Startseite Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology

  • Arjun Gopalakrishna , Saraswatula Venkata Suryanarayana , Haladhara Naik EMAIL logo , Tanuja Sushant Dixit , Basant Kumar Nayak , Amit Kumar , Pravind Maletha , Kiran Thakur , Abhay Deshpande , Ramamoorthy Krishnan , Kamaldeep , Sharmila Banerjee und Alok Saxena
Veröffentlicht/Copyright: 12. Februar 2018

Abstract

Experimental investigations have been carried out on the production of a promising therapeutic radionuclide 67Cu via the 67Zn(n,p)67Cu, 68Zn(n,x)67Cu, and 68Zn(γ,p)67Cu reaction routes. Natural zinc metal foils were irradiated with 14.1 MeV neutrons and bremsstrahlung of end-point energy 15 MeV. Radioactivity levels of 67Cu and other radioisotopes co-produced were determined by the quantification of photo-peaks by off-line γ-ray spectrometry. No carrier added 67Cu was separated from the irradiated zinc by solvent extraction. Yields >90% and high levels of radionuclidic purity were achieved. These studies indicate that the growth and development of intense fast neutron sources and photonuclear technology, will possibly aid in the sustained supply of 67Cu.

Acknowledgement

The authors thank Ms A. Chanda, Board of Radiation and Isotope Technology, and Ms S. Bishnoi and Mr T. Patel of Purnima Neutron Generator Facility and the operating staff of the electron LINAC at SAMEER for their help and assistance. The colleagues at Radiation Medicine Centre are acknowledged for technical support.

References

1. Stöcklin, G., Qaim, S. M., Rösch, F.: The impact of radioactivity on medicine. Radiochim. Acta. 70/71, 249 (1995).10.1524/ract.1995.7071.special-issue.249Suche in Google Scholar

2. Qaim, S. M.: Therapeutic radionuclides and nuclear data. Radiochim. Acta 89, 297 (2001).10.1524/ract.2001.89.4-5.297Suche in Google Scholar

3. Peng, F., Lu, X., Janisse, J., Muzik, O., Shields, A. F.: PET of human prostate cancer xenografts in mice with increased uptake of 64CuCl2, J. Nucl. Med. 47, 1649 (2006).Suche in Google Scholar

4. Johnson, M. A., Kays, S. E.: Copper: its role in human nutrition. Nutr Today 25, 6 (1990).10.1097/00017285-199001000-00003Suche in Google Scholar

5. Smith, N. A., Bowers, D. L., Ehst, D. A.: The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl. Radiat. Isot. 70, 2377 (2012).10.1016/j.apradiso.2012.07.009Suche in Google Scholar PubMed

6. National Nuclear Data Center (NNDC), Information extracted from the NuDat2 Database, 2016, Available at http://www.nndc.bnl.gov/nudat2/.Suche in Google Scholar

7. Champion C., Quinto, M. A., Morgat, C., Zanotti-Fregonara, P., Hindié, E.: Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics 6(10), 1611 (2016).10.7150/thno.15132Suche in Google Scholar

8. Novak-Hofer, I., Schubiger, P. A.: Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur. J. Nucl. Med. Mol. Imaging 29, 821 (2002).10.1007/s00259-001-0724-ySuche in Google Scholar PubMed

9. Sugo, Y., Hashimoto, K., Kawabata, M., Saeki, H., Sato, S., Tsukada, K., Nagai, Y.: Application of 67Cu produced by 68Zn(n,np+d)67Cu to biodistribution study in tumor-bearing mice. J. Phys. Soc. Japan. 86, 023201 (2017).10.7566/JPSJ.86.023201Suche in Google Scholar

10. Price, E. W., Orvig, C.: Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 43, 260 (2014).10.1039/C3CS60304KSuche in Google Scholar PubMed

11. Qaim, S. M.: The present and future of medical radionuclide production. Radiochim. Acta 100, 635 (2012).10.1524/ract.2012.1966Suche in Google Scholar

