Home Cadmium telluride quantum dots/graphene oxide/poly vinyl acetate (CdTe QDs/GO/PVAc) nanocomposite: a novel sensor for real time gamma radiation detection
Article
Licensed
Unlicensed Requires Authentication

Cadmium telluride quantum dots/graphene oxide/poly vinyl acetate (CdTe QDs/GO/PVAc) nanocomposite: a novel sensor for real time gamma radiation detection

  • Mohammad Hosein Mehrabian , Shahzad Feizi EMAIL logo and Shahram Moradi Dehaghi
Published/Copyright: October 28, 2019

Abstract

The design of organic/inorganic nanoparticles hybrids provides the great potential for the fabrication of γ-ray sensor systems. Herein, structural and dosimetric properties of the gamma irradiated poly vinyl acetate (PVAc) doped with cadmium telluride quantum dots (CdTe QDs) and graphene oxide (GO) nanoflakes have been investigated. Thioglycolic acid (TGA) capped water-soluble CdTe QDs and (GO) nanoflakes are synthesized and characterized. Then, CdTe QDs/GO/PVAc sensors were formed by post-depositing CdTe and GO over polymer matrix. The photophysical interactions between nanoparticles and organic polymer have been investigated using ohmic contact detectors with two gold coated electrodes. Real time dose rate information of the sensors such as sensitivity, repeatability, and the linearity of dose rate response were assessed. A wider photoelectric response range and wider gamma harvesting range were observed in the resultant hybrid gamma sensor at a standard bias voltage with respect to non-hybrid CdTe QDs/PVAc sensors.

References

1. Fazaeli, Y., Akhavan, O., Rahighi, R., Aboudzadeh, M. R., Karimi, E., Afarideh, H.: In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 45, 196 (2014).10.1016/j.msec.2014.09.019Search in Google Scholar PubMed

2. Lee, J., Ye, S.-J.: in Proceedings of the KNS 2016 Autumn Meeting (KNS, Korea, Republic of, 2016), pp. 1CD-ROM.Search in Google Scholar

3. Mura, S., Jiang, Y., Vassalini, I., Gianoncelli, A., Alessandri, I., Granozzi, G., Calvillo, L., Senes, N., Enzo, S., Innocenzi, P., Malfatti, L.: Graphene oxide/iron oxide nanocomposites for water remediation. ACS Appl. Nano Mater. 1, 6724 (2018).10.1021/acsanm.8b01540Search in Google Scholar

4. Yang, M., Sun, C., Wang, T., Chen, F., Sun, M., Zhang, L., Shao, Y., Wu, Y., Hao, X.: Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkali-ion batteries. ACS Appl. Energy Mater. 1, 4708 (2018).10.1021/acsaem.8b00826Search in Google Scholar

5. Ma, N., Song, A., Li, Z., Luan, Y.: Redox-sensitive prodrug molecules meet graphene oxide: an efficient graphene oxide-based nanovehicle toward cancer therapy. ACS Biomater. Sci. Eng. 5, 1384 (2019).10.1021/acsbiomaterials.9b00114Search in Google Scholar PubMed

6. Di Crescenzo, A., Zara, S., Di Nisio, C., Ettorre, V., Ventrella, A., Zavan, B., Di Profio, P., Cataldi, A., Fontana, A.: Graphene oxide foils as an osteoinductive stem cell substrate. ACS Appl. Bio Mater. 2, 1643 (2019).10.1021/acsabm.9b00041Search in Google Scholar PubMed

7. Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.: Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin-resistant Staphylococcus aureus. ACS Appl. Bio Mater. 2, 1148 (2019).10.1021/acsabm.8b00757Search in Google Scholar PubMed

8. Mallick, A., Nandi, A., Basu, S.: Polyethylenimine coated graphene oxide nanoparticles for targeting mitochondria in cancer cells. ACS Appl. Bio Mater. 2, 14 (2019).10.1021/acsabm.8b00519Search in Google Scholar PubMed

