Home Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated gallium oxide target
Article
Licensed
Unlicensed Requires Authentication

Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated gallium oxide target

  • Nabanita Naskar and Susanta Lahiri EMAIL logo
Published/Copyright: March 5, 2021

Abstract

No-carrier-added (NCA) 71,72As radionuclides were produced by irradiating gallium oxide target by 46 MeV α-particles. NCA 71,72As was separated from the target matrix by liquid-liquid extraction (LLX) using trioctyl amine (TOA) and tricaprylmethylammonium chloride (aliquat-336) diluted in cyclohexane. The bulk gallium was quantitatively extracted into the organic phase leaving 71,72As in the aqueous phase. Complete separation was observed at 3 M HCl + 0.1 M TOA and 2 M HCl + 0.01 M aliquat-336.


Corresponding author: Susanta Lahiri, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India, E-mail:

Acknowledgement

Authors are thankful to the cyclotron staffs of Variable Energy Cyclotron Centre (VECC), Kolkata for their cooperation.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Buatti, J. M., Kiess, A. P. The rapid evolution of theranostics in radiation oncology. Semin. Radiat. Oncol. 2021, 31, 1; https://doi.org/10.1016/j.semradonc.2020.07.001.Search in Google Scholar

2. Fassbender, M. E. Guest edited collection: radioisotopes and radiochemistry in health science. Sci. Rep. 2020, 10, 340; https://doi.org/10.1038/s41598-019-56278-1.Search in Google Scholar

3. Solnes, L. B., Werner, R. A., Jones, K. M., Sadaghiani, M. S., Bailey, C. R., Lapa, C., Pomper, M. G., Rowe, S. P. Theranostics: leveraging molecular imaging and therapy to impact patient management and secure the future of nuclear medicine. J. Nucl. Med. 2020, 61, 311; https://doi.org/10.2967/jnumed.118.220665.Search in Google Scholar

4. Sanders, V. A., Cutler, C. S. Radioarsenic: a promising theragnostic candidate for nuclear medicine. Nucl. Med. Biol. 2021, 92, 184. https://doi.org/10.1016/j.nucmedbio.2020.03.004.Search in Google Scholar

5. Spahn, I., Steyn, G. F., Nortier, F. M., Coenen, H. H., Qaim, S. M. Excitation functions of natGe(p, xn) 71,72,73,74As reactions up to 100 MeV with a focus on the production of 72As for medical and 73As for environmental studies. Appl. Radiat. Isot. 2007, 65, 1057; https://doi.org/10.1016/j.apradiso.2007.04.012.Search in Google Scholar

6. Ellison, P. A., Barnhart, T. E., Chen, F., Hong, H., Zhang, Y., Theuer, C. P., Cai, W., Nickles, R. J., DeJesus, O. T. High yield production and radiochemical isolation of isotopically pure arsenic-72 and novel radioarsenic labeling strategies for the development of theranostic radiopharmaceuticals. Bioconjugate Chem. 2016, 27, 179; https://doi.org/10.1021/acs.bioconjchem.5b00592.Search in Google Scholar

7. Shehata, M. M. Radiochemical Studies Relevant to Cyclotron Production of the Radionuclides 71,72As, 68Ge/68Ga and 76,77,80mBr. Doctoral dissertation; Universität zu Köln, 2011.Search in Google Scholar

8. Fuladvand, H., Bakhtiari, M., Sadeghi, M., Amiri, M. Pre-equilibrium effects on proton, deuteron, and alpha induced reactions for the production of 72As as a PET imaging radioisotope. J. Radioanal. Nucl. Chem. 2013, 298, 501; https://doi.org/10.1007/s10967-013-2447-5.Search in Google Scholar

9. Takács, S., Takács, M. P., Hermanne, A., Tárkányi, F., Adam-Rebeles, R. Excitation functions of longer lived radionuclides formed by deuteron irradiation of germanium. Nucl. Instrum. Methods Phys. Res. B 2014, 336, 81; https://doi.org/10.1016/j.nimb.2014.06.017.Search in Google Scholar

10. Bokhari, T. H., Mushtaq, A., Khan, I. U. Separation of no-carrier-added arsenic-77 from neutron irradiated germanium. Radiochim. Acta 2009, 97, 503; https://doi.org/10.1524/ract.2009.1644.Search in Google Scholar

11. Siri, S., Segovia, M. S., Cohen, I. M. The production of no carrier added arsenic radioisotopes in nuclear reactors. J. Radioanal. Nucl. Chem. 2019, 319, 175; https://doi.org/10.1007/s10967-018-6278-2.Search in Google Scholar

