Home Physical Sciences Development and application of carbon nanotubes reinforced hydroxyapatite composite in separation of Co(II) and Eu(III) ions from aqueous solutions
Article
Licensed
Unlicensed Requires Authentication

Development and application of carbon nanotubes reinforced hydroxyapatite composite in separation of Co(II) and Eu(III) ions from aqueous solutions

  • Reda R. Sheha EMAIL logo , Saber I. Moussa , Mohamed A. Attia , Sedeeq A. Sadeek and Hanan H. Someda
Published/Copyright: September 27, 2018

Abstract

Multi-walled carbon nanotubes/strontium hydroxyapatite (MWCNT/SH) composite was synthesized, where CNTs were applied to improve the properties of HAP and increase the reinforcement of the composite. The composite CNTs/Sr-HAP and its precursor Sr-HAP were successfully applied in removal of Co(II) and Eu(III) ions from aqueous solutions. Sorption of Co(II) and Eu(III) onto the synthesized sorbents was investigated as a function of contact time and pH. The synthesized sorbents highly removed the studied radionuclides from their aqueous solutions with necessary time of 6 h to reach equilibrium. The maximum sorption capacity was 33.31 and 48.93 mg g−1 for Co(II) sorption onto Sr-HAP and CNTs/Sr-HAP composite at pH 4.5, while it was 115.74 and 127.11 mg g−1 for sorption of Eu(III) onto Sr-HAP and CNTs/Sr-HAP composite at pH 2.5, respectively. Desorption of Co(II) and Eu(III) from loaded samples was studied using various eluents and maximum recovery was obtained using FeCl3 and HCl solutions. Co(II) was completely separated from Eu(III) by a ratio of 85.1 % using Cd(NO3)2 as an eluent in CNTs/Sr-HAP composite packed column.

References

1. Ding, C., Cheng, W., Sun, Y., Wang, X.: Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J. Hazard. Mater. 295, 127 (2015).10.1016/j.jhazmat.2015.04.032Search in Google Scholar PubMed

2. Schröder, J., Rossignol, N., Oudheusden, M.: Safety in long term radioactive waste management: insight and oversight. Safety Sci. 85, 285 (2016).10.1016/j.ssci.2016.02.003Search in Google Scholar

3. Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., Cheng, X.: Competitive adsorption of strontium and cobalt onto tin antimonite. Chem. Eng. J. 285, 679 (2016).10.1016/j.cej.2015.10.013Search in Google Scholar

4. Correa, F. G., Granados, J. V., Reyes, M. J., Granado, L. A.: Adsorption behavior of La(III) and Eu(III) ions from aqueous solutions by hydroxyapatite: kinetic, isotherm, and thermodynamic studies. J. Chem. 201, 1 (2013).10.1155/2013/751696Search in Google Scholar

5. Barakat, M. A., Kumar, R.: Synthesis and characterization of porous magnetic silica composite for the removal of heavy metals from aqueous solution. J. Indus. Eng. Chem. 23, 93 (2015).10.1016/j.jiec.2014.07.046Search in Google Scholar

6. Guajardo, A. E., Liamas, J. C., Maqueira, L., Andrade, C. S., Alves, K. B., Melo, C. P.: Efficient removal of Cr(VI) and Cu(II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem. Eng. J. 281, 826 (2015).10.1016/j.cej.2015.07.008Search in Google Scholar

7. Wang, Z., Ma, Y., Hao, X., Huang, W., Guan, G., Abudula, A.: Enhancement of heavy metals removal efficiency from liquid wastes by using potential-triggered proton self-exchange effects. Electrochim. Acta. 130, 40 (2014).10.1016/j.electacta.2014.02.151Search in Google Scholar

8. Rahman, I. M., Begum, Z. A., Hasegawa, H.: Selective separation of elements from complex solution matrix with molecular recognition plus macrocycles attached to a solid-phase: A review. Microchem. J. 110, 485 (2013).10.1016/j.microc.2013.06.006Search in Google Scholar

