Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength
- 
            
            
        Han Zhang
        , Ning Liu 
Abstract
The sorption behaviour of cesium on Tamusu clay was first investigated by batch experiments under synthetic groundwater and deionized water conditions. The results showed that the sorption could be well described by the pseud-second-order kinetic model or by the Freundlich isotherm model, and the Kd values decreased rapidly when temperature was greater than 328 K. However, the influence of initial cesium concentration, initial pH and Humic acid (HA) on the sorption behaviour in the synthetic groundwater exhibited a significant difference from those in the deionized water. In particular, the Kd value in the synthetic groundwater (5.47 mL/g) was much lower than that in the deionized water (58.97 mL/g). The SEM/EDS, effect of ion strength and pH-independent results in the synthetic groundwater indicated the cesium sorption on Tamusu clay was mainly involved in an ion exchange process. Additionally, the research reported in this work implies that the retardation of cesium on Tamusu clay was significantly lower than that on other clay rock in the world. The results suggest that the sorption behaviour of cesium or other nuclides on Tamusu clay should be evaluated in synthetic or actual groundwater but not in deionized water.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21876123
Funding source: National Fund of China for Fostering Talents in Basic Science
Award Identifier / Grant number: J1210004
Funding statement: This work was supported by the National Natural Science Foundation of China, Funder Id: http://dx.doi.org/10.13039/501100001809 (Grant No. 21876123) and the National Fund of China for Fostering Talents in Basic Science (J1210004).
References
1. Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y., Teng, S. P.: Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161, 854 (2009).10.1016/j.jhazmat.2008.04.044Suche in Google Scholar PubMed
2. Siren, T., Hakala, M., Valli, J., Kantia, P., Hudson, J. A., Johansson, E.: In situ strength and failure mechanisms of migmatitic gneiss and pegmatitic granite at the nuclear waste disposal site in Olkiluoto, Western Finland. Int. J. Rock Mech. Min. Sci. 79, 135 (2015).10.1016/j.ijrmms.2015.08.012Suche in Google Scholar
3. Descostes, M., Blin, V., Bazer-Bachi, F., Meier, P., Grenut, B., Radwan, J., Schlegel, M. L., Buschaert, S., Coelho, D., Tevissen, E.: Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute–Marne, France). Appl. Geochem. 23, 655 (2008).10.1016/j.apgeochem.2007.11.003Suche in Google Scholar
4. Deniau, I., Devol-Brown, I., Derenne, S., Behar, F., Largeau, C.: Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories. Sci. Total Environ. 389, 475 (2008).10.1016/j.scitotenv.2007.09.013Suche in Google Scholar PubMed
5. Loon, L. R. V., Baeyens, B., Bradbury, M. H.: The sorption behaviour of caesium on Opalinus Clay: a comparison between intact and crushed material. Appl. Geochem. 24, 999 (2009).10.1016/j.apgeochem.2009.03.003Suche in Google Scholar
6. Guo, Z. J., Chen, Z. Y., Wu, W. S., Liu, C. L., Chen, T., Tian, W. Y., Li, C.: Adsorption of Se(IV) onto Beishan granite. Acta Phys-Chim. Sin. 27, 2222 (2011).10.3866/PKU.WHXB20110918Suche in Google Scholar
7. Jin, Q., Wang, G., Ge, M., Chen, Z., Wu, W., Guo, Z.: The adsorption of Eu(III) and Am(III) on Beishan granite: XPS, EPMA, batch and modeling study. Appl. Geochem. 47, 17 (2014).10.1016/j.apgeochem.2014.05.004Suche in Google Scholar
