Home Physical Sciences Study of filling material of dental composites: an analytical approach using radio-activation
Article
Licensed
Unlicensed Requires Authentication

Study of filling material of dental composites: an analytical approach using radio-activation

  • Canel Eke EMAIL logo , Kursat Er , Christian Segebade and Ismail Boztosun
Published/Copyright: June 29, 2017

Abstract

The aim of this study is to carry out elemental analyses of dental composites acquired from different producers using photoactivation analysis (PAA). High energy electrons produced by an electron linear accelerator are absorbed by a tungsten disk (Bremsstrahlung converter) thereby producing high energy X-rays (bremsstrahlung). The dental composite materials under study were exposed to the bremsstrahlung radiation whereby radionuclides were produced through photonuclear reactions. Their radioactivities were measured using high resolution semiconductor spectrometers equipped with high purity germanium detectors (HPGe). The spectra were analysed using appropriate computer software. As a result, photonuclear reactions of 12 stable elements were detected in different dental composite species, and the elemental concentrations were calculated. For comparison, the dental composites were also investigated using scanning electron microscopy (SEM) and energy-dispersive X-ray fluorescence spectrometry (EDXRF). Various sizes and shapes of dental composites were observed using SEM. However, contents of dental composites, e.g. Mg, Ni, Ba and Sr were obtained by PAA whilst C, O, Al, S, Ba and Sr were detected by EDXRF spectrometry. The results for Ba and Sr obtained using the two techniques show considerable difference.

References

1. Preoteasa, E. A., Preoteasa, E., Ciortea, C., Marin, D. D., Gurban, D., Gugiu, M., Scafes, A.: PIXE and PIGE assessment of in vivo elemental and physical changes of a composite from a dental filling. X-Ray Spectrom. 38(6), 548 (2009).10.1002/xrs.1175Search in Google Scholar

2. Samek, O., Beddows, D. C. S., Telle, H. H., Morris, G. W., Liska, M., Kaiser, J.: Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy. Appl. Phys A. 69(1), 179 (1999).10.1007/s003399900277Search in Google Scholar

3. Suciu, I., Preoteasa, E. S., Preoteasa, E. A., Chiojdeanu, C., Constantinescu, B., Dimitriu, B., Perlea, P., Suciu, I., Preoteasa, E. A., Gurban, D., Ionescu, E., Bodnar, D.: Potential of PIXE for the elemental analysis of calcium hydroxide used in dentistry. Rom. Rep. Phys. 58(4), 569 (2006).Search in Google Scholar

4. Preoteasa, E. A., Ciortea, C., Constantinescu, B., Fluerasu, D., Enescu, S. E., Pantelica, D., Negoita, F., Preoteasa, E.: Analysis of composites for restorative dentistry by PIXE, XRF and ERDA. Nucl. Instrum. Methods Phys. Res. B. 189, 426 (2002).10.1016/S0168-583X(01)01119-3Search in Google Scholar

5. Bush, M. A, Miller, R. G., Prutsman-Pfeiffer, J. Bush, P. J.: Identification through X-ray fluorescence analysis of dental restorative resin materials: a comprehensive study of noncremated, cremated, and processed-cremated individuals. J. Forensic. Sci. 52(1), 157 (2007).10.1111/j.1556-4029.2006.00308.xSearch in Google Scholar PubMed

6. Bush, M. A., Miller, R. G., Norrlander, A. L., Bush, P. J.: analytical survey of restorative resins by SEM⁄EDS and XRF: databases for forensic purposes. J. Forensic. Sci. 53(2), 419 (2008).10.1111/j.1556-4029.2007.00654.xSearch in Google Scholar PubMed

7. Camilleri, J., Kralj, P., Veber, M., Sinagra, E.: Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int. Endod. J. 45, 737 (2012).10.1111/j.1365-2591.2012.02027.xSearch in Google Scholar PubMed

8. Gazmeh, M., Bahreini, M., Tavassoli, S. A., Asnaashari, M.: Qualitative analysis of teeth and evaluation of amalgam elements penetration into dental matrix using laser induced breakdown spectroscopy. J. Lasers Med. Sci. 6(2), 67 (2015).Search in Google Scholar

9. Suciu, I., Preoteasa, E. S., Preoteasa, E. A., Chiojdeanu, C., Constantinescu, B., Dimitriu, B., Perlea, P., Iliescu, A. A., Bodnar, D.: Standardless X-ray fluorescence analysis of endodontic sealers using a portable spectrometer. Rom. Journ. Phys. 60, 528 (2015).Search in Google Scholar

10. Kushelevsky, A. P.: Photon activation analysis. In: Z. B. Alfassi (Ed.). Activation Analysis (1990). CRC Press, Boca Raton, p. 219.Search in Google Scholar

11. Segebade, C., Weise, H.-P., Lutz, G. J.: Photon activation analysis (1988), W. De Gruyter & Co, Berlin, New York.10.1515/9783110864144Search in Google Scholar

12. Segebade, C., Berger, A.: Photon activation analysis. In: R. A. Meyers, (Ed.). Encyclopedia of Analytical Science (2008). John Wiley & Sons Ltd., New York.10.1002/9780470027318.a6211.pub2Search in Google Scholar