12. Birn, I., Qaim, S. M. Excitation functions of neutron threshold reactions on some isotopes of germanium, arsenic, and selenium in the 6.3- to 14.7-MeV energy range. Nucl. Sci. Eng. 1994, 116, 125; https://doi.org/10.13182/nse94-a21488.Search in Google Scholar

13. Takács, S., Takács, M. P., Ditrói, F., Aikawa, M., Haba, H., Komori, Y. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation. Nucl. Instrum. Methods Phys. Res. B 2016, 383, 213; https://doi.org/10.1016/j.nimb.2016.07.015.Search in Google Scholar

14. Nayak, D., Lahiri, S. Sequential separation of 61Cu, 62,63Zn, 66,67,68Ga, 71,72As and 73Se produced by heavy ion activation on cobalt target. J. Nucl. Radiochem. Sci. 2003, 4, 1; https://doi.org/10.14494/jnrs2000.4.1.Search in Google Scholar

15. Mukhopadhyay, K., Nayak, D., Lahiri, S. Separation of no-carrier-added as and Se produced in 16O irradiated cobalt target. J. Radioanal. Nucl. Chem. 2002, 251, 159.10.1023/A:1015027218470Search in Google Scholar

16. Mandal, A., Lahiri, S. Production and separation of no-carrier-added 73As and 75Se from 7Li irradiated germanium oxide target. Radiochim. Acta 2012, 100, 865; https://doi.org/10.1524/ract.2012.1980.Search in Google Scholar

17. Ballard, B., Nortier, F. M., Birnbaum, E. R., John, K. D., Phillips, D. R., Fassbender, M. E. Radioarsenic from a portable 72Se/72As generator: a current perspective. Curr. Rad. 2012, 5, 264; https://doi.org/10.2174/1874471011205030264.Search in Google Scholar

18. Phillips, D. R., Hamilton, V. T., Tylor, M. D., Farnham, A. M., Emram, A. M., Rowe, R. W., Pattel, D. Se-72/As-72 generator: generator-produced arsenic-72 in positron emission tomography. Radioact. Radiochem. 1992, 3, 53.Search in Google Scholar

19. Jennewein, M., Schmidt, A., Novgorodov, A. F., Qaim, S. M., Rösch, F. A no-carrier-added 72Se/72As radionuclide generator based on distillation. Radiochim. Acta 2004, 92, 245; https://doi.org/10.1524/ract.92.4.245.35611.Search in Google Scholar

20. http://nndc.bnl.gov.in (accessed Jan 15, 2021).Search in Google Scholar

21. Jennewein, M., Qaim, S. M., Hermanne, A., Jahn, M., Tsyganov, E., Slavine, N., Seliounine, S., Antich, P. A., Kulkarni, P. V., Thorpe, P. E., Mason, R. P. A new method for radiochemical separation of arsenic from irradiated germanium oxide. Appl. Radiat. Isot. 2005, 63, 343; https://doi.org/10.1016/j.apradiso.2005.04.005.Search in Google Scholar

22. Byrne, A. R. Simple production of 77As from reactor irradiated germanium. In International Conference on Nuclear Radiochemistry, 1984; p. 239.Search in Google Scholar

23. Tolmachev, V., Lundqvist, H. Separation of arsenic from germanium oxide targets by dry distillation. J. Radioanal. Nucl. Chem. 2001, 247, 61; https://doi.org/10.1023/a:1006706913108.10.1023/A:1006706913108Search in Google Scholar

24. Fassbender, M., Taylor, W., Vieira, D., Nortier, M., Bach, H., John, K. Proton beam simulation with MCNPX/CINDER’90: germanium metal activation estimates below 30 MeV relevant to the bulk production of arsenic radioisotopes. Appl. Radiat. Isot. 2012, 70, 72; https://doi.org/10.1016/j.apradiso.2011.08.014.Search in Google Scholar

25. Billinghurst, M. W., Abrams, D. N., Cantor, S. Separation of radioarsenic from a germanium dioxide target. International J. Radiat. Appl. Instrum. Part A. Appl. Radiat. Isot. 1990, 41, 501; https://doi.org/10.1016/0883-2889(90)90012-6.Search in Google Scholar

26. Jahn, M., Radchenko, V., Filosofov, D. V., Hauser, H., Eisenhut, M., Rösch, F., Jennewein, M. Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. Radiochim. Acta 2010, 98, 807; https://doi.org/10.1524/ract.2010.1783.Search in Google Scholar

27. Maki, Y., Murakami, Y. The Separation of arsenic-77 in a carrier-free state from the parent nuclide germanium-77 by a thin-layer chromatographic method. J. Radioanal. Chem. 1974, 22, 5; https://doi.org/10.1007/bf02518087.Search in Google Scholar