8. Jiang, T., Yao, J., Zhou, D., Bao, L. J., Zhang, Y., Chen, X., Fan, X. H.: Effect of temperature on sorption of Np(IV)/Np(V) on beishan granite. He-Huaxue yu Fangshe Huaxue/J. Nucl. Radiochem. 33, 25 (2011).Suche in Google Scholar
9. Tao, C.: Influence of silver halide additives on the sorption of iodine-125 on Beishan granite powder. Chinese J. Inorg. Chem. 25, 761 (2009).Suche in Google Scholar
10. Li, C., Liu, X. Y., Chen, T., Tian, W. Y., Zheng, Z., Wang, L. H., Liu, C. L.: The influence of pH on the sorption and diffusion of 99TcO4−in Beishan granite. Int. J. Chem. Aspects Nucl. Sci. Technol. 100, 449 (2012).10.1524/ract.2012.1936Suche in Google Scholar
11. Song, M., Probst, T. U., Berryman, N. G.: Rapid and sensitive determination of radiocesium (Cs-135, Cs-137) in the presence of excess barium by electrothermal vaporization-inductively coupled plasma-mass spectrometry (ETV-ICP-MS) with potassium thiocyanate as modifier. Fresenius J. Anal. Chem. 370, 744 (2001).10.1007/s002160000678Suche in Google Scholar PubMed
12. Wang, T. H., Li, M. H., Teng, S. P.: Bridging the gap between batch and column experiments: a case study of Cs adsorption on granite. J. Hazard. Mater. 161, 409 (2009).10.1016/j.jhazmat.2008.03.112Suche in Google Scholar PubMed
13. Fan, Q. H., Xu, J. Z., Niu, Z. W., Li, P., Wu, W. S.: Investigation of Cs(I) uptake on Beishan soil combined batch and EDS techniques. Appl. Radiat. Isot. 70, 13 (2012).10.1016/j.apradiso.2011.07.004Suche in Google Scholar PubMed
14. Wang, T. H., Li, M. H., Wei, Y. Y., Teng, S. P.: Desorption of cesium from granite under various aqueous conditions. Appl. Radiat. Isot. 68, 2140 (2010).10.1016/j.apradiso.2010.07.005Suche in Google Scholar
15. Vejsada, J., Hradil, D., Řanda, Z., Jelínek, E., Štulík, K.: Adsorption of cesium on Czech smectite-rich clays–A comparative study. Appl. Clay Sci. 30, 53 (2005).10.1016/j.clay.2005.03.003Suche in Google Scholar
16. Murali, M. S., Raut, D. R., Prabhu, D. R., Mohapatra, P. K., Tomar, B. S., Manchanda, V. K.: Removal of Cs from simulated high-level waste solutions by extraction using chlorinated cobaltdicarbollide in a mixture of nitrobenzene and xylene. J. Radioanal. Nucl. Chem. 291, 611 (2012).10.1007/s10967-011-1460-9Suche in Google Scholar
17. Wu, J., Li, B., Liao, J., Feng, Y., Zhang, D., Zhao, J., Wen, W., Yang, Y., Liu, N.: Behavior and analysis of Cesium adsorption on montmorillonite mineral. J. Environ. Radioact. 100, 914 (2009).10.1016/j.jenvrad.2009.06.024Suche in Google Scholar
18. Giannakopoulou, F., Haidouti, C., Chronopoulou, A., Gasparatos, D.: Sorption behavior of cesium on various soils under different pH levels. J. Hazard. Mater. 149, 553 (2007).10.1016/j.jhazmat.2007.06.109Suche in Google Scholar
19. Zachara, J. M., Smith, S. C., Liu, C., Mckinley, J. P., Serne, R. J., Gassman, P. L.: Sorption of Cs + to micaceous subsurface sediments from the Hanford site, USA. Geochim. Cosmochim. Acta 66, 193 (2002).10.1016/S0016-7037(01)00759-1Suche in Google Scholar
20. Semenkova, A. S., Evsiunina, M. V., Verma, P. K., Mohapatra, P. K., Petrov, V. G., Seregina, I. F., Bolshov, M. A., Krupskaya, V. V., Romanchuk, A. Y., Kalmykov, S. N.: Cs+ sorption onto Kutch clays: influence of competing ions. Appl. Clay Sci. 166, 88 (2018).10.1016/j.clay.2018.09.010Suche in Google Scholar
21. Wang, T. H., Chen, C. L., Ou, L. Y., Wei, Y. Y., Chang, F. L., Teng, S. P.: Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study. J. Hazard. Mater. 192, 1079 (2011).10.1016/j.jhazmat.2011.06.012Suche in Google Scholar PubMed
22. Tachi, Y., Yotsuji, K., Seida, Y., Yui, M.: Diffusion and sorption of Cs, Iand HTO in samples of the argillaceous Wakkanai Formation from the Horonobe URL, Japan; Clay-based modeling approach. Geochim. Cosmochim. Acta 75, 6742 (2011).10.1016/j.gca.2011.08.039Suche in Google Scholar
