Abstract
Antep pistachio (Pistacia vera L.) shells an abundant and low cost natural resource in Turkey was used to prepare activated carbon by physiochemical activation and carbon dioxide (CO2) atmosphere as the activating agents at 700°C for 2 h. The adsorption equilibrium of U(VI) from aqueous solutions on such carbon has been studied using a batch system. The parameters that affect the U(VI) adsorption, such as particle size of adsorbent, contact time, of pH of the solution, and temperature, have been investigated and conditions have also been optimized. The equilibrium data for U(VI) ions’ adsorption onto activated carbon well fitted to the Langmuir equation, with a maximum monolayer adsorption capacity of 8.68 mg/g, The Freundlich and Dubinin–Radushkevich (D–R) isotherms have been applied and the data correlated well with Freundlich model and that the adsorption is physical in nature (Ea=15.46 kJ/mol). Thermodynamic parameters [ΔHs=11.33 kJ/mol, ΔS=0.084 kJ/molK, ΔG (293.15 K)=−13.29 kJ/mol] showed the endothermic heat of adsorption and the feasibility of the process.
Acknowledgments
This work was supported by Scientific Research Project Foundation of Pamukkale University, Project No: 2006FEF021 to which the authors are grateful.
References
1. Foo, K. Y., Hameed, B. H.: A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects. J. Hazard. Mater 171, 54 (2009).10.1016/j.jhazmat.2009.05.057Suche in Google Scholar
2. Nouri, L., Ghodbane, I., Hamdaoui, O., Chiha, M.: Batch sorption dynamics and equilibrium for removal of cadmium ions from aqueous phase using wheat bran. J. Hazard. Mater 149, 115 (2007).10.1016/j.jhazmat.2007.03.055Suche in Google Scholar
3. Saka, C., Şahin, Ö., Küçük, M. M.: Applications on agricultural and forest waste adsorbents for the removal of lead(II) from contaminated waters. Int. J. Environ. Sci. Technol. 9, 379 (2012).10.1007/s13762-012-0041-ySuche in Google Scholar
4. Foo, K. Y., Hameed, B. H.: Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv. Colloid Interfac 149, 19 (2009).10.1016/j.cis.2008.12.005Suche in Google Scholar
5. Örnek, A., Özacar, M., Sengil, I. A.: Adsorption of lead onto formaldehyde or sulphuric acid treated acorn waste: equilibrium and kinetic studies. Biochem. Eng. J 37, 192 (2007).10.1016/j.bej.2007.04.011Suche in Google Scholar
6. Hameed, B. H., Din, A. T. M., Ahmad, A. L.: Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J. Hazard. Mater. 141, 819 (2007).10.1016/j.jhazmat.2006.07.049Suche in Google Scholar
7. Tsai, W. T., Chang, C. Y., Lin, M. C., Chien, S. F., Sun, H. F., Hsieh, M. F.: Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45, 51 (2001).10.1016/S0045-6535(01)00016-9Suche in Google Scholar
8. Aygün, A., Yenisoy-Karakaş, S., Duman, I.: Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Micropor. Mesopor. Mater 66, 189 (2003).10.1016/j.micromeso.2003.08.028Suche in Google Scholar
9. El-Sheikh, A. H., Newman, A. P., Al-Daffaee, H. K., Phull, S., Cresswell, N.: Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques. J. Anal. Appl. Pyrol. 71, 151 (2004).10.1016/S0165-2370(03)00061-5Suche in Google Scholar
10. Kütahyali, C., Eral, M.: Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J. Nucl. Mater 396, 251 (2010).10.1016/j.jnucmat.2009.11.018Suche in Google Scholar
11. Wu, F. C., Tseng, R. L., Juang, R. S.: Pore structure and adsorption performance of the activated carbons prepared from plum kernels. J. Hazard. Mater 69, 287 (1999).10.1016/S0304-3894(99)00116-8Suche in Google Scholar
12. Avom, J., Mbadcam, J. K., Noubactep, C., Germain, P.: Adsorption of methylene blue from an aqueous solution on to activated carbons from palm-tree cobs. Carbon 35, 365 (1997).10.1016/S0008-6223(96)00158-3Suche in Google Scholar
13. Yi, Z., Yao, J., Kuang, Y., Chen, H., Wang, F., Xu, J.: Uptake of hexavalent uranium from aqueous solutions using coconut husk activated carbon. Desalin. Water Treat 57, 1749 (2016).10.1080/19443994.2014.977956Suche in Google Scholar
14. Yi, Z., Yao, J., Xu, J., Chen, M., Li, W., Chen, H., Wang, F.: Removal of uranium from aqueous solution by using activated palm kernel shell carbon: adsorption equilibrium and kinetics. J. Radioanal. Nucl. Chem. 301, 695 (2014).10.1007/s10967-014-3242-7Suche in Google Scholar
15. Qadeer, R., Hanif, J., Saleem, M., Afzal, M.: Effect of alkali metals, alkaline earth metals and lanthanides on the adsorption of uranium on activated charcoal from aqueous solutions. J. Radioanal. Nucl. Chem 165, 243 (1992).10.1007/BF02164763Suche in Google Scholar
16. Kabay, N., Egawa, H.: Recent advances in the development of chelating polymers for recovery of uranium from seawater. J. Chem 17, 62 (1993).Suche in Google Scholar
17. Maciá-Agulló, J. A., Moore, B. C., Cazorla-Amorós, D., Linares-Solano, A.: Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation, Carbon 42, 1367 (2004).10.1016/j.carbon.2004.01.013Suche in Google Scholar
18. Francois, C. A.: Rapid spectrophotometric determination of submilligram quantites of uranium. Anal. Chem. 30, 50 (1958).10.1021/ac60133a012Suche in Google Scholar
