea+Dodec)/SiO2-P extraction resin from simulated high level liquid waste. Sep. Sci. Technol. 2015, 50, 260; https://doi.org/10.1080/01496395.2014.956222.Suche in Google Scholar

20. Das, A., Ruhela, R., Singh, A. K., Hubli, R. C. Evaluation of novel ligand dithiodiglycolamide (DTDGA) for separation and recovery of palladium from simulated spent catalyst dissolver solution. Sep. Purif. Technol. 2014, 125, 151; https://doi.org/10.1016/j.seppur.2014.01.001.Suche in Google Scholar

21. Ruhela, R., Tomar, B. S., Sharma, J. N., Seshagiri, T. K., Adya, V. C., Hubli, R. C., Suri, A. K. Studies on the separation and recovery of palladium from simulated high level liquid waste (SHLW) solution with novel extractant N,N,N′,N′-tetra (2-ethylhexyl) dithiodiglycolamide DTDGA. Sep. Sci. Technol. 2013, 48, 1049; https://doi.org/10.1080/01496395.2012.724140.Suche in Google Scholar

22. Mowafy, E. A., Mohamed, D., Alshammari, A. Extraction and separation of selected platinum-group and base metal ions from nitric acid solutions using thiodiglycolamides (TDGA) as novel extractants. Sep. Sci. Technol. 2015, 50, 2352.10.1080/01496395.2015.1056359Suche in Google Scholar

23. Mehrani, K., Mehrani, A., Amini, M. M., Sadeghi, O., Tavassoli, N. Dipyridylamine-modified nanoporous silicas as new sorbents for the separation and pre-concentration of palladium. Microchim. Acta 2011, 173, 521; https://doi.org/10.1007/s00604-011-0590-7.Suche in Google Scholar

24. Zou, Q., Wu, Y., Shu, Q. D., Ning, S. Y., Wang, X. P., Wei, Y. Z., Tang, F. D. Separation of palladium along with minor actinides by isoBu-BTP/SiO2-P adsorbent from high-level liquid waste. J. Chem. Eng. Data 2018, 63, 2931; https://doi.org/10.1021/acs.jced.8b00238.Suche in Google Scholar

25. Wu, H., Zhang, X. X., Yin, X. B., Inaba, Y., Hariga, M., Takeshita, K. Selective separation of cadmium (II) from zinc (II) by a novel hydrophobic ionic liquid including N,N,N׳,N׳-tetrakis(2-methyl pyridyl)-1,2-phenylenediamine-4-amido structure: a hard-soft donor combined method. Dalton Trans. 2018, 47, 10063; https://doi.org/10.1039/c8dt02228c.Suche in Google Scholar

26. Wang, Z. P., Wang, J. R., Ding, S. D., Liu, Y., Zhang, L. R., Song, L. J., Chen, Z. L., Yang, X. Y., Wang, X. Y. Non-heterocyclic N-donor ligands of nitrilotriacetamide for Am3+/Eu3+separation. Sep. Purif. Technol. 2019, 210, 107; https://doi.org/10.1016/j.seppur.2018.04.065.Suche in Google Scholar

27. Sasaki, Y., Morita, K., Shimazaki, S., Tsubata, Y., Ozawa, M. Masking effects for Mo, Re, Pd and Ru by S and N-donor reagents through MIDOA and ntaamide extraction. Solvent Extr. Res. Dev., Jpn. 2016, 23, 161; https://doi.org/10.15261/serdj.23.161.Suche in Google Scholar

28. Wang, C. Z., Lan, J. H., Wu, Q. Y., Chai, Z. F., Shi, W. Q. Theoretical insights on the complexation of Am(III) and Cm(III) with amide-type ligands. J. Radioanal. Nucl. Chem. 2019, 322, 993; https://doi.org/10.1007/s10967-019-06804-2.Suche in Google Scholar

29. Wu, Y., Zhang, X. X., Wei, Y. Z., Mimura, H. Development of adsorption and solidification process for decontamination of Cs-contaminated radioactive water in Fukushima through silica-based AMP hybrid adsorbent. Sep. Purif. Technol. 2017, 181, 76; https://doi.org/10.1016/j.seppur.2017.03.019.Suche in Google Scholar

30. Wu, Y., Lee, C. P., Mimura, H., Zhang, X. X., Wei, Y. Z. Stable solidification of silica-based ammonium molybdophosphate by allophane: application to treatment of radioactive cesium in secondary solid wastes generated from Fukushima. J. Hazard. Mater. 2018, 341, 46; https://doi.org/10.1016/j.jhazmat.2017.07.044.Suche in Google Scholar

31. Ning, S. Y., Zhou, J., Zhang, S. C., Zhang, W., Wei, Y. Z. Synthesis of soft N-donor isoPentyl-BTBP and study on its removal of actinides from high level liquid waste. Radiochim. Acta 2019, 108, 425.10.1515/ract-2019-3100Suche in Google Scholar