23. Wersin, P., Soler, J. M., Van Loon, L., Eikenberg, J., Baeyens, B., Grolimund, D., Gimmi, T., Dewonck, S.: Diffusion of HTO, Br−, I−, Cs+, 85Sr2+ and 60Co2+ in a clay formation: results and modelling from an in situ experiment in Opalinus Clay. Appl. Geochem. 23, 678 (2008).10.1016/j.apgeochem.2007.11.004Suche in Google Scholar
24. Bradbury, M. H., Baeyens, B.: A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J. Contam. Hydrol. 42, 141 (2000).10.1016/S0169-7722(99)00094-7Suche in Google Scholar
25. Durrant, C. B., Begg, J. D., Kersting, A. B., Zavarin, M.: Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci. Total Environ. 610–611, 511 (2018).10.1016/j.scitotenv.2017.08.122Suche in Google Scholar PubMed
26. Missana, T., García-Gutiérrez, M., Benedicto, A., Ayora, C., De-Pourcq, K.: Modelling of Cs sorption in natural mixed-clays and the effects of ion competition. Appl. Geochem. 49, 95 (2014).10.1016/j.apgeochem.2014.06.011Suche in Google Scholar
27. Melkior, T., Yahiaoui, S., Motellier, S., Thoby, D., Tevissen, E.: Cesium sorption and diffusion in Bure mudrock samples. Appl. Clay Sci. 29, 172 (2005).10.1016/j.clay.2004.12.008Suche in Google Scholar
28. Maes, N., Salah, S., Jacques, D., Aertsens, M., Gompel, M. V., Cannière, P. D., Velitchkova, N.: Retention of Cs in Boom Clay: comparison of data from batch sorption tests and diffusion experiments on intact clay cores. Phys. Chem. Earth. 33, S149 (2008).10.1016/j.pce.2008.10.002Suche in Google Scholar
29. Jun, H. U., Bo, H. E., Zhi, X., Sheng, G. D., Chen, C. L., Jiaxing, L. I.: Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Sci. China Chem. 53, 1420 (2010).10.1007/s11426-010-3064-6Suche in Google Scholar
30. Chen, L., Yu, S., Zuo, L., Liu, B., Huang, L.: Investigation of Co(II) sorption on GMZ bentonite from aqueous solutions by batch experiments. J. Radioanal. Nucl. Chem. 289, 511 (2011).10.1007/s10967-011-1098-7Suche in Google Scholar
31. Yang, S., Li, J., Lu, Y., Chen, Y., Wang, X.: Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature. Appl. Radiat. Isot. 67, 1600 (2009).10.1016/j.apradiso.2009.03.118Suche in Google Scholar PubMed
32. He, H., Liu, J., Dong, Y., Li, H., Zhao, S., Wang, J., Jia, M., Zhang, H., Liao, J., Yang, J., Yang, Y., Liu, N.: Sorption of selenite on Tamusu clay in simulated groundwater with high salinity under aerobic/anaerobic conditions. J. Environ. Radioact. 203, 210 (2019).10.1016/j.jenvrad.2019.03.020Suche in Google Scholar PubMed
33. Albadarin, A. B., Mangwandi, C., Al-Muhtaseb, A. A. H., Walker, G. M., Allen, S. J., Ahmad, M. M. N.: Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 179, 193 (2012).10.1016/j.cej.2011.10.080Suche in Google Scholar
34. Ji, J., Ge, Y., Balsam, W., Damuth, J. E., Chen, J.: Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP Site U1308. Mar. Geol. 258, 60 (2009).10.1016/j.margeo.2008.11.007Suche in Google Scholar
35. Rodrigues, L. A., da Silva, M. L. C. P.: Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method. Desalination 263, 29 (2010).10.1016/j.desal.2010.06.030Suche in Google Scholar
36. Azizi, S. N., Yousefpour, M.: Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template. J. Mater. Sci. 45, 5692 (2010).10.1007/s10853-010-4637-7Suche in Google Scholar
37. Garciareyes, R. B., Rangelmendez, J. R.: Adsorption kinetics of chromium(III) ions on agro-waste materials. Bioresour. Technol. 101, 8099 (2010).10.1016/j.biortech.2010.06.020Suche in Google Scholar PubMed