19. Florence, T. M.: Proceedings of a symposium on the analytical chemistry of uranium and thorium. AAEC/TM552 (1970), p. 5.Suche in Google Scholar
20. Chieh-Chien, L.: Kinetics and mechanism of adsorption of heavy metal ionz on activated carbon, Texas Tech. Uni. master thesis (1979), p. 80.Suche in Google Scholar
21. Mellah, A., Chegrouche, S., Barkat, M.: The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J. Colloid Interf. Sci. 296, 434 (2006).10.1016/j.jcis.2005.09.045Suche in Google Scholar PubMed
22. Kadous, A., Didi, M. A., Villemin, D.: Extraction of uranium(VI) using DE2EHPA/TOPO based supported liquid membrane. J. Radioanal. Nucl. Chem. 280, 157 (2009).10.1007/s10967-008-7435-9Suche in Google Scholar
23. Caccin, M., Giacobbo, F., Da Ros M., Besozzi, L., Mariani M: Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radioanal. Nucl. Chem. 297, 9 (2013).10.1007/s10967-012-2305-xSuche in Google Scholar
24. Sorg, T. J.: Removal of uranium from drinking water by conventional treatment methods, In: Cothern, Rebers (Eds.), Radon, Radium and Uranium in Drinking Water, Vol. 2, Lewis Publishers, Michigan (1991), ISBN 0 87371, p.173.Suche in Google Scholar
25. Hennig, C., Reich, T., Dahn, R., Scheidegger, A. M.: Structure of uranium sorption complexes at montmorillonite edge sites. Radiochim. Acta 90, 653 (2002).10.1524/ract.2002.90.9-11_2002.653Suche in Google Scholar
26. Belgacem, A., Rebiai, R., Hadoun, H., Khemaissia, S., Belmedani, M.: The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ. Sci. Pollut. Res. 21, 684 (2014).10.1007/s11356-013-1940-2Suche in Google Scholar
27. Metcalf, E.: Inc., wastewater engineering: treatment, disposal and reuse. 3rd ed., Irwin/McGraw–Hill, Boston, MA (1991).Suche in Google Scholar
28. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc 38, 2221 (1916).10.1016/S0016-0032(17)90938-XSuche in Google Scholar
29. Freundlich, H. M. F.: Over the adsorption in solution. J. Phys. Chem. 57, 385 (1906).Suche in Google Scholar
30. Donat, R., Guy, N., Cetişli, H.: Sorption isotherms and characteristics of U (VI) ion onto composite adsorbent. Desalin. Water Treat. 30, 186 (2011).10.5004/dwt.2011.1979Suche in Google Scholar
31. Goldberg, S.: Equations and models describing adsorption processes in solid. Soil Science Society of America, 677 S. Segoe Road, Madison, WI, USA (2005). Chemical Processes in Soils. SSSA Book Series, no. 8.Suche in Google Scholar
32. Dubinin, M. M., Radushkevich, L. V.: The equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 55, 331 (1947).Suche in Google Scholar
33. Dubinin, M. M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem. Rev. 60, 235 (1960).10.1021/cr60204a006Suche in Google Scholar
34. Hobson, J. P.: Physical adsorption isotherms extending from ultra-high vacuum to vapor pressure. J. Phys. Chem. 73, 2720 (1969).10.1021/j100842a045Suche in Google Scholar
35. Foo, K. Y., Hameed, B. H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2 (2010).10.1016/j.cej.2009.09.013Suche in Google Scholar
36. Yi, Z., Yao, J., Wang, F., Chen, H., Liu, H., Chen, Y.: Removal of uranium(VI) from aqueous solution by apricot shell activated carbon. J. Radioanal. Nucl. Chem. 295, 2029 (2013).10.1007/s10967-012-2277-xSuche in Google Scholar
37. Kütahyalı, C., Eral, M.: Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation, Sep. Purif. Technol. 40, 109 (2004).10.1016/j.seppur.2004.01.011Suche in Google Scholar
38. Ngah, W. S. W., Hanafiah, M. A. K. M.: Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochem. Eng. J. 39, 521 (2008).10.1016/j.bej.2007.11.006Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Neutron capture cross section measurements and theoretical calculation for the 186W(n,γ)187W reaction
- Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells
- Radiolytic syntheses of hollow UO2 nanospheres in Triton X-100-based lyotropic liquid crystals
- Hafnium(IV) complexation with oxalate at variable temperatures
- Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution
- Optimized production, quality control, biological evaluation and PET/CT imaging of 68Ga-PSMA-617 in breast adenocarcinoma model
- Pilot-scale study of the radiation-induced silica removal from underground brackish water in Saudi Arabia
- Developing methodologies for source attribution: glass phase separation in Trinitite using NF3
Artikel in diesem Heft
- Frontmatter
- Neutron capture cross section measurements and theoretical calculation for the 186W(n,γ)187W reaction
- Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells
- Radiolytic syntheses of hollow UO2 nanospheres in Triton X-100-based lyotropic liquid crystals
- Hafnium(IV) complexation with oxalate at variable temperatures
- Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution
- Optimized production, quality control, biological evaluation and PET/CT imaging of 68Ga-PSMA-617 in breast adenocarcinoma model
- Pilot-scale study of the radiation-induced silica removal from underground brackish water in Saudi Arabia
- Developing methodologies for source attribution: glass phase separation in Trinitite using NF3