32. Yu, Q., Ning, S. Y., Zhang, W., Wang, X. P., Wei, Y. Z. Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent. Hydrometallurgy 2018, 181, 74; https://doi.org/10.1016/j.hydromet.2018.07.025.Suche in Google Scholar

33. Zhang, W., Yu, S. Q., Zhang, S. C., Zhou, J., Ning, S. Y., Wang, X. P., Wei, Y. Z. Separation of scandium from the other rare earth elements with a novel macro-porous silica-polymer based adsorbent HDEHP/SiO2-P. Hydrometallurgy 2019, 185, 117; https://doi.org/10.1016/j.hydromet.2019.01.012.Suche in Google Scholar

34. Ko, D., Mines, P. D., Jakobsen, M. H., Yavuz, C. T., Hansen, H. C. B., Andersen, H. R. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff. Chem. Eng. J. 2018, 348, 685; https://doi.org/10.1016/j.cej.2018.04.192.Suche in Google Scholar

35. Ricoux, Q., Méricq, J. P., Bouyer, D., Bocokic´, V., Hernandez-Juarez, L. C., van Zutphen, S., Faur, C. A selective dynamic sorption-filtration process for separation of Pd(II) ions using an aminophosphine oxide polymer. Sep. Purif. Technol. 2017, 174, 159; https://doi.org/10.1016/j.seppur.2016.10.025.Suche in Google Scholar

36. Haight, G. P., Boston, D. R. Molybdenum species in aqueous solution — a brief summary. J. Less-Common Met. 1974, 36, 95; https://doi.org/10.1016/0022-5088(74)90087-3.Suche in Google Scholar

37. Milonjic, S. K., Boskovic, M. R., Ceranic, T. S. Adsorption of uranium(VI) and zirconium(IV) from acid solutions on silica gel. Sep. Sci. Technol. 1992, 27, 1643.10.1080/01496399208029229Suche in Google Scholar

38. Watanabe, S., Arai, T., Ogawa, T., Takizawa, M., Sano, K., Nomura, K., Koma, Y. Optimizing composition of TODGA/SiO2-P adsorbent for extraction chromatography process. Procedia Chem. 2012, 7, 411; https://doi.org/10.1016/j.proche.2012.10.064.Suche in Google Scholar

39. Xu, L., Zhang, A. Y., Pu, N., Xu, C., Chen, J. Development of Two novel silica based symmetric triazine-ring opening N donor ligands functional adsorbents for highly efficient separation of palladium from HNO3 solution. J. Hazard. Mater. 2019, 376, 188; https://doi.org/10.1016/j.jhazmat.2019.05.028.Suche in Google Scholar

40. Xiao, C. L., Wang, C. Z., Yuan, L. Y., Li, B., He, H., Wang, S. A., Zhao, Y. L., Chai, Z. F., Shi, W. Q. Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard−soft fonor combined strategy. Inorg. Chem. 2014, 53, 1712; https://doi.org/10.1021/ic402784c.Suche in Google Scholar

41. Tien, C., Ramarao, B. V. On the significance and utility of the Lagergren model and the pseudo second-order model of batch adsorption. Sep. Sci. Technol. 2107, 52, 975.10.1080/01496395.2016.1274327Suche in Google Scholar

42. Simonin, J. P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254; https://doi.org/10.1016/j.cej.2016.04.079.Suche in Google Scholar

43. Wang, F. T., Pan, Y. F., Cai, P. X., Guo, T. X., Xiao, H. N. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour. Technol. 2017, 241, 482; https://doi.org/10.1016/j.biortech.2017.05.162.Suche in Google Scholar

44. Arshad, F., Selvaraj, M., Zain, J., Banat, F., Haija, M. A. Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol. 2019, 209, 870; https://doi.org/10.1016/j.seppur.2018.06.035.Suche in Google Scholar

45. Rasakia, S. A., Zhang, B. X., Liu, S. Q., Thomas, T. J., Yang, M. H. Nanourchin ZnO@TiCN composites for Cr (VI) adsorption and thermochemical remediation. J. Environ. Chem. Eng. 2018, 6, 3837; https://doi.org/10.1016/j.jece.2018.05.040.Suche in Google Scholar

46. Tan, I. A. W., Hameed, B. H., Ahmad, A. L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fiber activated carbon. Chem. Eng. J. 2007, 127, 111; https://doi.org/10.1016/j.cej.2006.09.010.Suche in Google Scholar

47. Ngah, W. S. W., atinathan, S. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J. Environ. Manage. 2010, 91, 958; https://doi.org/10.1016/j.jenvman.2009.12.003.Suche in Google Scholar

Received: 2020-07-07
Accepted: 2021-02-17
Published Online: 2021-03-04
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0071/html?lang=de
Button zum nach oben scrollen