9. Dumont, J. H., Martinez, U., Artyushkova, K., Purdy, G. M., Dattelbaum, A. M., Zelenay, P., Mohite, A., Atanassov, P., Gupta, G.: Nitrogen-doped graphene oxide electrocatalysts for the oxygen reduction reaction. ACS Appl. Nano Mater. 2, 1675 (2019).10.1021/acsanm.8b02235Search in Google Scholar

10. Zhang, Y., Song, N., He, J., Chen, R., Li, X.: Lithiation-aided conversion of end-of-life lithium-ion battery anodes to high-quality graphene and graphene oxide. Nano Lett. 19, 512 (2019).10.1021/acs.nanolett.8b04410Search in Google Scholar PubMed

11. Wang, X., Wu, P. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 11, 21946 (2019).10.1021/acsami.9b07377Search in Google Scholar PubMed

12. Qu, J., He, N., Patil, S. V., Wang, Y., Banerjee, D., Gao, W.: Screen printing of graphene oxide patterns onto Viscose nonwovens with tunable penetration depth and electrical conductivity. ACS Appl. Mater. Interfaces 11, 14944 (2019).10.1021/acsami.9b00715Search in Google Scholar PubMed

13. Jin, Y., Lee, W.: Cross-linking stabilizes electrical resistance of reduced graphene oxide in humid environments. Langmuir 35, 5427 (2019).10.1021/acs.langmuir.8b03416Search in Google Scholar PubMed

14. Jnawali, G., Lee, H., Lee, J.-W., Huang, M., Hsu, J.-F., Bi, F., Zhou, R., Cheng, G., D’Urso, B., Irvin, P., Eom, C.-B., Levy, J.: Graphene-complex-oxide nanoscale device concepts. ACS Nano 12, 6128 (2018).10.1021/acsnano.8b02457Search in Google Scholar PubMed

15. Li, S., Li, C., Song, X., Su, B., Mandal, B., Prasad, B., Gao, X., Gao, C.: Graphene quantum dots-doped thin film nanocomposite polyimide membranes with enhanced solvent resistance for solvent-resistant nanofiltration. ACS Appl. Mater. Interfaces 11, 6527 (2019).10.1021/acsami.8b19834Search in Google Scholar PubMed

16. Ramachandran, A., JS, A. N., Karunakaran Yesodha, S.: Polyaniline-derived nitrogen-doped graphene quantum dots for the ultratrace level electrochemical detection of trinitrophenol and the effective differentiation of nitroaromatics: structure matters. ACS Sustain. Chem. Eng. 7, 6732 (2019).10.1021/acssuschemeng.8b05996Search in Google Scholar

17. Shi, Y., Xiong, D., Li, J., Wang, N.: In situ reduction of graphene oxide nanosheets in poly(vinyl alcohol) hydrogel by γ-ray irradiation and its influence on mechanical and tribological properties. J. Phys. Chem. C 120, 19442 (2016).10.1021/acs.jpcc.6b05948Search in Google Scholar

18. Li, J. I. A., Shi, Q., Zeng, Y., Watanabe, K., Taniguchi, T., Hone, J., Dean, C. R.: Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898 (2019).10.1038/s41567-019-0547-zSearch in Google Scholar

19. Feizi, S., Malekie, S., Rahighi, R., Tayyebi, A., Ziaie, F.: Evaluation of dosimetric characteristics of graphene oxide/PVC nanocomposite for gamma radiation applications. Radiochim. Acta 105, 161 (2017).10.1515/ract-2016-2648Search in Google Scholar

20. Feizi, S., Mehdizadeh, A., Hosseini, M. A., Jafari, S. A., Ashtari, P.: Reduced graphene oxide/polymethyl methacrylate (rGO/PMMA) nanocomposite for real time gamma radiation detection. Nucl. Instrum. Methods Phys. Res. A 940, 72 (2019).10.1016/j.nima.2019.06.001Search in Google Scholar

21. Letant, S. E., Wang, T. F.: Semiconductor quantum dot scintillation under gamma-ray irradiation. Nano Lett. 6, 2877 (2006).10.1021/nl0620942Search in Google Scholar PubMed