12. Mirzadeh, S., Mausner, L. F., Srivastava, S. C.: Production of no-carrier added 67Cu. Appl. Radiat. Isot. 37, 29 (1986).10.1016/0883-2889(86)90192-9Suche in Google Scholar

13. Johnsen, A. M., Heidrich, B. J., Durrant, C. B., Bascom, A. J., Ünlü, K.: Reactor production of 64Cu and 67Cu using enriched zinc target material. J. Radioanal. Nucl. Chem. 305, 61 (2015).10.1007/s10967-015-4032-6Suche in Google Scholar

14. Uddin, Md. S., Rumman-uz-Zaman, Md., Hossain, S. M., Qaim, S. M.: Radiochemical measurement of neutron-spectrum averaged cross sections for the formation of 64Cu and 67Cu via the (n,p) reaction at a TRIGA Mark-II reactor: Feasibility of simultaneous production of the theragnostic pair 64Cu/67Cu. Radiochim. Acta. 102, 473 (2014).10.1515/ract-2013-2199Suche in Google Scholar

15. Dasgupta, A. K., Mausner, L. F., Srivastava, S. C.: A new separation procedure for 67Cu from proton irradiated Zn. Appl. Radiat. Isot. 42, 371 (1991).10.1016/0883-2889(91)90140-VSuche in Google Scholar

16. Srivastava, S. C.: Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim. Acta 99, 635 (2011).10.1524/ract.2011.1882Suche in Google Scholar

17. Medvedev, D. G., Mausner, L. F., Meinken, G. E., Kurczak, S. O., Schnakenberg, H., Dodge, C. J., Korach, E. M., Srivastava, S. C.: Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl. Radiat. Isot. 70, 423 (2012).10.1016/j.apradiso.2011.10.007Suche in Google Scholar PubMed

18. Stoll, T., Kastleiner, S., Shubin, Yu. N., Coenen, H. H., Qaim, S. M.: Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim. Acta 90, 309 (2002).10.1524/ract.2002.90.6.309Suche in Google Scholar

19. Szelecsényi, F., Steyn, G. F., Dolley, S. G., Kovács, Z., Vermeulen, C., van der Walt, T. N.: Investigation of the 68Zn(p,2p)67Cu nuclear reaction: New measurements up to 40 MeV and compilation up to 100 MeV. Nucl. Instrum. Methods B 267, 1877 (2009).10.1016/j.nimb.2009.03.097Suche in Google Scholar

20. Jamriska Sr., D. J., Taylor, W. A., Ott, M. A., Heaton, R., Phillips, D., Fowler, M.: Activation rates and chemical recovery of 67Cu produced with low energy proton irradiation of enriched 70Zn targets. J. Radioanal. Nucl. Chem. 195, 263 (1995).10.1007/BF02035965Suche in Google Scholar

21. Kastleiner, S., Coenen, H. H., Qaim, S. M.: Possibility of production of 67Cu at a small-sized cyclotron via the (p,α) reaction on enriched 70Zn. Radiochim. Acta. 84, 107 (1999).10.1524/ract.1999.84.2.107Suche in Google Scholar

22. Hilgers, K., Stoll, T., Skakun, Y., Coenen, H. H., Qaim, S. M.: Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small- scale production of 67Cu via the 70Zn(p,α)67Cu process. Appl. Radiat. Isot. 59, 343 (2003).10.1016/S0969-8043(03)00199-4Suche in Google Scholar PubMed

23. Kozempel, J., Abbas, K., Simonelli, F., Bulgheroni, A., Holzwarth, U., Gibson, N.: Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim. Acta.100, 419 (2012).10.1524/ract.2012.1939Suche in Google Scholar

24. Sato, N., Tsukada, K., Watanabe, S., Ishioka, N. S., Kawabata, M., Saeki, H., Nagai, Y., Kin, T., Minato, F., Iwamoto, N., Iwamoto, O.: First measurement of the radionuclide purity of the therapeutic isotope 67Cu produced by 68Zn(n,x) reaction using natC(d,n) neutrons. J. Phys. Soc. Japan 83, 073201 (2014).10.7566/JPSJ.83.073201Suche in Google Scholar

