An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions
Abstract
Theoretical studies via nuclear reaction models have an undeniable importance and impact in terms of better understanding of reaction processes and their nature. In this study, by considering the importance of these models and the medical radionuclides, the effects of six level density models and eight alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via 59Co(α,n)62Cu, 60Ni(α,np)62Cu, 65Cu(α,2n)67Ga, 64Zn(α,p)67Ga, 85Rb(α,3n)86Y, 86Sr(α,n)89Zr, 87Sr(α,2n)89Zr and 88Sr(α,3n)89Zr reactions were investigated. Calculations for each reaction route were performed by using the TALYS v1.9 code. The most consistent model with the literature data taken from the Experimental Nuclear Reaction Database (EXFOR), was identified by using the reduced chi-squared statistics in addition to an eyeball estimation. Also, the effects of combinational use of selected models and potentials were investigated by comparing the calculational results with the experimental data.
References
1. Stöcklin, G., Qaim, S. M., Rösch, F.: The impact of radioactivity on medicine. Radiochim. Acta 70–71, 249 (1995).10.1524/ract.1995.7071.special-issue.249Suche in Google Scholar
2. Qaim, S. M.: Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 44, 31 (2017).10.1016/j.nucmedbio.2016.08.016Suche in Google Scholar PubMed
3. Aydin, A., Pekdoğan, H., Tel, E., Kaplan, A.: Nuclear model calculations on the production of 125,123Xe and 133,131,129,128Ba radioisotopes. Phys. Atom. Nucl. 75, 310 (2012).10.1134/S1063778812030039Suche in Google Scholar
4. Tel, E., Aydin, A., Kara, A., Kaplan, A.: Investigation of ground state features of some medical radionuclides. Kerntechnik 77, 50 (2012).Suche in Google Scholar
5. Kaplan, A.: Investigation of neutron-production cross-sections of the structural fusion material 181Ta for (α,xn) reactions up to 150 MeV energy. J. Fusion Energy 32, 382 (2012).10.1007/s10894-012-9581-xSuche in Google Scholar
6. Kaplan, A., Özdoğan, H., Aydın, A., Tel, E.: Photo-neutron cross-section calculations of several structural fusion materials. J. Fusion Energy 32, 344 (2012).10.1007/s10894-012-9575-8Suche in Google Scholar
7. Kaplan, A., Özdoğan, H., Aydin, A., Tel, E.: Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for (γ, n) reaction. Phys. Atom. Nucl. 77, 1371 (2014).10.1134/S1063778814100081Suche in Google Scholar
8. Sarpün, İ. H., Aydın, A., Kaplan, A., Koca, H., Tel, E.: Comparison of fission barrier and level density models for (α,f) reaction of some heavy nuclei. Ann. Nucl. Energy 70, 175 (2014).10.1016/j.anucene.2014.03.017Suche in Google Scholar
9. Aydin, A., Pekdogan, H., Kaplan, A., Sarpün, İ. H., Tel, E., Demir, B.: comparison of level density models for the 60,61,62,64Ni(p,n) reactions of structural fusion material nickel from threshold to 30 MeV. J. Fusion Energy 34, 1105 (2015).10.1007/s10894-015-9927-2Suche in Google Scholar
10. Artun, O.: Calculation of productions of PET radioisotopes via phenomenological level density models. Radiat. Phys. Chem. 149, 73 (2018).10.1016/j.radphyschem.2018.03.018Suche in Google Scholar
11. Özdoğan, H.: Theoretical calculations of production cross-sections for the 201Pb, 111In, 18F and 11C radioisotopes at proton induced reactions. Appl. Radiat. Isotopes 143, 1 (2019).10.1016/j.apradiso.2018.10.007Suche in Google Scholar PubMed
12. Özdoğan, H., Şekerci, M., Kaplan, A.: Investigation of gamma strength functions and level density models effects on photon induced reaction cross-section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu. Appl. Radiat. Isotopes 143, 6 (2019).10.1016/j.apradiso.2018.10.011Suche in Google Scholar PubMed