22. Létant, S. E., Wang, T. F.: Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Lett. 6, 2877 (2006).10.1021/nl0620942Search in Google Scholar PubMed

23. Feizi, S., Zare, H., Hoseinpour, M.: Investigation of dosimetric characteristics of a core–shell quantum dots nano composite (CdTe/CdS/PMMA): fabrication of a new gamma sensor. Appl. Phys. A 124, 420 (2018).10.1007/s00339-018-1837-5Search in Google Scholar

24. Lawrence, W. G., Thacker, S., Palamakumbura, S., Riley, K. J., Nagarkar, V. V.: Quantum dot-organic polymer composite materials for radiation detection and imaging. IEEE Trans. Nucl. Sci. 59, 215 (2012).10.1109/TNS.2011.2178861Search in Google Scholar

25. Clancy, A. J., Leese, H. S., Rubio, N., Buckley, D. J., Greenfield, J. L., Shaffer, M. S. P.: Depleting depletion: maintaining single-walled carbon nanotube dispersions after graft-to polymer functionalization. Langmuir 34, 15396 (2018).10.1021/acs.langmuir.8b03144Search in Google Scholar PubMed

26. Sasikumar, M., Raja, M., Krishna, R. H., Jagadeesan, A., Sivakumar, P., Rajendran, S.: Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P(VDF–HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries. J. Phys. Chem. C 122, 25741 (2018).10.1021/acs.jpcc.8b03952Search in Google Scholar

27. Huang, C.-J., Chang, T.-C.: Studies on the electromagnetic interference shielding effectiveness of metallized PVAc-AgNO3/PET conductive films. J. Appl. Polym. Sci. 91, 270 (2004).10.1002/app.12949Search in Google Scholar

28. Jao, D., Beachley, V. Z.: Continuous dual-track fabrication of polymer micro-/nanofibers based on direct drawing. ACS Macro Lett. 8, 588 (2019).10.1021/acsmacrolett.9b00167Search in Google Scholar PubMed

29. Hummers Jr, W. S., Offeman, R. E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).10.1021/ja01539a017Search in Google Scholar

30. Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., Ruoff, R. S.: Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019 (2011).10.1016/j.carbon.2011.02.071Search in Google Scholar

31. Fazaeli, Y., Zare, H., Karimi, S., Rahighi, R., Feizi, S.: Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl. Phys. A 123, 507 (2017).10.1007/s00339-017-1125-9Search in Google Scholar

32. Kino, H., Lee, S., Sugawara, Y., Fukushima, T., Tanaka, T., Charge-Trap-Free Polymer-Liner Through-Silicon Vias for Reliability Improvement of 3D ICs (2018), p. 135.10.1109/IITC.2018.8430390Search in Google Scholar

33. He, L.-M.: Interlayer transport of an electron in bilayer graphene with phonon-induced lattice distortion in the presence of biased potential. Chinese Phys. B 22, 017201 (2013).10.1088/1674-1056/22/1/017201Search in Google Scholar

34. Savchak, M., Borodinov, N., Burtovyy, R., Anayee, M., Hu, K., Ma, R., Grant, A., Li, H., Cutshall, D. B., Wen, Y., Koley, G., Harrell, W. R., Chumanov, G., Tsukruk, V., Luzinov, I.: Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets. ACS Appl. Mater. Interfaces 10, 3975 (2018).10.1021/acsami.7b16500Search in Google Scholar PubMed

35. Li, J., Zhang, Y., Gao, T., Hu, C., Yao, T., Yuan, Q., Wang, X., Xu, P., Zhang, Z., Jian, J., Zhang, X., Song, B.: Quantum dot-induced improved performance of cadmium telluride (CdTe) solar cells without a Cu buffer layer. J. Mater. Chem. A 5, 4904 (2017).10.1039/C6TA10441JSearch in Google Scholar

36. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., Bieloshapka, I.: Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014).10.1016/j.elspec.2014.07.003Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2019-3209).


Received: 2019-09-16
Accepted: 2019-09-30
Published Online: 2019-10-28
Published in Print: 2020-06-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3209/html
Scroll to top button