Startseite Determination of uranium and thorium concentrations in thorium ore sample using artificial neural network and comparison with net area peak method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of uranium and thorium concentrations in thorium ore sample using artificial neural network and comparison with net area peak method

  • Seyedeh Zahra Islami rad EMAIL logo und Reza Gholipour Peyvandi
Veröffentlicht/Copyright: 24. Mai 2018

Abstract

In order to determine favorable and different elements in soil, the rapid and accurate methods are required. In this research, simultaneous prediction of thorium and uranium in soil samples was performed via gamma spectrometry. Then, the acquired data were analyzed with artificial neural network (ANN) and net area peak (NAP). Natural soil samples obtained from thorium ore consisting of thorium and uranium were used to train models (ANN and NAP). The techniques were evaluated with respect to prediction ability of uranium and thorium concentrations and robustness. Using proposed ANN and NAP methods, the thorium concentration was predicted with mean relative error percentage less than 8.27% and 9.30%, respectively. Also, uranium concentration just was determined with ANN because the NAP method cannot measure uranium concentration. The performance of the neural network model and NAP technique were compared with the acquired empirical data. The results showed that the neural network can more accurately predict the thorium and uranium concentrations in soil samples.

References

1. Jain, V. K., Pandya, R. A., Pillai, S. G., Shrivastav, P. S.: Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase Pandya. Talanta 70, 257 (2006).10.1016/j.talanta.2006.02.032Suche in Google Scholar PubMed

2. Aydin, F. A., Soylak, M.: Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 72, 187 (2007).10.1016/j.talanta.2006.10.013Suche in Google Scholar PubMed

3. Maheswari, M. A., Subramanian, M. S.: Selective enrichment of U(VI), Th(IV) and La(III) from high acidic streams using a new chelating ion-exchange polymeric matrix. Talanta 64, 202 (2004).10.1016/j.talanta.2004.02.029Suche in Google Scholar

4. Esaka, F., Magara, M., Sakurai, D., Miyamoto, Y., Lee, C. G., Kimura, T.: Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry. Talanta 83, 569 (2010).10.1016/j.talanta.2010.10.009Suche in Google Scholar PubMed

5. Kumar, R., Yadav, J. R., Rao, D. D., Chand, L.: Determination of uranium isotopes in urine samples from radiation workers using 232U tracer, anion-exchange resin and alpha-spectrometry. J. Radioanal. Nucl. Chem. 279, 787 (2009).10.1007/s10967-008-7358-5Suche in Google Scholar

6. Smodis, B., Benedik, J.: In: G. A. Aycik (Ed.), New Techniques for the Detection of Nuclear and Radioactive Agents (2009), Springer, Dordrecht, p. 49.10.1007/978-1-4020-9600-6_4Suche in Google Scholar

7. Mihaylova, V., Todorov, B., Djingova, R.: Determination of uranium and thorium in soil and plants by ICP-MS. Case study of Buhovo region. Chim. Anal. 66, 513 (2013).10.7546/CR-2013-66-4-13101331-6Suche in Google Scholar

8. van der Loeff, M. R., Sarin, M. M., Baskaran, M., Benitez-Nelson, C., Buesseler, K. O., Charette, M., Dai, M., Gustafsson, Ö., Masque, P., Morris, P. J., Orlandini, K., Rodriguezy Baena, A., Savoye, N., Schmidt, S., Turnewitsch, R., Vöge, I., Waples, J. T.: A review of present techniques and methodological advances in analyzing 234Th inaquatic system. Marine Chem. 100, 190 (2006).10.1016/j.marchem.2005.10.012Suche in Google Scholar

9. Zheng, Y., Weinman, B., Cronin, T., Fleisher, M. Q., Anderson, R. F.: A rapid procedure for the determination of thorium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry: application in Chesapeake Bay. Appl. Geochem. 18, 539 (2003).10.1016/S0883-2927(02)00119-1Suche in Google Scholar

10. Alexandre, T., Bueno, M.: Classification of some species, genera and families of plants by x-ray spectrometry. X-ray Spectrom. 35, 257 (2006).10.1002/xrs.900Suche in Google Scholar

11. Enrich, C., Boeykens, S., Caracciolo, N., Vazquez, G. C.: Honey characterization by total reflection x-ray fluorescence: evaluation of environmental quality and risk for the human health. X-ray Spectrom. 36, 215 (2007).10.1002/xrs.944Suche in Google Scholar

12. Khayatzadeh Mahani, M., Chaloosi, M., Khanchi, A. R., Ghannadi Maragheh, M., Salimi, B., Asgharizadeh, F.: A new method for simultaneous determination of 226Ra and uranium in aqueous samples by liquid scintillation using chemometrics. J. Radioanal. Nucl. Chem. 275, 427 (2008).10.1007/s10967-007-7041-2Suche in Google Scholar

13. Kaniu, M. I., Angeyo, K. H., Mwala, A. K., Mwangi, F. K.: Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches. Talanta 98, 236 (2012).10.1016/j.talanta.2012.06.081Suche in Google Scholar PubMed

14. Taylor, J. G.: Neural Networks and Their Applications (1996), John Wiley & Sons Ltd., Brighton.Suche in Google Scholar

15. Gallant, A. R., White, H.: On learning the derivatives of an unknown mapping with multilayer feed forward networks. Neural Netw. 5, 129 (1992).10.1016/S0893-6080(05)80011-5Suche in Google Scholar

16. White, M., Hagan, T., Menhaj, M.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5, 989 (1994).10.1109/72.329697Suche in Google Scholar PubMed

17. Demuth, H., Beale, M., Hagan, M. Neural Network Toolbox TM 6, User’s Guide (2008), The Math Works, Massachusetts.Suche in Google Scholar

18. Zaknich, A.: Neural Networks for Intelligent Signal Processing (2003), World Scientific Pub Co. Inc., Toh Tuck Link.10.1142/5220Suche in Google Scholar

19. Bisht, D. C. S., Jangid, A.: Discharge modeling using adaptive neuro-fuzzy inference system. Int. J. Adv. Sci. Tech. 31, 99 (2011).Suche in Google Scholar

Received: 2017-09-19
Accepted: 2017-10-26
Published Online: 2018-05-24
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2880/html
Button zum nach oben scrollen