38. Liu, J., Zhao, C., Zhang, Z., Liao, J., Liu, Y., Cao, X., Yang, J., Yang, Y., Liu, N.: Fluorine effects on U(VI) sorption by hydroxyapatite. Chem. Eng. J. 288, 505 (2016).10.1016/j.cej.2015.12.045Suche in Google Scholar
39. El-Naggar, M. R., El-Kamash, A. M., El-Dessouky, M. I., Ghonaim, A. K.: Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater. 154, 963 (2008).10.1016/j.jhazmat.2007.10.115Suche in Google Scholar PubMed
40. Wang, T. H., Li, M. H., Wei, Y. Y., Teng, S. P.: Effects of pH and concentration on Cs ions sorption and diffusion in crushed granite by using batch and modified capillary method. J. Chin. Chem. Soc. 56, 748 (2013).10.1002/jccs.200900111Suche in Google Scholar
41. Giannakopoulou, F., Gasparatos, D., Haidouti, C., Massas, I.: Sorption behavior of cesium in two greek soils: effects of cs initial concentration, clay mineralogy, and particle-size fraction. J. Soil Contam. 21, 937 (2012).10.1080/15320383.2012.714418Suche in Google Scholar
42. Li, X., Wu, J., Liao, J., Zhang, D., Yang, J., Feng, Y., Zeng, J., Wen, W., Yang, Y., Tang, J., Liu, N.: Adsorption and desorption of uranium (VI) in aerated zone soil. J. Environ. Radioact. 115, 143 (2013).10.1016/j.jenvrad.2012.08.006Suche in Google Scholar PubMed
43. Liu, J., Zhao, C., Yuan, G., Dong, Y., Yang, J., Li, F., Liao, J., Yang, Y., Liu, N.: Adsorption of U(VI) on a chitosan/polyaniline composite in the presence of Ca/Mg-U(VI)-CO3 complexes. Hydrometallurgy 175, 300 (2018).10.1016/j.hydromet.2017.12.013Suche in Google Scholar
44. Fan, Q. H., Hao, L. M., Wang, C. L., Zheng Z., Liu, C. L., Wu, W. S.: The adsorption behavior of U(VI) on granite. Environ. Sci. Proces. Impacts 16, 534 (2014).10.1039/c3em00324hSuche in Google Scholar
45. Lofts, S., Tipping, E. W., Sanchez, A. L., Doddb, B. A.: Modelling the role of humic acid in radiocaesium distribution in a British upland peat soil. J. Environ. Radioact. 61, 133 (2002).10.1016/S0265-931X(01)00118-7Suche in Google Scholar
46. Dzombak, D. A., Morel, F. M. M.: Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley-Interscience, New York (1990).Suche in Google Scholar
47. Cornell, R. M.: Adsorption of cesium on minerals: a review. J. Radioanal. Nucl. Chem. 171, 483 (1993).10.1007/BF02219872Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2019-3161).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions
- Topological analysis of the layered uranyl compounds bearing slabs with UO2:TO4 ratio of 2:3
- Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose
- Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads
- Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength
- Optimization of 14C LSC measurement using CO2 absorption technique
- Targeting 5α-reductase with 99mTc labeled dutasteride derivatives for prostate imaging
- Changes in structural and optical properties due to γ-irradiation of MgO nanoparticles
- Radiation-induced free radicals from different milk powders and its possible use as radiation dosimeters
Artikel in diesem Heft
- Frontmatter
- Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions
- Topological analysis of the layered uranyl compounds bearing slabs with UO2:TO4 ratio of 2:3
- Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose
- Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads
- Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength
- Optimization of 14C LSC measurement using CO2 absorption technique
- Targeting 5α-reductase with 99mTc labeled dutasteride derivatives for prostate imaging
- Changes in structural and optical properties due to γ-irradiation of MgO nanoparticles
- Radiation-induced free radicals from different milk powders and its possible use as radiation dosimeters