Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network
Abstract
Strontium (Sr) and Cesium (Cs) are two important nuclear fission products which are present in the radioactive wastewater resulting from nuclear power plants. They should be treated by considering environmental and economic aspects. In this study, artificial neural network (ANN) was implemented to evaluate the optimal experimental conditions in continuous electrodeionization method in order to achieve the highest removal percentage of Sr and Ce from aqueous solutions. Three control factors at three levels were tested in experiments for Sr and Cs: Feed concentration (10, 50 and 100 mg/L), flow rate (2.5, 3.75 and 5 mL/min) and voltage (5, 7.5 and 10 V). The obtained data from the experiments were used to train two ANNs. The three control factors were utilized as the inputs of ANNs and two quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different control factor levels with various quality responses were predicted and finally the optimum control factor levels were obtained. Results demonstrated that the optimum levels of the control factors for maximum removing of Sr (97.6%) had an applied voltage of 10 V, a flow rate of 2.5 mL/min and a feed concentration of 10 mg/L. As for Cs (67.8%) they were 10 V, 2.55 mL/min and 50 mg/L, respectively.
References
1. Inan, S., Tel, H., Altas, Y.: Adsorption studies of strontium on hydrous zirconium dioxide, J. Radioanal. Nucl. Chem. 267, 615 (2006).10.1007/s10967-006-0094-9Suche in Google Scholar
2. Zakrzewska-Trznadel, G., Harasimowicz, M., Chmielewski, A. G.: Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. J. Membrane Sci. 163, 257 (1999).10.1016/S0376-7388(99)00171-4Suche in Google Scholar
3. Cristina Negri, M., Hinchman, R. R. In: B. D. Ensley (Ed.), The Use of Plants for the Treatment of Radionuclides (2000), Ilya Raskin, Wiley, New York, USA, p. 107–150.Suche in Google Scholar
4. M. Ugajin, S. Ajuria (Eds.), Inorganic Ion Exchangers and Adsorbents for Chemical Processing in the Nuclear Fuel Cycle, IAEA-TEC DOC-337 (1985), IAEA, Vienna.Suche in Google Scholar
5. Balarama, M. V., Krishna, Raoa, S. V., Arunachalam, J., Murali, M. S., Surendra Kumarc, B., Manchandab, V. K.: Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent. J. Separation and Purification Technol. 38, 149 (2004).10.1016/j.seppur.2003.11.002Suche in Google Scholar
6. Saleh, H. M.: Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl. Eng. Design 242, 425 (2012).10.1016/j.nucengdes.2011.10.023Suche in Google Scholar
7. Kang, D. W., Sung, K. B., Lee, S. H., Kim, H. Y.: Wet oxidation of ion exchange resins in Fenton’s reaction system by using the electrode. J. Korea Solid Wastes Eng. Soc. 15, 24 (1998).Suche in Google Scholar
8. Liu, F., Zhang, G., Zhang, H., Mo, J.: Performance evaluation of electrodeionization process based on ionic equilibrium with plate and frame modules. Desalination 221, 425 (2008).10.1016/j.desal.2007.01.102Suche in Google Scholar
9. Lee, J. H., Choi, J. H.: The production of ultrapure water by membrane capacitive deionization (MCDI) technology. J. Membrane Sci. 409, 251 (2012).10.1016/j.memsci.2012.03.064Suche in Google Scholar
10. Lu, J., Wang, Y. X., Lu, Y. Y., Wang, G. L., Kong, L., Zhu, J.: Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water. Electrochim. Acta 55, 7188 (2010).10.1016/j.electacta.2010.07.054Suche in Google Scholar
11. Dey, A., Thomas, G.: Electronics Grade Water Preparation (2003), Tall Oaks, Littleton.Suche in Google Scholar
12. Arar, Ö., Yüksel, Ü., Kabay, N., Yüksel, M.: Application of electrodeionization (EDI) for removal of boron and silica from reverse osmosis (RO) permeate of geothermal water. Desalination 310, 25 (2013).10.1016/j.desal.2012.10.001Suche in Google Scholar
13. Wood, J., Gifford, J., Arba, J., Shaw, M.: Production of ultrapure water by continuous electrodeionization. Desalination 250, 973 (2010).10.1016/j.desal.2009.09.084Suche in Google Scholar
14. Boontawana, P., Kanchanathaweeb, S., Boontawanb, A.: Extractive fermentation of l-(+)-lactic acid by Pediococcus pentosaceus using electrodeionization (EDI) technique. Biochem. Eng. J. 54, 192 (2011).10.1016/j.bej.2011.02.021Suche in Google Scholar
15. Feng, X., Wu, Z., Chen, X.: Removal of metal ions from electroplating effluent by EDI process and recycle of purified water. Separation Purif Technol. 57, 257 (2007).10.1016/j.seppur.2007.04.014Suche in Google Scholar
16. Wen, R., Deng, S., Zhang, Y.: The removal of silicon and boron from ultra-pure water by electrodeionization. Desalination 181, 153 (2005).10.1016/j.desal.2005.02.018Suche in Google Scholar
17. Taylor, J. G. Neural Networks and Their Applications (1996), John Wiley & Sons, West Sussex, England.Suche in Google Scholar
18. Gallant, A. R., White, H.: On learning the derivatives of an unknown mapping with multilayer feed forward networks. Neural Networks 5, 129 (1992).10.1016/S0893-6080(05)80011-5Suche in Google Scholar
