Abstract
Thorium was precipitated homogeneously from a thorium nitrate solution by the thermal decomposition products of urea. The kinetics of the hydrolysis were studied at 90 and 100°C by pH measurement during the initial 5 h and the precipitation efficiencies of thorium and radium were measured over a 24 h period. Precipitation of the radium daughters was closely followed with the aim of co-precipitation of radium with thorium. The CO2 formed during urea decomposition dissolved in the solution, forming CO32− during the experiment upon reaching a sufficiently high pH level (>7). This allowed radium to co-precipitate partially, thus reducing the activity of the filtrate. After filtration or centrifugation, the precipitate is composed of nanocrystalline thorium dioxide (crystallite size ~10 nm), with weakly bound H2O and CO2.
Acknowledgements
P. Dries, K. Vanaken, and G. Leinders provided technical assistance during the realization of experiments. This work was partially funded by Solvay under contract CO-90-15-3832-00.
References
1. Hart, P., Griffin, C., Hsieh, K., Matthews, R., White, G.: ThO2-based pellet fuels – their properties, methods of fabrication, and irradiation performance: a critical assessment of the state of the technology and recommendations for further work, PNL-3064. National Technical Information Service, Springfield (1979), p. 174.10.2172/5804182Search in Google Scholar
2. Salutsky, M., Kirby, H.: The radiochemistry of radium, NAS-NS 3057. Federal Scientific and Technical Information, Springfield (1964), p. 210.10.2172/4560824Search in Google Scholar
3. Qafoku, O., Felmy, A.: Development of accurate chemical equilibrium models for oxalate species to high ionic strength in the system: Na–Ba–Ca–Mn–Sr–Cl–NO3–PO4–SO4–H2O at 25 °C. J. Solut. Chem. 36, 81 (2007).10.1007/s10953-006-9094-1Search in Google Scholar
4. Millero, F., Milne, P., Thurmond, V.: The solubility of calcite, strontianite and witherite in NaCl solutions at 25 °C. Geochim. Cosmochim. Acta 48, 1141 (1984).10.1016/0016-7037(84)90205-9Search in Google Scholar
5. Houšková, V., Štengl, V., Bakardjieva, S., Murafa, N., Tyrpekl, V.: Efficient gas phase photodecomposition of acetone by Ru-doped titania. Appl. Catal. B: Environ. 89, 613 (2009).10.1016/j.apcatb.2009.01.023Search in Google Scholar
6. Tyrpekl, V., Vejpravová, J., Roca, A., Murafa, N., Szatmary, L., Nižňanský, D.: Magnetically separable photocatalytic composite γ-Fe2O3@TiO2 synthesized by heterogeneous precipitation. Appl. Surf. Sci. 257, 4844 (2011).10.1016/j.apsusc.2010.12.110Search in Google Scholar
7. Soler-Illia, G., Jobbágy, M., Candal, R., Regazzoni, A., Blesa, M.: Synthesis of metal oxide particles from aqueous media: the homogeneous alkalinization method. J. Disper. Sci. Technol. 19, 207 (1998).10.1080/01932699808913172Search in Google Scholar
8. Soler-Illia, G., Candal, R., Regazzoni, A., Blesa, M.: Synthesis of mixed copper-zinc basic carbonates and Zn-doped tenorite by homogeneous alkalinization. Chem. Mater. 9, 184 (1997).10.1021/cm9602813Search in Google Scholar
9. Nkou Bouala, G., Clavier, N., Podor, R., Cambedouzou, J., Mesbah, A., Brau, H., Léchelle, J., Dacheux, N.: Preparation and characterisation of uranium oxides with spherical shapes and hierarchical structures. CrystEngComm 16, 6944 (2014).10.1039/C4CE00850BSearch in Google Scholar
10. Šubrt, J., Michálková, E., Boháček, J., Lukáč, J., Gánovská, Z., Máša, B.: Uniform particles formed by hydrolysis of acid mine drainage with urea. Hydrometallurgy 106, 12 (2011).10.1016/j.hydromet.2010.11.012Search in Google Scholar
11. Wang, S., Gu, F., Li, C., Cao, H.: Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures. J. Cryst. Growth 307, 386 (2007).10.1016/j.jcrysgro.2007.06.025Search in Google Scholar
12. Wang, L., Zhao, R., Wang, X., Mei, L., Yuan, L., Wang, S., Chai, Z., Shi, W.: Size-tunable synthesis of monodisperse thorium dioxide nanoparticles and their performance on the adsorption of dye molecules. CrystEngComm 16, 10469 (2014).10.1039/C4CE01731ESearch in Google Scholar
13. van der Plas, T., Kanij, J., Noothout, A., Hermans, M.: The KEMA sol-gel process, DPR 430. A. E. E. Winfrith, Winfrith (1966), p. 10.Search in Google Scholar
14. Beydon, J., Gratot, I.: Utilisation du recul nucléaire pour la séparation du 228Ra, du 224Ra et du 233Pa à partir d’hydroxyde de thorium colloidal, CEA-R-3493. Centre d’Etudes Nucléaires de Saclay, Gif-sur-Yvette (1968), p. 12.Search in Google Scholar
15. Laraweb. <http://www.nucleide.org/Laraweb/>, (accessed 27.1.2017.).Search in Google Scholar
16. Wangle, T., Tyrpekl, V., Cagno, S., Delloye, T., Larcher, O., Cardinaels, T., Vleugels, J., Verwerft, M.: The effect of precipitation and calcination parameters on oxalate derived ThO2 pellets. J. Nucl. Mater. 495, 128 (2017).10.1016/j.jnucmat.2017.07.046Search in Google Scholar
