Abstract
Weak complexes between pentavalent and hexavalent actinyl cations have been reported to exist in acidic, non-complexing high ionic strength aqueous media. Such “cation-cation complexes” were first identified in the context of actinide-actinide redox reactions in acidic aqueous media relevant to solvent extraction-based separation systems, hence their characterization is of potential interest for advanced nuclear fuel reprocessing. This chemistry could be relevant to efforts to develop advanced actinide separations based on the upper oxidation states of americium, which are of current interest. In the present study, the chemical behavior of pentavalent uranyl was examined in non-aqueous, aprotic polar organic solvents (propylene carbonate and acetonitrile) to determine whether UO2+ cations generated at the reducing working electrode surface would interact with the UO22+ cations in the bulk phase to form cation-cation complexes in such media. In magnesium perchlorate media, the electrolyte adsorbed onto the working electrode surface and interfered with the uranyl reduction/diffusion process through an ECE (electron transfer/chemical reaction/electron transfer) mechanism. In parallel studies of uranyl redox behavior in tetrabutylammonium hexafluorophosphate solutions, an EC (electron transfer/chemical reaction) mechanism was observed in the cyclic voltammograms. Ultimately, no conclusive electrochemical evidence demonstrated uranyl cation-cation interactions in the non-aqueous, aprotic polar organic solvent solutions, though the results reported do not completely rule out the presence of UO2+·UO22+ complexes.
References
1. Cotton, S.: Lanthanide and Actinide Chemistry; John Wiley & Sons Ltd: West Sussex, England, 2006.10.1002/0470010088Search in Google Scholar
2. Bratsch, S. G.: Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18(1), 1 (1989).10.1063/1.555839Search in Google Scholar
3. Newton, T. W., Baker, F. B.: A uranium(V)-uranium(VI) complex and its effect on the uranium(V) disproportionation rate. Inorg. Chem. 4(8), 1166 (1965).10.1021/ic50030a017Search in Google Scholar
4. Ekstrom, A.: Kinetics and mechanism of the disproportionation of uranium(V). Inorg. Chem. 13(9), 2237 (1974).10.1021/ic50139a035Search in Google Scholar
5. Imai, H.: Reaction rate and electron-transfer mechanism in disproportionation reaction of uranium (V). Bull. Chem. Soc. Jpn. 30, 873 (1957).10.1246/bcsj.30.873Search in Google Scholar
6. Vukovic, M., Cukman, D., Pradic, V.: Investigation of the dismutation of uranium(V) in sodium bicarbonate-carbonate solutions with cyclic chronopotentiometry. J. Electroanal. Chem. Interfacial Electrochem. 54(1), 209 (1974).10.1016/S0022-0728(74)80392-XSearch in Google Scholar
7. Freiderich, J. W., Wanigasekara, E., Sun, X.-G., Meisner, R. A., Meyer III, H. M., Luo, H., Delmau, L. H., Dai, S., Moyer, B. A.: Direct electrodeposition of UO2 from uranyl bis(trifluoromethanesulfonyl)imide dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide room temperature ionic liquid system. Electrochim. Acta 115, 630 (2014).10.1016/j.electacta.2013.10.187Search in Google Scholar
8. Couffin, F.: Redox potentials of the 4f and 5f series elements in acetonitrile; RPRT; Univ. Paris, 1980.Search in Google Scholar
9. Couffin, F.: Redox potential of lanthanides and actinides elements in organic solvents; RPRT; CEA (France), 1980.Search in Google Scholar
10. Martinot, L., Gubbels, F., Michaux, C., Nemeeger, C.: Electrochemical properties of uranium in acetonitrile and ββ′ oxydipropionitrile: kinetics and electrodeposition. Radiochim. Acta 57(2–3), 119 (1992).10.1524/ract.1992.57.23.119Search in Google Scholar