13. Artun, O.: Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Appl. Radiat. Isotopes 144, 64 (2019).10.1016/j.apradiso.2018.11.011Suche in Google Scholar PubMed
14. Aslam, M., Sudár, S., Hussain, M., Malik, A. A., Shah, H. A., Qaim, S. M.: Charged particle induced reaction cross-section data for production of the emerging medically important positron emitter 64Cu: A comprehensive evaluation. Radiochim. Acta 97, 669 (2009).10.1524/ract.2009.1670Suche in Google Scholar
15. Aslam, M. N., Sudár, S., Hussain, M., Malik, A. A., Qaim, S. M.: Evaluation of excitation functions of 3He- and α-particle induced reactions on antimony isotopes with special relevance to the production of iodine-124. Appl. Radiat. Isotopes 69, 94 (2011).10.1016/j.apradiso.2010.07.022Suche in Google Scholar PubMed
16. Aslam, M. N., Qaim, S. M.: Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl. Radiat. Isotopes 89, 65 (2014).10.1016/j.apradiso.2014.02.007Suche in Google Scholar PubMed
17. Sudár, S., Qaim, S. M.: Cross-sections for the formation of 195Hgm,g, 197Hgm,g and 196Aum,g in α and 3He-particle induced reactions on Pt: effect of level density parameters on the calculated isomeric cross-section ratio. Phys. Rev. C 73, 034613 (2006).10.1103/PhysRevC.73.034613Suche in Google Scholar
18. Qaim, S. M., Spahn, I., Scholten, B., Neumaier, B.: Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim. Acta 104, 601 (2016).10.1515/ract-2015-2566Suche in Google Scholar
19. Koning, A., Hilaire, S., Goriely, S.: TALYS–1.9 A nuclear reaction program, User Manual, Release date: December 21, 2017, (2017) (https://tendl.web.psi.ch/tendl_2019/talys.html).Suche in Google Scholar
20. Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., Hlavač, S., Katō, K., Lalremruata, B., Lee, Y. O., Makinaga, A., Matsumoto, K., Mikhaylyukova, M., Pikulina, G., Pronyaev, V. G., Saxena, A., Schwerer, O., Simakov, S. P., Soppera, N., Suzuki, R., Takács, S., Tao, X., Taova, S., Tárkányi, F., Varlamov, V. V., Wang, J., Yang, S. C., Zerkin, V., Zhuang, Y.: Towards a more complete and accurate Experimental Nuclear Reaction Data Library (EXFOR): international collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 120, 272 (2014).10.1016/j.nds.2014.07.065Suche in Google Scholar
21. Barlow, R. J.: Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences. Wiley VCH (1993), p. 222.Suche in Google Scholar
22. Sudár, S., Qaim, S. M.: Mass number and excitation energy dependence of the Θeff/Θrig parameter of the spin cut-off factor in the formation of an isomeric pair. Nucl. Phys. A 979, 113 (2018).10.1016/j.nuclphysa.2018.09.039Suche in Google Scholar
23. Lacy, J. L., Guerrero, L., Chiu, R., Sun, L., Hall, L., Stone, C. K.: PET Imaging with 62Cu-ETS in a human clinical trial at the University of Wisconsin-Madison. In: 2007 IEEE Nuclear Science Symposium Conference Record. IEEE (2007).10.1109/NSSMIC.2007.4436996Suche in Google Scholar
24. Zhang, T., Das, S. K., Fels, D. R., Hansen, K. S., Wong, T. Z., Dewhirst, M. W., Vlahovic, G.: PET with 62Cu-ATSM and 62Cu-PTSM is a useful imaging tool for hypoxia and perfusion in pulmonary lesions. Am. J. Roentgenol. 201, W698 (2013).10.2214/AJR.12.9698Suche in Google Scholar
25. Szelecsényi, F., Suzuki, K., Kovács, Z., Takei, M., Okada, K.: Production possibility of radioisotopes by alpha induced reactions on cobalt for PET studies. Nucl. Instrum. Methods Phys. Res. Sect. B 187, 153 (2002).10.1016/S0168-583X(01)00923-5Suche in Google Scholar