28. Shehata, M., Scholten, B., Spahn, I., Coenen, H., Qaim, S. Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As. J. Radioanal. Nucl. Chem. 2011, 287, 435; https://doi.org/10.1007/s10967-010-0699-x.Search in Google Scholar

29. Oláh, Z., Kremmer, T., Vogg, A. T., Varga, Z., Szűcs, Z., Neumaier, B., Dóczi, R. Novel ion exchange chromatography method for nca arsenic separation. Appl. Radiat. Isot. 2017, 122, 111; https://doi.org/10.1016/j.apradiso.2017.01.008.Search in Google Scholar

30. Caletka, R., Kotas, P. Separation of germanium from some elements by adsorption on silica gel. J. Radioanal. Nucl. Chem. 1974, 21, 349; https://doi.org/10.1007/bf02516318.Search in Google Scholar

31. Gott, M. D., DeGraffenreid, A. J., Feng, Y., Phipps, M. D., Wycoff, D. E., Embree, M. F., Cutler, C. S., Ketring, A. R., Jurisson, S. S. Chromatographic separation of germanium and arsenic for the production of high purity 77As. J. Chromatogr. A 2016, 1441, 68; https://doi.org/10.1016/j.chroma.2016.02.074.Search in Google Scholar

32. Beard, H. C. The Radiochemistry of Arsenic. Nuclear Science Series; National Academy of Sciences: Washington, 1960.Search in Google Scholar

33. Guin, R., Das, S. K., Saha, S. K. Separation of carrier-free arsenic from germanium. J. Radioanal. Nucl. Chem. 1998, 227, 181; https://doi.org/10.1007/bf02386457.Search in Google Scholar

34. Ellison, P. A., Chen, F., Barnhart, T., Nickles, R. J., Cai, W., DeJesus, O. T. Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents. In Proc of the 15th International Workshop on Targetry and Target Chemistry 2015.Search in Google Scholar

35. Chattopadhyay, S., Pal, S., Vimalnath, K. V., Das, M. K. A versatile technique for radiochemical separation of medically useful no-carrier-added (NCA) radioarsenic from irradiated germanium oxide targets. Appl. Radiat. Isot. 2007, 65, 1202; https://doi.org/10.1016/j.apradiso.2007.05.010.Search in Google Scholar

36. Ikeda, H., Kikunaga, H., Komori, Y., Yokokita, T., Mori, D., Haba, H., Watabe, H. Production of arsenic RI tracer from gallium oxide target by alpha beam irradiation. RIKEN Accel. Prog. Rep. 2019, 52.Search in Google Scholar

37. https://www-nds.iaea.org/exfor/ (accessed Dec 06, 2020).Search in Google Scholar

38. Levkovskij, V. N., Levkovskij, A. Activation Cross Section Nuclides of Average Masses (A = 40–100) by Protons and Alpha-Particles with Average Energies (E = 10–50 MeV). Cs. By Protons and Alphas, Moscow, 1991.Search in Google Scholar

39. Ismail, M. Measurement and analysis of the excitation function for alpha-induced reactions on Ga and Sb isotopes. Phys. Rev. C 1990, 41, 87; https://doi.org/10.1103/physrevc.41.87.Search in Google Scholar

40. Dmitriev, P. P., Molin, G. A. Yields of 73As and 74As in nuclear reactions with protons, deuterons and alpha-particles. At. Energ. 1976, 41, 48; https://doi.org/10.1007/bf01133200.Search in Google Scholar

41. https://www-nds.iaea.org/exfor/endf.htm (Accessed Dec 06, 2020).Search in Google Scholar

42. Koning, A. J., Rochman, D. Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 2012, 113, 2841; https://doi.org/10.1016/j.nds.2012.11.002.Search in Google Scholar

43. Ziegler, J. F., Biersack, J. P., Littmark, U. The Stopping and Ranges in Solids; Pergamon Press: New York, 1985.Search in Google Scholar

44. Greenwood, N. N., Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, 1989.Search in Google Scholar

45. Ghosh, K., Naskar, N., Choudhury, D., Lahiri, S. Natural flavonoids as superior reagents for separation of clinically important Zr radionuclides. ChemRxiv 2019, v1. https://doi.org/10.26434/chemrxiv.10043237.Search in Google Scholar

46. Lahiri, S., Mukhopadhyay, B., Das, N. R. Simultaneous production of 89Zr and 90,91m,92mNb in α-particle activated yttrium and their subsequent separation by HDEHP. Appl. Radiat. Isot. 1997, 48, 883; https://doi.org/10.1016/s0969-8043(96)00338-7.Search in Google Scholar

Received: 2020-12-07
Accepted: 2021-02-15
Published Online: 2021-03-05
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0120/html
Scroll to top button