Abstract
In this study, magnetic biosorbent was fabricated by chemical co-precipitation of Fe(II) and Fe(III) on the surface Paeclomyces catenlannulatus (P. catenlannulatus) by adding NaOH solution under N2 conditions. The influence of water chemistries (i. e. pH, reaction time, temperature, concentration and ionic strength) on Eu(III) biosorption towards magnetic biosorbent was elucidated by batch technique. The batch experiment showed that Eu(III) biosorption on magnetic biosorbent was independent of ionic strength, suggesting that inner-sphere-surface-complexation predominated Eu(III) biosorption. The biosorption kinetics showed the sorption equilibrium was achieved at reaction time of 24 h, and the maximum biosorption capacity of Eu(III) on magnetic biosorbent calculated by Langmuir model was 69.45 mg/g at pH 3.5 and 298 K. The regeneration experiments showed the slight decrease of biosorption capacity after the fifth recycles. These results suggested that this magnetic biosorbent presented the fast biosorption rate and high biosorption capacity for Eu(III). The results of XPS analysis revealed that various oxygenated function groups (e.g. carboxyl, hydroxyl groups) were responsible for the high effective biosorption of Eu(III). These findings manifested that this magnetic biosorbent could be as a high-effective material for the immobilization and pre-concentration of radionuclides from aqueous solution in environment remediation.
Acknowledgment
Financial supports from project of Education Department of Anhui Province (No. gxyqZD2016305), project of the National Spark Plan (No. 2015GA710008), Public Welfare Research Institutes Basic Research Services (No. CAFYBB 2011001), National University Student Innovation and Entrepreneurship Training Program (No. 201610375037) are acknowledged.
References
1. Sun, Y. B., Zhang, R., Ding, C. C., Wang, X. X., Cheng, W. C., Chen, C. L., Wang, X. K.: Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim. Cosmochim. Acta 180, 51 (2016).10.1016/j.gca.2016.02.012Search in Google Scholar
2. Ding, C. C., Cheng, W. C., Sun, Y. B., Wang, X. K.: Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim. Cosmochim. Acta 165, 86 (2015).10.1016/j.gca.2015.05.036Search in Google Scholar
3. Geckeis, H., Lutzenkirchen, J., Polly, R., Rabung, T., Schmidt, M.: Mineral-water interface reactions of actinides. Chem. Rev. 113, 1016 (2013).10.1021/cr300370hSearch in Google Scholar PubMed
4. Sun, Y. B., Wu, Z.-Y., Wang, X. X., Ding, C. C., Cheng, W. C., Yu, S.-H., Wang, X. K.: Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ. Sci. Technol. 50, 4459 (2016).10.1021/acs.est.6b00058Search in Google Scholar PubMed
5. Xie, Y., Helvenston, E. M., Shilller-Nickles, L. C., Powell, B. A.: Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide. Environ. Sci. Technol. 50, 1821 (2016).10.1021/acs.est.5b05307Search in Google Scholar PubMed
6. Sun, Y. B., Chen, C. L., Tan, X. L., Shao, D. D., Li, J. X., Zhao, G. X., Yang, S. B., Wang, Q., Wang, X. K.: Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans. 41, 13388 (2012).10.1039/c2dt31510fSearch in Google Scholar PubMed
7. Li, M. X., Sun, Y. B., Liu, H. B., Chen, T. H., Hayat, T., Alabadi, N. S., Chen, C. L.: Spectroscopic and modeling investigation of Eu(III)/U(VI) sorption on nanomagnetite from aqueous solutions. ACS Sustainable Chem. Eng. 5, 5493 (2017).10.1021/acssuschemeng.7b00829Search in Google Scholar
8. Janot, N., Benedetti, M. F., Reiller, P. E.: Colloidal alpha-Al2O3, europium(III) and humic substances interactions: a macroscopic and spectroscopic study. Environ. Sci. Technol. 45, 3224 (2011).10.1021/es102592aSearch in Google Scholar PubMed
9. Fan, Q. H., Tan, X. L., Li, J. X., Wang, X. K., Wu, W. S., Montavon, G.: Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol. 43, 5776 (2009).10.1021/es901241fSearch in Google Scholar PubMed
10. Sun, Y. B., Li, J. X., Wang, X. K.: The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim. Cosmochim. Acta 140, 621 (2014).10.1016/j.gca.2014.06.001Search in Google Scholar
11. Wang, X. X., Sun, Y. B., Alsaedi, A., Hayat, T., Wang, X. K.: Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques. Chem. Eng. J. 264, 570 (2015).10.1016/j.cej.2014.11.136Search in Google Scholar
12. Stumpf, T., Curtius, H., Walther, C., Dardenne, K., Ufer, K., Fanghanel, T.: Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study. Environ. Sci. Technol. 41, 3186 (2007).10.1021/es0624873Search in Google Scholar PubMed