9. Wu, Y., Zhang, J., Liu, J., Chen, L., Deng, Z., Han, M., Yu, A., Zhang, H., Wei, X.: Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples. Appl. Surf. Sci. 258, 6772 (2012).10.1016/j.apsusc.2012.03.057Search in Google Scholar

10. Dolatyari, L., Yaftian, M., Rostamnia, S.: Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J. Environ. Manage. 169, 8 (2016).10.1016/j.jenvman.2015.12.005Search in Google Scholar PubMed

11. Li, J., Wang, X., Zhao, G., Chen, C., Chai, Z., Alsaedi, A., Hayat, T., Wang, X.: Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322 (2018).10.1039/C7CS00543ASearch in Google Scholar PubMed

12. Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., Wang, X.: Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym. Chem. 9, 3562 (2018).10.1039/C8PY00484FSearch in Google Scholar

13. Gu, P., Zhang, S., Li, X., Wang, X., Wen, T., Jehan, R., Alsaedi, A., Hayat, T., Wang, X.: Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 240, 493 (2018).10.1016/j.envpol.2018.04.136Search in Google Scholar PubMed

14. Sheha, R. R., Moussa, S. I., Tadros, N. A.: The role of iron incorporation in a novel apatite structure: a comparative study on strontium separation. A. J. Nucl. Sci. Appl. 46(3), 28 (2013).Search in Google Scholar

15. Smiciklas, I., Dimovic, S., Plecas, I., Mitric, M.: Removal of Co2+ from aqueous solutions by hydroxyapatite. Water. Res. 40, 2267 (2006).10.1016/j.watres.2006.04.031Search in Google Scholar PubMed

16. Sheha, R. R.: Sorption behavior of Zn(II) ions on synthesized hydroxyapatites. J. Colloid Interface Sci. 310, 18 (2007).10.1016/j.jcis.2007.01.047Search in Google Scholar PubMed

17. Kavitha, M., Subramanian, R., Narayanan, R., Udhayabanu, V.: Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals. Powder Technol. 253, 129 (2014).10.1016/j.powtec.2013.10.045Search in Google Scholar

18. Sophie, C. C., Jamshidi, P., Grover, L. M., Mallick, K. K.: Preparation and characterization of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater. Sci. Eng. C 35, 106 (2014).10.1016/j.msec.2013.10.015Search in Google Scholar PubMed

19. Kaygili, O., Keser, S.: Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites. Mater. Lett. 141, 161 (2015).10.1016/j.matlet.2014.11.078Search in Google Scholar

20. Pei, X., Zeng, Y., He, R., Li, Z., Tian, L., Wang, J., Wan, Q., Li, X., Bao, H.: Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition. Appl. Surf. Sci. 295, 71 (2014).10.1016/j.apsusc.2014.01.009Search in Google Scholar

21. Gabal, M. A., Al-Harthy, E. A., Al Angari, Y. M., Abdel Salam, M., Zayed, M. M.: MWCNTs decorated Mn0.8Zn0.2Fe2O4: Synthesis, characterization and compositional effect on the structural and magnetic properties. J. Magn. Magn. Mater. 374, 230 (2015).10.1016/j.jmmm.2014.08.037Search in Google Scholar

22. Wang, Y., Liu, Z., Li, Y., Bai, Z., Liu, W., Wang, Y., Xu, X., Xiao, C., Sheng, D., Diwu, J., Su, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Umbellate Distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions, J. Am. Chem. Soc. 137, 6144 (2015).10.1021/jacs.5b02480Search in Google Scholar PubMed

23. Zhu, L., Sheng, D., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y., Wang, Y., Chen, L., Xiao, C., Chen, J., Zhou, R., Zhang, C., Farha, O. K., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Identifying the recognition site for selective trapping of 99TcO4 in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc. 139, 14873 (2017).10.1021/jacs.7b08632Search in Google Scholar PubMed

24. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Diwu, J., Wang, J., Zhou, R., Chai, Z., Wang, S.: Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant lewis basic sites: A combined batch, x-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 51, 3911 (2017).10.1021/acs.est.6b06305Search in Google Scholar PubMed

25. Sheng, D., Zhu, L., Xu, C., Xiao, C., Wang, Y., Wang, Y., Chen, L., Diwu, J., Chen, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Efficient and selective uptake of TcO4 by a cationic metal–organic framework material with open Ag+ sites. Environ. Sci. Technol. 51, 3471 (2017).10.1021/acs.est.7b00339Search in Google Scholar PubMed

26. Zhang, W., Cao, N., Chai, Y., Xu, X., Wang, Y.: Synthesis of nanosize single-crystal strontium hydroxyapatite via a simple sol–gel method. Ceram. Int. 40, 16061 (2014).10.1016/j.ceramint.2014.07.103Search in Google Scholar

27. Gopi, D., Shinjoy, E., Sekar, M., Surendiran, M., Kavitha, L., Kumar, T. S.: Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method. Corros. Sci. 73, 321 (2013).10.1016/j.corsci.2013.04.021Search in Google Scholar

28. Mukherje, S., Kundu, B., Chnda, A., Sen, S.: Effect of functionalization of CNT in the preparation of HAP–CNT biocomposites. Ceram. Intern. 41, 3766 (2015).10.1016/j.ceramint.2014.11.052Search in Google Scholar

29. Bai, Y., Neupane, M. P., Park, S., Lee, M. H., Bae, T. S., Watari, F., Uo, M.: Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate. Mater. Sci. Eng. C 30, 1043 (2010).10.1016/j.msec.2010.05.007Search in Google Scholar

30. Liu, Z., Chen, L., Zhang, Z., Li, Y., Dong, Y., Sun, Y.: Synthesis of multi walled carbon nanotubes–hydroxyapatite composites and its application in the sorption of Co(II) from aqueous solutions, J. Mol. Liq. 179, 46 (2013).10.1016/j.molliq.2012.12.011Search in Google Scholar

31. Sheha, R. R., Moussa, S. I., Tadros, N. A.: Synthesis of core–shell structured microspheres and their application in separation of cadmium from aqueous solutions. A. J. Nucl. Sci. Appl. 46(4), 1 (2013).Search in Google Scholar

32. Mukherjee, S., Kundu, B., Sen, S., Chanda, A.: Improved properties of hydroxyapatite–carbon nanotube biocomposite: mechanical, in vitro bioactivity and biological studies. Ceram. Intern. 40, 5635 (2014).10.1016/j.ceramint.2013.10.158Search in Google Scholar

33. Zhao, Q., Shen, Y., Ji, M., Zhang, L., Jiang, T., Li, C.: Effect of carbon nanotube addition on friction coefficient of nanotubes/hydroxyapatite composites. J. Indus. Eng. Chem. 20, 544 (2014).10.1016/j.jiec.2013.04.040Search in Google Scholar

34. Neelgund, G. M., Olurode, K., Luo, Z., Oki, A.: A simple and rapid method to graft hydroxyapatite on carbon nanotubes. Mater. Sci. Eng. C 31, 1477 (2011).10.1016/j.msec.2011.06.001Search in Google Scholar PubMed PubMed Central

35. Abrishamchian, A., Hooshmand, T., Mohammadi, M., Najafi, F.: Preparation and characterization of multi–walled carbon nanotubes/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study. Mater. Sci. Eng. C 33, 2002 (2013).10.1016/j.msec.2013.01.014Search in Google Scholar PubMed

36. Gogoi, D., Shanmugamani, A., Rao, S., Kumar, T., Sinha, P.: Studies on removal of cobalt from an alkaline waste using synthetic calcium hydroxyapatite. J. Radioanal. Nucl. Chem. 298, 337 (2013).10.1007/s10967-012-2378-6Search in Google Scholar