25. Yagi, M., Kondo, K.: Preparation of carrier-free 67Cu by the 68Zn(γ,p) reaction. Int. J. Appl. Radiat. Isot. 29, 757 (1978).10.1016/0020-708X(78)90127-8Suche in Google Scholar

26. Starovoitova, V. N., Tchelidze, L., Wells, D. P.: Production of medical radioisotopes with linear accelerators. Appl. Radiat. Isot. 85, 39 (2014).10.1016/j.apradiso.2013.11.122Suche in Google Scholar PubMed

27. Qaim, S. M., Tárkányi, F., Capote, R. (Eds.): Nuclear data for the production of therapeutic radionuclides. IAEA Techn. Reports Series No. 473, 1 (2011).Suche in Google Scholar

28. Spahn, I., Coenen, H. H., Qaim, S. M.: Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n, p) reactions induced by fast spectral neutrons. Radiochim. Acta 92, 183 (2004).10.1524/ract.92.3.183.30489Suche in Google Scholar

29. Kawabata, M., Hashimoto, K., Saeki, H., Sato, N., Motoishi, S., Nagai, Y.: Production and separation of 64Cu and 67Cu using 14 MeV neutrons. J. Radioanal. Nucl. Chem. 303, 1205 (2015).10.1007/s10967-014-3488-0Suche in Google Scholar

30. Kin, T., Nagai, Y., Iwamoto, N., Minato, F., Iwamoto, O., Hatsukawa, Y., Segawa, M., Harada, H., Konno, C., Ochiai, K., Takakura, K.: New production routes for medical isotopes 64Cu and 67Cu using accelerator neutrons. J. Phys. Soc. Japan 82, 034201 (2013).10.7566/JPSJ.82.034201Suche in Google Scholar

31. Deshpande, A., Dixit, T., Krishnan, R.: Conceptual design of linac based radio isotope generation system, In: Proceedings of the seventh DAE-BRNS Indian particle accelerator conference. InPAC 2015, ID 272, Bhabha Atomic Research Centre, India (2015).Suche in Google Scholar

32. Dixit, T. S., Chavan, S. T., Krishnan, R., Nainwad, C. S., Pethe, S. N., Thakur, K. A., Tiwari, T., Vidwans, M. M., Deshpande, A.: Development of prototype 15 MeV electron Linac, In: Proceedings of 1st International Particle Accelerator Conference (IPAC′10), MOPEA50. 187, http://www.jacow.org, Kyoto, Japan (2010).Suche in Google Scholar

33. Ehst, D. A., Smith, N. A., Bowers, D. L., Makarashvili, V.: Copper-67 production on electron linacs, Photonuclear technology development. AIP Conf. Proc. 1509, 157, American Institute of Physics, Máxico (2012).10.1063/1.4773959Suche in Google Scholar

34. Nagai, Y., Hashimoto, K., Hatsukawa, Y., Saeki, H., Motoishi, S., Sato, N., Kawabata, M., Harada, H., Kin, T., Tsukada, K., Sato, T. K., Minato, F., Iwamoto, O., Iwamoto, N., Seki, Y., Yokoyama, K., Shiina, T., Ohta, A., Takeuchi, N., Kawauchi, Y., Sato, N., Yamabayashi, H., Adachi, Y., Kikuchi, Y., Mitsumoto, T., Igarashi, T.: Generation of radioisotopes with accelerator neutrons by deuterons. J. Phys. Soc. Japan 82, 064201 (2013).10.7566/JPSJ.82.064201Suche in Google Scholar

35. Bishnoi, S., Patel, T., Paul, R. K., Sarkar, P. S., Adhikari, P. S., Sinha, A.: Source characterization of Purnima Neutron Generator (PNG), In: Proc. of the DAE Symp. on Nucl. Phys. 56, 1102, Bhabha Atomic Research Centre, India (2011).Suche in Google Scholar