26. Szelecsényi, F., Kovács, Z., van der Walt, T. N., Steyn, G. F., Suzuki, K., Okada, K.: Investigation of the natZn(p,x)62Zn nuclear process up to 70 MeV: A new 62Zn/62Cu generator. Appl. Radiat. Isotopes 58, 377 (2003).10.1016/S0969-8043(02)00345-7Suche in Google Scholar
27. Fukumura, T., Okada, K., Suzuki, H., Nakao, R., Mukai, K., Szelecsényi, F., Kovács, Z., Suzuki, K.: An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl. Med. Biol. 33, 821 (2006).10.1016/j.nucmedbio.2006.05.003Suche in Google Scholar
28. Hayes, R. L.: The medical use of gallium radionuclides: a brief history with some comments. Semin. Nucl. Med. 8, 183 (1978).10.1016/S0001-2998(78)80027-0Suche in Google Scholar
29. Bhattacharyya, S., Dixit, M.: Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans. 40, 6112 (2011).10.1039/c1dt10379bSuche in Google Scholar
30. Blessing, G., Qaim, S. M.: An improved internal Cu3As-alloy cyclotron target for the production of 75Br and 77Br and separation of the by-product 67Ga from the matrix activity. Int. J. Appl. Radiat. Isotopes 35, 927 (1984).10.1016/0020-708X(84)90204-7Suche in Google Scholar
31. Szelecsényi, F., Boothe, T. E., Tavano, E., Plitnikas, M. E., Tárkányi, F.: Compilation of cross-sections/thick target yields for 66Ga, 67Ga and 68Ga production using Zn targets up to 30 MeV proton energy. Appl. Radiat. Isotopes 45, 473 (1994).10.1016/0969-8043(94)90114-7Suche in Google Scholar
32. Hermanne, A., Szelecsényi, F., Sonck, M., Takács, S., Tárkányi, F., Van den Winkel, P.: New cross-section data on 68Zn(p,2n)67Ga and natZn(p,xn)67Ga nuclear reactions for the development of a reference data base. J. Radioanal. Nucl. Chem. 240, 623 (1999).10.1007/BF02349423Suche in Google Scholar
33. Szelecsényi, F., Steyn, G. F., Kovács, Z., van der Walt, T. N., Suzuki, K., Okada, K., Mukai, K.: New cross-section data for the 66Zn(p,n)66Ga, 68Zn(p,3n)66Ga, natZn(p,x)66Ga, 68Zn(p,2n)67Ga and natZn(p,x)67Ga nuclear reactions up to 100 MeV. Nucl. Instrum. Methods Phys. Res. Sect. B 234, 375 (2005).10.1016/j.nimb.2005.02.011Suche in Google Scholar
34. Shehata, M. M., Scholten, B., Spahn, I., Coenen, H. H., Qaim, S. M.: Radiochemical separation of 76,77Br and 66,67Ga from irradiated ZnSe targets using anion-exchange chromatography. Radiochim. Acta 100, 785 (2012).10.1524/ract.2012.1946Suche in Google Scholar
35. Aslam, M. N., Amjed, N., Qaim, S. M.: Evaluation of excitation functions of the 68,67,66Zn(p,xn)68,67,66Ga and 67Zn(p,α)64Cu reactions: validation of evaluated data through comparison with experimental excitation functions of the natZn(p,x)66,67Ga and natZn(p,x)64Cu processes. Appl. Radiat. Isotopes 96, 102 (2015).10.1016/j.apradiso.2014.11.002Suche in Google Scholar
36. Rösch, F., Qaim, S. M., Stöcklin, G.: Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl. Radiat. Isotopes 44, 677 (1993).10.1016/0969-8043(93)90131-SSuche in Google Scholar
37. Rösch, F., Qaim, S. M., Stöcklin, G.: Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p,n)- and natRb(3He,xn)-processes. Radiochim. Acta 61, 1 (1993).10.1524/ract.1993.61.1.1Suche in Google Scholar
38. Kettern, K., Linse, K.-H., Spellerberg, S., Coenen, H. H., Qaim, S. M.: Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized cyclotron. Radiochim. Acta 90, 845 (2002).10.1524/ract.2002.90.12_2002.845Suche in Google Scholar
39. Kandil, S. A., Scholten, B., Hassan, K. F., Hanafi, H. A., Qaim, S. M.: A comparative study on the separation of radioyttrium from Sr- and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron. J. Radioanal. Nucl. Chem. 279, 823 (2009).10.1007/s10967-008-7407-0Suche in Google Scholar