37. Vilvanathan, S., Shanthakumar, S.: Modeling of fixed-bed column studies for removal of cobalt ions from aqueous solution using Chrysanthemum indicum. Res. Chem. Intermed. 42, 1 (2016).10.1007/s11164-016-2617-5Search in Google Scholar

38. Solache-Rios, M., Olguin, M. T., Martinez-Miranda, V., Ramirez-Garcia, J., Zarate-Montoya, N.: Removal behavior of cobalt from aqueous solutions by a sodium-modified zeolitic tuff. Water Air Soil Poll. 226, 1 (2015).10.1007/s11270-015-2688-8Search in Google Scholar

39. Al Abdullah, J., Al Lafi, A. G., Al Masri, W., Amin, Y., Alnama, T.: Adsorption of cesium, cobalt, and lead onto a synthetic nano manganese oxide: behavior and mechanism. Water Air Soil Poll. 227, 111 (2016).10.1007/s11270-016-2938-4Search in Google Scholar

40. Granados-Correa, F., Jimenez-Reyes, M.: Kinetic, equilibrium and thermodynamic studies on the adsorption of Eu(III) by eggshell from aqueous solutions. Adsorpt. Sci. Technol. 31, 891 (2013).10.1260/0263-6174.31.10.891Search in Google Scholar

41. Zaki, A. A., El-Zakla, T., Abed El Geleel, M.: Modeling kinetics and thermodynamics of Cs+ and Eu3+ removal from waste solutions using modified cellulose acetate membranes. J. Membr. Sci. 401, 1 (2012).10.1016/j.memsci.2011.12.044Search in Google Scholar

42. Zhu, H., Gao, H., Huang, X., Kong, W., Yan, X.: The uptake of europium by reduced graphene oxide-supported nanoscale zero valent iron investigated by batch and modeling techniques. J. Environ. Chem. Eng. 3, 2974 (2015).10.1016/j.jece.2015.10.014Search in Google Scholar

43. Li, D., Zhang, B., Xuan, F.: The sorption of Eu(III) from aqueous solutions by magnetic graphene oxides: a combined experimental and modeling studies. J. Mol. Liq. 211, 203 (2015).10.1016/j.molliq.2015.07.012Search in Google Scholar

44. Oguz, E., Ersoy, M.: Biosorption of cobalt(II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modelling. Ecotoxicol. Environ. Saf. 99, 54 (2014).10.1016/j.ecoenv.2013.10.004Search in Google Scholar PubMed

45. Tofan, L., Teodosiu, C., Paduraru, C., Wenkert, R.: Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies. Appl. Surf. Sci. 285P, 33 (2013).10.1016/j.apsusc.2013.06.151Search in Google Scholar

46. Can, Ö., Balköse, D., Ülkü, S.: Batch and column studies on heavy metal removal using a local zeolitic tuff. Desalination 259, 17 (2010).10.1016/j.desal.2010.04.047Search in Google Scholar

47. Metwally, S. S., Ayoub, R. R., Aly, H. F.: Utilization of low-cost sorbent for removal and separation of 134Cs, 60Co and 152+154Eu radionuclides from aqueous solution. J. Radioanal. Nucl. Chem. 302, 441 (2014).10.1007/s10967-014-3185-zSearch in Google Scholar

48. Attallah, M. F., Borai, E. H., Hilal, M. A., Shehata, F. A., Abo-Aly, M. M.: Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography. J. Hazard. Mater. 195, 73 (2011).10.1016/j.jhazmat.2011.08.007Search in Google Scholar PubMed

49. Omar, H. A., Moloukhia, H.: Use of activated carbon in removal of some radioisotopes from their waste solutions, J. Hazard. Mater. 157, 242 (2008).10.1016/j.jhazmat.2007.12.108Search in Google Scholar PubMed

Received: 2017-12-20
Accepted: 2018-08-16
Published Online: 2018-09-27
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2922/html?lang=en
Scroll to top button