13. Schnurr, A., Marsac, R., Rabung, T., Lutzenkirchen, J., Geckeis, H.: Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim. Cosmochim. Acta 151, 192 (2015).10.1016/j.gca.2014.11.011Search in Google Scholar
14. Rabung, T., Pierret, M. C., Bauer, A., Geckeis, H., Bradbury, M. H., Baeyens, B.: Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta 69, 5393 (2005).10.1016/j.gca.2005.06.030Search in Google Scholar
15. Schlegel, M. L., Pointeau, I., Coreau, N., Reiller, P.: Mechanism of europium retention by calcium silicate hydrates: an EXAFS study. Environ. Sci. Technol. 38, 4423 (2004).10.1021/es0498989Search in Google Scholar PubMed
16. Sun, Y. B., Wang, Q., Chen, C. L., Tan, X. L., Wang, X. K.: Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 46, 6020 (2012).10.1021/es300720fSearch in Google Scholar PubMed
17. Pidchenko, I., Kvashnina, K. O., Yokosawa, T., Finck, N., Bahl, S., Schild, D., Polly, R., Bohnert, E., Rossberg, A., Gottlicher, J., Dardenne, K., Rothe, J., Schafer, T., Geckeis, H., Vitova, T.: Uranium redox transformations after U(VI) coprecipitation with magnetite nanoparticles. Environ. Sci. Technol. 51, 2217 (2017).10.1021/acs.est.6b04035Search in Google Scholar PubMed
18. Liang, L., Guan, X., Shi, Z., Li, J., Wu, Y., Tratnyek, P. G.: Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. Environ. Sci. Technol. 48, 6326 (2014).10.1021/es500958bSearch in Google Scholar PubMed
19. Singer, D. M., Chatman, S. M., Ilton, E. S., Rosso, K. M., Banfield, J. F., Waychunas, G. A.: Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. Environ. Sci. Technol. 46, 3811 (2012).10.1021/es203877xSearch in Google Scholar PubMed
20. Haavik, C., Stolen, S., Fjellvag, H., Hanfland, M., Hausermann, D.: Equation of state of magnetite and its high-pressure modification: thermodynamics of the Fe-O system at high pressure. Am. Mineral. 85, 514 (2000).10.2138/am-2000-0413Search in Google Scholar
21. Li, Y., Sheng, G. D., Sheng, J.: Magnetite decorated graphene oxide for the highly efficient immobilization of Eu(III) from aqueous solution. J. Mol. Liq. 199, 474 (2014).10.1016/j.molliq.2014.08.009Search in Google Scholar
22. Guo, Z. Q., Li, Y., Pan, S. H., Xu, J. Z.: Fabrication of Fe3O4@cyclodextrin magnetic composite for the high-efficient removal of Eu(III). J. Mol. Liq. 206, 272 (2015).10.1016/j.molliq.2015.02.034Search in Google Scholar
23. Li, X. Y., Li, F. B., Fang, L. J.: Effect of Paecilomyces cateniannulatus on the adsorption of nickel onto graphene oxide. Korean J. Chem. Eng. 32, 2449 (2015).10.1007/s11814-015-0097-8Search in Google Scholar
24. Xu, B., Zhu, Y. K., Liu, H. B., Jin, Z. X., Chen, T. H.: The kinetic and thermodynamic adsorption of Eu(III) on synthetic maghemite. J. Mol. Liq. 221, 171 (2016).10.1016/j.molliq.2016.05.055Search in Google Scholar
25. Li, F. B., Gao, Z. M., Li, X. Y., Fang, L. J.: The adsorption of U(VI) and Hg(II) on Paecilomyces catenlannulatus proteases. J. Radioanal. Nucl. Chem. 298, 2043 (2013).10.1007/s10967-013-2658-9Search in Google Scholar
26. Li, F. B., Gao, Z. M., Li, X. Y., Fang, L. J.: The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite. J. Environ. Radioact. 137, 31 (2014).10.1016/j.jenvrad.2014.06.014Search in Google Scholar PubMed
27. Yang, S. B., Ding, C. C., Cheng, W. C., Jin, Z. X., Sun, Y. B.: Effect of microbes on Ni(II) diffusion onto sepiolite. J. Mol. Liq. 204, 170 (2015).10.1016/j.molliq.2015.01.035Search in Google Scholar
28. Jin, Z. X., Wang, X. X., Sun, Y. B., Ai, Y. J., Wang, X. K.: Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ. Sci. Technol. 49, 9168 (2015).10.1021/acs.est.5b02022Search in Google Scholar PubMed
29. Ding, C. C., Cheng, W. C., Sun, Y. B., Wang, X. K.: Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J. Hazard. Mater. 295, 127 (2015).10.1016/j.jhazmat.2015.04.032Search in Google Scholar PubMed
30. Sun, Y. B., Shao, D. D., Chen, C. L., Yang, S. B., Wang, X. K.: Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ. Sci. Technol. 47, 9904 (2013).10.1021/es401174nSearch in Google Scholar PubMed
31. Lagergren, S.: Zur theorie der sogenannten adsorption geloster stoffe. Pseudo-second order model for sorption processes. Handlingar 24, 1 (1898).Search in Google Scholar
32. Ho, Y. S., McKay, G.: Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451 (1999).10.1016/S0032-9592(98)00112-5Search in Google Scholar