11. Zanello, P., Cinquantini, A., Mazzocchin, G. A.: Electrochemical behavior of uranyl(VI) ion in different nonaqueous solvents. J. Electroanal. Chem. Interfacial Electrochem. 131, 215 (1982).10.1016/0022-0728(82)87072-1Search in Google Scholar
12. Zanello, P., Cinquantini, A., De Bernardo, P., Magon, L.: Polarographic investigations on uranyl(VI) complexes in dimethyl sulfoxide. 1. Monocarboxylic ligands. Inorg. Chim. Acta 24(2), 131 (1977).10.1016/S0020-1693(00)93862-3Search in Google Scholar
13. Kim, S.-Y., Tomiyasu, H., Ikeda, Y.: Electrochemical studies on [UO2(DMF)5](ClO4)2, UO2(acac)2DMF, and UO2(salen)DMF (DMF=N,N-dimethylformamide, acac=acetylacetonate, salen=N,N’-disalicylideneethylenediaminate) complexes in DMF. J. Nucl. Sci. Technol. 39(2), 160 (2002).10.1080/18811248.2002.9715170Search in Google Scholar
14. Kim, S.-Y., Asakura, T., Morita, Y., Uchiyama, G., Ikeda, Y.: Electrochemical redox reactions of uranium(VI) complexes with multidentate ligands in dimethyl sulfoxide. Radiochim. Acta 93(2), 75 (2005).10.1524/ract.93.2.75.59417Search in Google Scholar
15. Kim, S.-Y., Asakura, T., Morita, Y., Ikeda, Y.: Electrochemical properties of uranium(VI) complexes with multidentate ligands in N,N-dimethylformamide. J. Alloy. Compd. 408–412, 1291 (2006).10.1016/j.jallcom.2005.04.123Search in Google Scholar
16. Mizuoka, K., Kim, S.-Y., Hasegawa, M., Hoshi, T., Uchiyama, G., Ikeda, Y.: Electrochemical and Spectroelectrochemical Studies on UO2(saloph)L (saloph=N,N’-Disalicylidene-o-phenylenediaminate, L=Dimethyl Sulfoxide or N,N-Dimethylformamide). Inorg. Chem. 42(4), 1031 (2003).10.1021/ic0260926Search in Google Scholar
17. Mizuoka, K., Tsushima, S., Hasegawa, M., Hoshi, T., Ikeda, Y.: Electronic spectra of pure uranyl(V) complexes: characteristic absorption bands due to a UVO2+ core in visible and near-infrared regions. Inorg. Chem. 44(18), 6211 (2005).10.1021/ic0503838Search in Google Scholar
18. Sylva, R. N., Davidson, M. R.: The hydrolysis of metal ions. Part 2. Dioxouranium(VI). J. Chem. Soc., Dalt. Trans. (3), 465 (1979).10.1039/dt9790000465Search in Google Scholar
19. Wilkerson, M. P., Burns, C. J., Paine, R. T., Scott, B. L.: Synthesis and crystal structure of UO2Cl2(THF)3: a simple preparation of an anhydrous uranyl reagent. Inorg. Chem. 38(18), 4156 (1999).10.1021/ic990159gSearch in Google Scholar
20. Adams, R. N.: Electrochemistry at Solid Electrodes; Marcel Dekker, Inc.: New York.Search in Google Scholar
21. Bard, A. J., Faulkner, L. R.: Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, Inc.: New York, USA, 1980.Search in Google Scholar
22. Kissinger, P. T., Heineman, W. R.: Laboratory Techniques in Electroanalytical Chemistry, 2nd ed.; Marcel Dekker, Inc.: New York, NY.Search in Google Scholar
23. Sharp, M., Petersson, M., Edström, K.: Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J. Electroanal. Chem. Interfacial Electrochem. 95(1), 123 (1979).10.1016/S0022-0728(79)80227-2Search in Google Scholar
24. Kim, S.-Y., Mizuoka, K., Mizuguchi, K., Yamamura, T., Shiokawa, Y., Tomiyasu, H., Ikeda, Y.: Electrochemical Studies on [U(dmso)9]4+ and [UO2(dmso)5]2+ (dmso=dimethyl sulfoxide) Complexes in DMSO. J. Nucl. Sci. Technol. Suppl. 3, 441 (2002).10.1080/00223131.2002.10875502Search in Google Scholar
25. Khan, A. S. A., Ahmed, R., Mirza, M. L.: Kinetics and electrochemical studies of uranium in acetate and formate media by cyclic voltammetry. Radiochim. Acta 95(12), 693 (2007).10.1524/ract.2007.95.12.693Search in Google Scholar
26. Tsierkezos, N. G.: Cyclic Voltammetric Studies of Ferrocene in Nonaqueous Solvents in the Temperature Range from 248.15 to 298.15 K. J. Solut. Chem. 36(3), 289 (2007).10.1007/s10953-006-9119-9Search in Google Scholar