40. Nayak, T. K., Brechbiel, M. W.: 86Y based PET radiopharmaceuticals: radiochemistry and biological applications. Med. Chem. 7, 380 (2011).10.2174/157340611796799249Suche in Google Scholar PubMed PubMed Central
41. Huang, J., Cui, L., Wang, F., Liu, Z.: PET tracers based on 86Y. Curr. Radiopharm. 4, 122 (2011).10.2174/1874471011104020122Suche in Google Scholar PubMed
42. Zaneb, H., Hussain, M., Amjed, N., Qaim, S. M.: Nuclear model analysis of excitation functions of proton induced reactions on 86Sr, 88Sr and natZr: evaluation of production routes of 86Y. Appl. Radiat. Isotopes 104, 232 (2015).10.1016/j.apradiso.2015.07.004Suche in Google Scholar PubMed
43. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E.: Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 34, 2222 (1993).Suche in Google Scholar
44. Rösch, F., Herzog, H., Qaim, S.: The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10, 56 (2017).10.3390/ph10020056Suche in Google Scholar PubMed PubMed Central
45. Kandil, S. A., Scholten, B., Saleh, Z. A., Youssef, A. M., Qaim, S. M., Coenen, H. H.: A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J. Radioanal. Nucl. Chem. 274, 45 (2007).10.1007/s10967-006-6892-2Suche in Google Scholar
46. Kandil, S. A., Spahn, I., Scholten, B., Saleh, Z. A., Saad, S. M. M., Coenen, H. H., Qaim, S. M.: Excitation functions of (α,xn) reactions on natRb and natSr from threshold up to 26 MeV: possibility of production of 87Y, 88Y and 89Zr. Appl. Radiat. Isotopes 65, 561 (2007).10.1016/j.apradiso.2006.12.007Suche in Google Scholar
47. Deri, M. A., Zeglis, B. M., Francesconi, L. C., Lewis, J. S.: PET imaging with 89Zr: From radiochemistry to the clinic. Nucl. Med. Biol. 40, 3 (2013).10.1016/j.nucmedbio.2012.08.004Suche in Google Scholar
48. Bucurescu, D., von Egidy, T.: Nuclear level density predictions. EPJ Web Conf. 93, 6003 (2015).10.1051/epjconf/20159306003Suche in Google Scholar
49. Lilley, J.: Nuclear Physics: Principles and Applications. John Wiley and Sons Ltd., London (2001), p. 412.Suche in Google Scholar
50. Gilbert, A., Cameron, A. G. W.: A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446 (1965).10.1139/p65-139Suche in Google Scholar
51. Ignatyuk, A. V., Istekov, K. K., Smirenkin, G. N.: Role of the collective effects in a systematics of nuclear level density. Yad. Fiz. 29, 875 (1979).Suche in Google Scholar
52. Baba, H.: A shell-model nuclear level density. Nucl. Phys. A 159, 625 (1970).10.1016/0375-9474(70)90862-6Suche in Google Scholar
53. Dilg, W., Schantl, W., Vonach, H., Uhl, M.: Level density parameters for the back-shifted Fermi gas model in the mass range 40<A<250. Nucl. Phys. A 217, 269 (1973).10.1016/0375-9474(73)90196-6Suche in Google Scholar
54. Ignatyuk, A. V., Smirenkin, G. N., Tishin, A. S.: Phenomenological description of energy dependence of the level density parameter. Yad. Fiz. 21, 485 (1975).Suche in Google Scholar
55. Koning, A. J., Hilaire, S., Goriely, S.: Global and local level density models. Nucl. Phys. A 810, 13 (2008).10.1016/j.nuclphysa.2008.06.005Suche in Google Scholar
56. Goriely, S., Hilaire, S., Koning, A. J.: Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008).10.1103/PhysRevC.78.064307Suche in Google Scholar
57. Hilaire, S., Goriely, S.: Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nucl. Phys. A 779, 63 (2006).10.1051/ndata:07259Suche in Google Scholar