36. Auditore, L. Amato, E., Baldaria, S.: Theoretical estimation of 64Cu production with neutrons emitted during 18F production with a 30 MeV medical cyclotron. Appl. Radiat. Isot. 122, 229 (2017).10.1016/j.apradiso.2017.02.002Suche in Google Scholar PubMed

37. Qaim, S. M., Bisinger, T., Hilgers, K., Nayak, D., Coenen, H. H.: Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim. Acta 95, 67 (2007).10.1524/ract.2007.95.2.67Suche in Google Scholar

38. Bokhari, T. H., Mushtaq, A., Khan, I. U.: Production of low and high specific activity 64Cu in a reactor. J. Radioanal. Nucl. Chem. 284, 265 (2010).10.1007/s10967-010-0519-3Suche in Google Scholar

39. Szelecsényi, F., Blessing, G., Qaim, S. M.: Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: Possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 44, 575 (1993).10.1016/0969-8043(93)90172-7Suche in Google Scholar

40. McCarthy, D. W., Shefer, R. E., Klinkowstein, R. E., Bass, L. A., Margeneau, W. H., Cutler, C. S., Anderson, C. J., Welch, M. J.: Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 24, 35 (1997).10.1016/S0969-8051(96)00157-6Suche in Google Scholar PubMed

41. IAEA-EXFOR Experimental nuclear reaction data base, Available from: http://www-nds.iaea.org/exfor.Suche in Google Scholar

42. Al-Abyad, M., Spahn, I., Sudár, S., Morsy, M., Comsan, M. N. H., Csikai, J., Qaim, S. M., Coenen, H. H.: Nuclear data for production of the therapeutic radionuclides 32P, 64Cu, 67Cu, 89Sr, 90Y and 153Sm via the (n,p) reaction: Evaluation of excitation function and its validation via integral cross-section measurement using a 14 MeV d(Be) neutron source. Appl. Radiat. Isot. 64, 717 (2006).10.1016/j.apradiso.2005.12.020Suche in Google Scholar

43. Qaim, S. M.: A systematic study of (n, d), (n, n′p) and (n, pn) reactions at 14.7 MeV. Nucl. Phys. A 382, 255 (1982).10.1016/0375-9474(82)90135-XSuche in Google Scholar

44. Konno, C., Ikeda, Y., Oishi, K., Kawade, K., Yamamoto, H., Maekawa, H.: Activation cross section measurements at neutron energy from 13.3 to 14.9 MeV. JAERI Rep. No. 1329 (1993).Suche in Google Scholar

45. Lhersonneau, G., Malkiewicz, T., Kolos, K., Fadil, M., Kettunen, H., Saint-Laurent, M. G., Pichard, A., Trzaska, W. H., Tyurin, G., Cousin, L.: Neutron yield from carbon, light- and heavy-water thick targets irradiated by 40 MeV deuterons. Nucl. Instrum. Methods Phys. Res., Sect. A 603, 228 (2009).10.1016/j.nima.2009.02.035Suche in Google Scholar

46. Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G, Zschiesche, D.: Geant4, a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003).10.1016/S0168-9002(03)01368-8Suche in Google Scholar

47. Dolley, S. G., van der Walt, T. N.: Isolation of Cu radionuclides with dithizone impregnated XAD-8. Radiochim. Acta 102, 263 (2014).10.1515/ract-2014-2133Suche in Google Scholar

48. Qaim, S. M.: Nuclear data for production and medical application of radionuclides: Present status and future needs. Nucl. Med. Biol. 44, 31 (2017).10.1016/j.nucmedbio.2016.08.016Suche in Google Scholar PubMed

49. Rösch, F., Herzog, H., Qaim, S. M.: The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10, 56 (2017).10.3390/ph10020056Suche in Google Scholar PubMed PubMed Central

Received: 2017-7-7
Accepted: 2018-1-18
Published Online: 2018-2-12
Published in Print: 2018-7-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2847/html?lang=de
Button zum nach oben scrollen