19. Nazemi, E., Roshani, G. H., Feghhi, S. A. H., Gholipour Peyvandi, R., Setayeshi, S.: Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation. Nucl. Eng. Technol. 48, 64 (2016).10.1016/j.net.2015.09.005Suche in Google Scholar
20. Roshani, G. H., Feghhi, S. A. H., Mahmoudi-Aznaveh, A., Nazemi, E., Adineh-Vand, A.: Precise volume fraction prediction in oil–water–gas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector. Measurement 51, 34 (2014).10.1016/j.measurement.2014.01.030Suche in Google Scholar
21. Nazemi, E., Feghhi, S. A. H., Roshani, G. H.: Void fraction prediction in two-phase flows independent of the liquid phase density changes. Rad. Measurements 68, 49 (2014).10.1016/j.radmeas.2014.07.005Suche in Google Scholar
22. Nazemi, E., Roshani, G. H., Feghhi, S. A. H, Setayeshi, S., Gholipour Peyvandi, R.: A radiation-based hydrocarbon two-phase flow meter for estimating of phase fraction independent of liquid phase density in stratified regime. Flow Measurement and Instrumentations 46, 25 (2015).10.1016/j.flowmeasinst.2015.09.002Suche in Google Scholar
23. Nazemi, E., Roshani, G. H., Feghhi, S. A. H., Setayeshi, S., Eftekhari Zadeh, E., Fatehi, A.: Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrogen Energy 41, 7438 (2016).10.1016/j.ijhydene.2015.12.098Suche in Google Scholar
24. Yadollahi, A., Nazemi, E., Zolfaghari, A., Ajorloo, A. M.: Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete. Prog. Nucl. Energy 89, 69 (2016).10.1016/j.pnucene.2016.02.010Suche in Google Scholar
25. Yadollahi, A., Nazemi, E., Zolfaghari, A., Ajorloo, A. M.: Optimization of thermal neutron shield concrete mixture using artificial neural network. Nucl. Eng. Design. 305, 146 (2016).10.1016/j.nucengdes.2016.05.012Suche in Google Scholar
26. Roshani, G. H., Nazemi, E., Feghhi, S. A. H., Setayeshi, S.: Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurement 62, 25 (2015).10.1016/j.measurement.2014.11.006Suche in Google Scholar
27. Roshani, G. H., Nazemi, E., Roshani, M. M.: Intelligent recognition of gas-oil water three-phase flow regime and determination of volume fraction using radial basis function. Flow Measurement and Instrumentation 54, 39 (2017).10.1016/j.flowmeasinst.2016.10.001Suche in Google Scholar
28. Eftekharizadeh, E., Feghhi, S. A. H., Roshani, G. H., Rezaei, A.: Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis. European Phys. J. Plus 131, 1 (2016).10.1140/epjp/i2016-16167-6Suche in Google Scholar
29. Eftekharizadeh, E., Sadighzadeh, A., Salehizadeh, A., Nazemi, E., Roshani, G. H.: Neutron activation analysis for cement elements using an IECF device as a high energy neutron source. Analyt. Methods 8, 2510 (2016).10.1039/C5AY03280FSuche in Google Scholar
30. Roshani, G. H., Nazemi, E., Feghhi, S. A. H.: Investigation of using 60Co source and one detector for determining the flow regime and void fraction in gas-liquid two-phase flows. Flow Measurement and Instrumentation 50, 73 (2016).10.1016/j.flowmeasinst.2016.06.013Suche in Google Scholar
31. Hagan, M. T., Menhaj, M.: Training feed forward networks with themarquardt algorithm. IEEE Trans. Neural Networks 5, 989 (1994).10.1109/72.329697Suche in Google Scholar PubMed
32. Keramati, N., Moheb, A., Ehsani, M. R.: Effect of operating parameters on NaOH recovery from waste stream of Merox tower using membrane systems: electrodialysis and electrodeionization processes. Desalination 259, 97 (2010).10.1016/j.desal.2010.04.027Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Electrochemical behavior of uranyl in anhydrous polar organic media
- Electrochemical mechanism of uranium mononitride dissolution in aqueous solutions of nitric acid
- Two novel thorium organic frameworks constructed by bi- and tritopic ligands
- Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater
- Impact of Cesium decontamination on performances of high activity sample analysis
- Studies on 99Mo–99mTc adsorption and elution behaviors using the inorganic sorbent ceric tungstate and conventional organic resins
- Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis
- Evaluation of gamma radiation response of electrolyte, MKP and MKT capacitors in various frequencies
- Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network
Artikel in diesem Heft
- Frontmatter
- Electrochemical behavior of uranyl in anhydrous polar organic media
- Electrochemical mechanism of uranium mononitride dissolution in aqueous solutions of nitric acid
- Two novel thorium organic frameworks constructed by bi- and tritopic ligands
- Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater
- Impact of Cesium decontamination on performances of high activity sample analysis
- Studies on 99Mo–99mTc adsorption and elution behaviors using the inorganic sorbent ceric tungstate and conventional organic resins
- Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis
- Evaluation of gamma radiation response of electrolyte, MKP and MKT capacitors in various frequencies
- Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network