58. Hilaire, S., Girod, M., Goriely, S., Koning, A. J.: Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012).10.1103/PhysRevC.86.064317Suche in Google Scholar
59. Fermi, E.: Zur Quantelung des idealen einatomigen Gases. Z. Phys. 36, 902 (1926).10.1007/BF01400221Suche in Google Scholar
60. Koning, A. J., Delaroche, J. P.: Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003).10.1016/S0375-9474(02)01321-0Suche in Google Scholar
61. McFadden, L., Satchler, G. R.: Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nucl. Phys. 84, 177 (1966).10.1016/0029-5582(66)90441-XSuche in Google Scholar
62. Demetriou, P., Grama, C., Goriely, S.: Improved global α-optical model potentials at low energies. Nucl. Phys. A 707, 253 (2002).10.1016/S0375-9474(02)00756-XSuche in Google Scholar
63. Avrigeanu, V., Avrigeanu, M., Mănăilescu, C.: Further explorations of the α-particle optical model potential at low energies for the mass range A≈45–209. Phys. Rev. C 90, 044612 (2014).10.1103/PhysRevC.90.044612Suche in Google Scholar
64. Özdoğan, H.: 181Ta(α,xn) Reaksiyonu Tesir Kesitlerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13, 54 (2018).10.29233/sdufeffd.444816Suche in Google Scholar
65. Nolte, M., Machner, H., Bojowald, J.: Global optical potential for α particles with energies above 80 MeV. Phys. Rev. C 36, 1312 (1987).10.1103/PhysRevC.36.1312Suche in Google Scholar
66. Avrigeanu, V., Hodgson, P. E., Avrigeanu, M.: Global optical potentials for emitted alpha particles. Phys. Rev. C 49, 2136 (1994).10.1103/PhysRevC.49.2136Suche in Google Scholar PubMed
67. D’Auria, J. M., Fluss, M. J., Kowalski, L., Miller, J. M.: Reaction cross-section for low-energy alpha particles on 59Co. Phys. Rev. 168, 1224 (1968).10.1103/PhysRev.168.1224Suche in Google Scholar
68. Zhukova, O. A., Kanashevich, V. I., Laptev, S. V., Chursin, G. P.: Nuclear reactions produced by α particles on 59Co nuclei. Yad. Fiz. 16, 242 (1972).Suche in Google Scholar
69. Skulski, W., Fornal, B., Broda, R., Jastrzebski, J., Koczoń, P., Kownacki, J., Opacka, M., Pawłat, T., Pieńkowski, L., Płóciennik, W., Sieniawski, J., Singh, P. P., Styczeń, J., Wrzesiński, J.: Mass and charge release by the evaporation of particles from compound nuclei around mass 60. Z. Phys. A 342, 61 (1992).10.1007/BF01294489Suche in Google Scholar
70. Silva, O. R. J.: Prog: U. C., Lawrence Rad. Lab. (Berkeley and Livermore), No.8678, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America (1959).Suche in Google Scholar
71. Tanaka, S.: Reactions of Nickel with Alpha-Particles. J. Phys. Soc. Japan 15, 2159 (1960).10.1143/JPSJ.15.2159Suche in Google Scholar
72. Bryant, E. A., Cochran, D. R. F., Knight, J. D.: Excitation functions of reactions of 7- to 24-MeV 3He ions with 63Cu and 65Cu. Phys. Rev. 130, 1512 (1963).10.1103/PhysRev.130.1512Suche in Google Scholar
73. Graf, H. P., Münzel, H.: Excitation functions for α-particle reactions with molybdenum isotopes. J. Inorg. Nucl. Chem. 36, 3647 (1974).10.1016/0022-1902(74)80143-0Suche in Google Scholar
74. Mohan Rao, A. V., Mukherjee, S., Rama Rao, J.: Alpha particle induced reactions on copper and tantalum. Pramana 36, 115 (1991).10.1007/BF02846495Suche in Google Scholar
75. Levkovski, V. N.: Act.Cs. by Protons and Alphas, Cross-Sections of Medium Mass Nuclide Activation (A=40–100) by Medium Energy Protons and Alpha-Particles (E=10–50 MeV). Inter-Vesi, Moscow (1991).Suche in Google Scholar
76. Singh, N. L., Patel, B. J., Somayajulu, D. R. S., Chintalapudi, S. N.: Analysis of the excitation functions of (α, xnyp) reactions on natural copper. Pramana 42, 349 (1994).10.1007/BF02847761Suche in Google Scholar