33. Sun, Y. B., Yang, S. B., Chen, Y., Ding, C. C., Cheng, W. C., Wang, X. K.: Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ. Sci. Technol. 49, 4255 (2015).10.1021/es505590jSearch in Google Scholar
34. Song, W. C., Yang, T. T., Wang, X. X., Sun, Y. B., Ai, Y. J., Sheng, G. D., Hayat, T., Wang, X. K.: Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides. Environ. Sci. Nano 3, 1318 (2016).10.1039/C6EN00306KSearch in Google Scholar
35. Ma, M. H., Gao, H. Y., Sun, Y. B., Huang, M. S.: The adsorption and desorption of Ni(II) on Al substituted goethite. J. Mol. Liq. 201, 30 (2015).10.1016/j.molliq.2014.11.024Search in Google Scholar
36. Huang, J. Y., Wu, Z. W., Chen, L. W., Sun, Y. B.: The sorption of Cd(II) and U(VI) on sepiolite: a combined experimental and modeling studies. J. Mol. Liq. 209, 706 (2015).10.1016/j.molliq.2015.05.047Search in Google Scholar
37. Sun, Y. B., Wang, X. X., Ai, Y. J., Yu, Z. M., Huang, W., Chen, C. L., Hayat, T., Alsaedi, A., Wang, X. K.: Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem. Eng. J. 310, 292 (2017).10.1016/j.cej.2016.10.122Search in Google Scholar
38. Cheng, W. C., Ding, C. C., Sun, Y. B., Wang, M. L.: The sequestration of U(VI) on functional beta-cyclodextrin-attapulgite nanorods. J. Radioanal. Nucl. Chem. 302, 385 (2014).10.1007/s10967-014-3180-4Search in Google Scholar
39. Rizkalla, E. N., Choppin, G. R.: Hydration and hydrolysis of lanthanides. In: K. A. Jr. Gshneidner and L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, Elsevier, New York, Ch. 103. (1991).10.1016/S0168-1273(05)80009-1Search in Google Scholar
40. Cheng, W. C., Ding, C. C., Wu, Q. Y., Sun, Y. B., Shi, W. Q., Hayat, T., Alsaedi, A., Chai, Z. F., Wang, X. K.: Mutual effect of U(VI) and Sr(II) on graphene oxides: evidence from EXAFS and theoretical calculations. Environ. Sci. Nano 4, (2017).10.1039/C7EN00114BSearch in Google Scholar
41. Sun, Y. B., Wang, X. X., Song, W. C., Lu, S. H., Chen, C. L., Wang, X. K.: Mechanistic insights into the decontamination of Th(IV) on graphene oxide-based composites by EXAFS and modeling techniques. Environ. Sci. Nano 4, 222 (2017).10.1039/C6EN00470ASearch in Google Scholar
42. Liu, H. B., Li, M. X., Chen, T. H., Chen, C. L., Alharbi, N. S., Hayat, T., Sun, Y. B.: New synthesis of nZVI/C composites as an efficient adsorbents for the uptake of U(VI) from aqueous solutions. Environ. Sci. Technol. 51, 9227 (2017).10.1021/acs.est.7b02431Search in Google Scholar PubMed
43. Sun, Y. B., Lu, S. H., Wang, X. X., Xu, C., Li, J. X., Chen, C. L., Chen, J., Hayat, T., Alsaedi, A., Alharbi, N. S., Wang, X. K.: Plasam-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(VI) and 241Am(III). Environ. Sci. Technol. 51, 12274 (2017).10.1021/acs.est.7b02745Search in Google Scholar PubMed
44. Langmuir, I.: The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1918).10.1021/ja02242a004Search in Google Scholar
45. Freundlich, H. M. F.: Uber die adsorption in lasungen. J. Phys. Chem. 57, 385 (1906).10.1515/zpch-1907-5723Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project
- Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology
- Retardation of hexavalent uranium in muscovite environment: a batch study
- Zinc oxide impregnated resin for preconcentration and spectrophotometric determination of uranyl ions in aqueous solutions
- Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin
- Effect of water chemistry on Eu(III) biosorption by magnetic bioadsorbent
- 99mTc-HYNIC-(Ser)3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor
- Radiometric measurement of lignite coal and its by-products and assessment of the usability of fly ash as raw materials in Turkey
- Letter to the Editor
- International Consensus Radiochemistry Nomenclature Guidelines
Articles in the same Issue
- Frontmatter
- Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project
- Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology
- Retardation of hexavalent uranium in muscovite environment: a batch study
- Zinc oxide impregnated resin for preconcentration and spectrophotometric determination of uranyl ions in aqueous solutions
- Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin
- Effect of water chemistry on Eu(III) biosorption by magnetic bioadsorbent
- 99mTc-HYNIC-(Ser)3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor
- Radiometric measurement of lignite coal and its by-products and assessment of the usability of fly ash as raw materials in Turkey
- Letter to the Editor
- International Consensus Radiochemistry Nomenclature Guidelines