17. Williamson, G., Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953).10.1016/0001-6160(53)90006-6Search in Google Scholar
18. Petříček, V., Dušek, M., Palatinus, L.: Crystallographic computing system JANA2006: general features. Z. Kristall. 229, 345 (2014).10.1515/zkri-2014-1737Search in Google Scholar
19. Neck, V., Müller, R., Bouby, M., Altmaier, M., Rothe, J., Denecke, M., Kim, J.: Solubility of amorphous Th(IV) hydroxide – application of LIBD to determine the solubility product and EXAFS for aqueous speciation. Radiochim. Acta 90, 485 (2002).10.1524/ract.2002.90.9-11_2002.485Search in Google Scholar
20. Chemical Thermodynamics of Thorium. In: F. Mompean (Ed.), Chemical Thermodynamics, OECD NEA, Issy-les-Moulineaux (2007).Search in Google Scholar
21. Pazhukhin, E., Smirnova, E., Krivokhatskii, A., Pazukhina, Y., Kochergin, S.: Optimization of conditions of thorium oxalate precipitation. I. Solubility of thorium oxalate in the presence of like ions. Radiokhim. 27, 606 (1985).Search in Google Scholar
22. Kurnakova, A., Shubochkin, L.: The solubility of Th(C2O4)2·6H2O in aqueous solutions of HNO3 and H2C2O4 at 25 °C. Zh. Neorg. Khim. 8, 1249 (1963).Search in Google Scholar
23. Ayers, A.: Precipitation of thorium oxalate from nitric acid solutions, CC-2962. Iowa State College, Ames (1945), p. 4.10.2172/4365562Search in Google Scholar
24. Perrin, D., Dempsey, B.: Buffers for pH and metal ion control. Springer Netherlands, Dordrecht (1974), p. 176.10.1007/978-94-009-5874-6Search in Google Scholar
25. Nkou Bouala, G., Clavier, N., Lechelle, J., Monnier, J., Ricolleau, C., Dacheux, N., Podor, R.: High-temperature electron microscopy study of ThO2 microspheres sintering. J. Eur. Ceram Soc. 37, 727 (2017).10.1016/j.jeurceramsoc.2016.08.029Search in Google Scholar
26. Kobayashi, T., Sasaki, T., Takagi, I., Moriyama, H.: Effect of solid phase transformation on the solubility product of thorium hydrous oxide at 363 K. J. Nucl. Sci. Technol. 53, 1787 (2016).10.1080/00223131.2016.1160004Search in Google Scholar
27. Jovani Abril, R., Eloirdi, R., Bouëxière, D., Malmbeck, R., Spino, J.: In situ high temperature X-ray diffraction study of UO2 nanoparticles. J. Mater. Sci. 46, 7247 (2011).10.1007/s10853-011-5684-4Search in Google Scholar
28. Götte, H.: Das Verhalten des Eisen(III)- und Thoriumhydroxyds in Abhängigkeit von der Vorbehandlung und Herstellung, untersucht nach der Emaniermethode von Otto Hahn. Z. Phys. Chem. Abt. B 40, 207 (1938).10.1515/zpch-1938-4014Search in Google Scholar
29. Dzimitrowicz, D., Wiseman, P., Cherns, D.: An electron microscope study of hydrous thorium dioxide ThO2·nH2O. J. Colloid Interface Sci. 103, 170 (1985).10.1016/0021-9797(85)90089-XSearch in Google Scholar
30. Mirza, E., Karkhanavala, M.: On the oxycarbonate of thorium. J. Indian Chem. Soc. 40, 903 (1963).Search in Google Scholar
31. Chauvenet, E.: Sur les carbonates de thorium. C. R. Séances Acad. Sci. 153, 66 (1911).Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Development of a “fission-proxy” method for the measurement of 14-MeV neutron fission yields
- Investigations on the complete removal of iron(III) interference on the uranium(VI) extraction from sulfate leach liquor using Alamine 336 in kerosene
- Homogeneous hydrolysis of thorium by thermal decomposition of urea
- Solubilities and solubility products of thorium hydroxide under moderate temperature conditions
- Determination of uranium and thorium concentrations in thorium ore sample using artificial neural network and comparison with net area peak method
- Solvent extraction separation of zirconium and hafnium from nitric acid solutions using mixture of Cyanex-272 and TBP
- Development of granular radioactive reference source from 152,154Eu adsorbed on tin tungstate matrix
- Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect
- EPR measurement of environmental radiation using human fingernails
Articles in the same Issue
- Frontmatter
- Development of a “fission-proxy” method for the measurement of 14-MeV neutron fission yields
- Investigations on the complete removal of iron(III) interference on the uranium(VI) extraction from sulfate leach liquor using Alamine 336 in kerosene
- Homogeneous hydrolysis of thorium by thermal decomposition of urea
- Solubilities and solubility products of thorium hydroxide under moderate temperature conditions
- Determination of uranium and thorium concentrations in thorium ore sample using artificial neural network and comparison with net area peak method
- Solvent extraction separation of zirconium and hafnium from nitric acid solutions using mixture of Cyanex-272 and TBP
- Development of granular radioactive reference source from 152,154Eu adsorbed on tin tungstate matrix
- Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect
- EPR measurement of environmental radiation using human fingernails