77. Mukherjee, S., Kumar, B. B., Singh, N. L.: Excitation functions of alpha particle induced reactions on aluminium and copper. Pramana 49, 253 (1997).10.1007/BF02845861Suche in Google Scholar
78. Porile, N. T.: Excitation functions for alpha-induced reactions on zinc-64. Phys. Rev. 116, 1620 (1959).10.1103/PhysRev.116.1620.3Suche in Google Scholar
79. Ruddy, F. H., Pate, B. D.: Formation and decay of the compound nucleus 68Ge. Nucl. Phys. A 127, 305 (1969).10.1016/0375-9474(69)90573-9Suche in Google Scholar
80. Abu Issa, N. N., Antropov, A. E., Gusev, V. P., Zarubin, P. P., Kolozhvari A. A., Smirnov, A. V.: The excitation function analysis of alpha-particles- production on nuclei 64,66,68Zn with energy 14.8–24.4 MeV. 39th Meeting on Nuclear Spectroscopy and the Structure of the Atomic Nucleus, Tashkent, Nauka Publishing (1989), p. 350.Suche in Google Scholar
81. Gyurky, G., Mohr, P., Fülöp, Z., Halász, Z., Kiss, G. G., Szücs, T., Somorjai, E.: Relation between total cross-sections from elastic scattering and α-induced reactions: The example of 64Zn. Phys. Rev. C 86, 041601 (2012).10.1103/PhysRevC.86.041601Suche in Google Scholar
82. Guin, R., Das, S. K., Saha, S. K.: Cross-sections and linear momentum transfer in α-induced reactions on 85Rb. Radiochim. Acta 88, 435 (2000).10.1524/ract.2000.88.8.435Suche in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Synthesis of soft N-donor isoPentyl-BTBP and study on its removal of actinides from high level liquid waste
- Understanding the sorption behaviour of Pu/U on zirconium phosphosilicate prepared by gelation route
- Comparison of ReO4− and TcO4− in solvent extraction systems
- Effect of potassium for cesium replacement in atomic level structure of potassium cobalt hexacyanoferrate(II)
- An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions
- Simple separation of 67Cu from bulk zinc by coprecipitation using hydrogen sulfide gas and silver nitrate
- Values of antioxidant activities (ABTS and DPPH) and ferric reducing and chelating powers of gamma-irradiated rosemary extract
- Cadmium telluride quantum dots/graphene oxide/poly vinyl acetate (CdTe QDs/GO/PVAc) nanocomposite: a novel sensor for real time gamma radiation detection
- The natural radioactivity in drinking water by gross alpha and beta measurements and radiological quality assessment
- Assessment of radioactivity from groundwater samples from selected areas of Western Black Sea Region, Turkey
Artikel in diesem Heft
- Frontmatter
- Synthesis of soft N-donor isoPentyl-BTBP and study on its removal of actinides from high level liquid waste
- Understanding the sorption behaviour of Pu/U on zirconium phosphosilicate prepared by gelation route
- Comparison of ReO4− and TcO4− in solvent extraction systems
- Effect of potassium for cesium replacement in atomic level structure of potassium cobalt hexacyanoferrate(II)
- An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions
- Simple separation of 67Cu from bulk zinc by coprecipitation using hydrogen sulfide gas and silver nitrate
- Values of antioxidant activities (ABTS and DPPH) and ferric reducing and chelating powers of gamma-irradiated rosemary extract
- Cadmium telluride quantum dots/graphene oxide/poly vinyl acetate (CdTe QDs/GO/PVAc) nanocomposite: a novel sensor for real time gamma radiation detection
- The natural radioactivity in drinking water by gross alpha and beta measurements and radiological quality assessment
- Assessment of radioactivity from groundwater samples from selected areas of Western Black Sea Region, Turkey