27. Marcus, Y.: IonSolvation; John Wiley & Sons Limited: Chichester, England, 1985.Search in Google Scholar
28. Anson, F. C., Osteryoung, R. A.: Chronocoulometry: a convenient, rapid and reliable technique for detection and determination of adsorbed reactants. J. Chem. Educ. 60(4), 293 (1983).10.1021/ed060p293Search in Google Scholar
29. Olmstead, M. L., Hamilton, R. G., Nicholson, R. S.: Theory of cyclic voltammetry for a dimerization reactions initiated electrochemically. Anal. Chem. 41(2), 260 (1969).10.1021/ac60271a032Search in Google Scholar
30. Wopschall, R. H., Shain, I.: Effects of adsorption of electroactive species in stationary electrode polarography. Anal. Chem. 39(13), 1514 (1967).10.1021/ac50156a018Search in Google Scholar
31. Asanuma, N., Harada, M., Yasuike, Y., Nogami, M., Suzuki, K., Ikeda, Y.: Electrochemical properties of uranyl ion in ionic liquids as media for pyrochemical reprocessing. J. Nucl. Sci. Technol. (Tokyo, Jpn.) 44(3), 368 (2007).10.1080/18811248.2007.9711296Search in Google Scholar
32. Tan, X.-F., Yuan, L.-Y., Nie, C.-M., Lui, K., Chai, Z.-F., Shi, W.-Q.: Electrochemical behavior of uranyl in ionic liquid 1-butyl-3-methylimidazolium chloride mixture with water. J. Radioanal. Nucl. Chem. 302(1), 281 (2014).10.1007/s10967-014-3195-xSearch in Google Scholar
33. Horanyi, G., Bakos, I.: Experimental evidence demonstrating the occurrence of reduction processes of perchlorate ions in an acid medium at platinized platinum electrodes. J. Electroanal. Chem. 331(1–2), 727 (1992).10.1016/0022-0728(92)85002-KSearch in Google Scholar
34. Omura, J., Yano, H., Watanabe, M., Uchida, H.: Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on pt-based electrodes. Part 1: effect of adsorbed anions on the oxygen reduction activities of pt in HF, HClO4, and H2SO4 solutions. Langmuir 27(10), 6464 (2011).10.1021/la200694aSearch in Google Scholar PubMed
35. Garrigosa, A. M., Diaz-Cruz, J. M., Arino, C., Esteban, M.: Multivariate curve resolution as a tool to minimize the effects of electrodic adsorption in normal pulse voltammetry. Electrochim. Acta 53(17), 5579 (2008).10.1016/j.electacta.2008.02.067Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Electrochemical behavior of uranyl in anhydrous polar organic media
- Electrochemical mechanism of uranium mononitride dissolution in aqueous solutions of nitric acid
- Two novel thorium organic frameworks constructed by bi- and tritopic ligands
- Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater
- Impact of Cesium decontamination on performances of high activity sample analysis
- Studies on 99Mo–99mTc adsorption and elution behaviors using the inorganic sorbent ceric tungstate and conventional organic resins
- Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis
- Evaluation of gamma radiation response of electrolyte, MKP and MKT capacitors in various frequencies
- Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network
Articles in the same Issue
- Frontmatter
- Electrochemical behavior of uranyl in anhydrous polar organic media
- Electrochemical mechanism of uranium mononitride dissolution in aqueous solutions of nitric acid
- Two novel thorium organic frameworks constructed by bi- and tritopic ligands
- Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater
- Impact of Cesium decontamination on performances of high activity sample analysis
- Studies on 99Mo–99mTc adsorption and elution behaviors using the inorganic sorbent ceric tungstate and conventional organic resins
- Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis
- Evaluation of gamma radiation response of electrolyte, MKP and MKT capacitors in various frequencies
- Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network