13. Randa, Z., Kucera, J., Mizera, J., Frana, J.: Comparison of the role of photon and neutron activation analyses for elemental characterization of geological, biological and environmental materials. J. Radioanal. Nucl. Chem. 271(3), 589 (2007).10.1007/s10967-007-0311-1Search in Google Scholar

14. Starovoitova, V., Segebade, C.: High intensity photon sources for activation analysis. J. Radioanal. Nucl. Chem. 310, 13 (2016).10.1007/s10967-016-4899-xSearch in Google Scholar

15. Eke, C., Boztosun, I., Dapo, H., Segebade, C., Bayram, E.: Determination of gamma-ray energies and half lives of platinum radio-isotopes by photon activation using a medical electron linear accelerator: a feasibility study, J. Radioanal. Nucl. Chem. 309(1), 79 (2016).10.1007/s10967-016-4804-7Search in Google Scholar

16. Maestro-32.: http://www.ortec-online.com/download/MAESTRO.pdf. Retrieved 08 November 2016Search in Google Scholar

17. Segebade, C., Mamtimin, M., Zaijing, S.: The relevance of particle flux monitors in accelerator-based activation analysis, AIP Conf. Proc. 1525, (2013), 667–671.10.1063/1.4802411Search in Google Scholar

18. ISO/GUM.: http://www.bipm.org/en/publications/guides/gum.html. Retrieved 07 March 2017.Search in Google Scholar

19. FEI.: https://www.fei.com/products/sem/quanta-sem/. Retrieved 08 March 2017.Search in Google Scholar

20. Gamma-W.: http://www.westmeier.com/3gammawfeatures.htm. Retrieved 09 November 2016.Search in Google Scholar

21. Nudat.: National Nuclear Data Center (NNDC) in Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/. 10 November 2016.Search in Google Scholar

22. Gatin, E., Matei, E., Pirvu, D., Galbinasu, B., Iordache, S.: Comparative survey of the most used self adhesive dental cements based on resin composites. Dig. J. Nanomater. Bios. 7(1), 207 (2012).Search in Google Scholar

23. Al-Ameedee, A. H.: Physico-chemical analysis of effect of in-office tooth bleaching agent on three esthetic composite resin restorations (in vitro study). Asian J. Chem. 29(4), 763 (2017).10.14233/ajchem.2017.20239Search in Google Scholar

24. Vilchis, R. J. S., Hotta, Y., Yamamoto, K.: Examination of six orthodontic adhesives with electron microscopy, hardness tester and energy dispersive X-ray microanalyzer. Angle Orthod. 78(4), 655 (2008).10.2319/0003-3219(2008)078[0655:EOSOAW]2.0.CO;2Search in Google Scholar

25. Cavalu, S., Pirte, A.: Microscopic and spectroscopic analysis of interface formation in dental restoration using Zr/Si composite. J. Optoelectron Biomed Mater. 1(1), 5 (2010).Search in Google Scholar

26. Asgary, S., Parirokh, M., Eghba, M.J., Brink, F.: Chemical differences between white and gray mineral trioxide aggregate. J. Endod. 31(2), 101 (2005).10.1097/01.DON.0000133156.85164.B2Search in Google Scholar

27. Sienko, M. J., Plane, R.: Chemistry (1961), McGraw-Hill, New York.Search in Google Scholar

28. Dorileo, M. C. G. O., Bandeca, M. C., Pedro, F. L. M., Volpato, L. E. R., Guedes, O. A., Villa, R. D., Tonetto, M. R., Borges, A. H.: Analysis of metal contents in Portland type V and MTA-based cements. Scientific World J. 2014, 983728 (2014).10.1155/2014/983728Search in Google Scholar

29. Leitune, V. C. B., Collares, F. M., Takimi, A., de Lima, G. B., Petzhold, C. L., Bergmann, C. P., Samuel, S. M. W.: Niobium pentoxide as a novel filler for dental adhesive resin. J. Dent. 41, 106 (2013).10.1016/j.jdent.2012.04.022Search in Google Scholar

30. Molokhia, A., Combe, E. C., Lilley, J. D.: The presence of antimony in various dental filling materials. J. Radioanal. Nucl. Chem. 93(3), 179 (1985).10.1007/BF02164365Search in Google Scholar

31. Tauscher, S., Catel, Y., Liska, R., Moszner, N.: New radiopaque bromine-containing monomers for dental restorative materials. Macromol. Mater. Eng. 301, 733 (2016).10.1002/mame.201600012Search in Google Scholar

32. O’Brien, W. J., Boenke, K. M., Linger, J. B., Groh, C. L.: Cerium oxide as a silver decolorizer in dental porcelains. Dent. Mater. 14, 365 (1998).10.1016/S0109-5641(99)00007-XSearch in Google Scholar

33. Duarte, M. A., De Oliveira Demarchi, A. C., Yamashita, J. C., Kuga, M. C., De Campos Fraga, S.: Arsenic release provided by MTA and Portland cement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 99(5), 648 (2005).10.1016/j.tripleo.2004.09.015Search in Google Scholar

34. Mandal, B. K., Suzuki, K. T.: Arsenic round the world: a review. Talanta 58, 201 (2002).10.1016/S0039-9140(02)00268-0Search in Google Scholar

Received: 2017-1-23
Accepted: 2017-5-24
Published Online: 2017-6-29
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2766/html
Scroll to top button