Abstract
This study details thermal reactions between glasses, common minerals, and Trinitite post-detonation material with the fluorinating agent nitrogen trifluoride (NF3). The ultimate goal of our investigation is to develop a relatively rapid method for the effective separation of bomb components from complex matrices resulting from a nuclear explosion. Trinitite samples, silicate minerals (quartz; plagioclase and microcline), amorphous SiO2, calcite, a natural glass (obsidian), and two synthetic glasses were characterized extensively before and after the fluorination to fully understand the effects of the NF3 thermal treatment. Samples were reacted with NF3 using a combined thermogravimetric (TG) differential thermal analysis (DTA) unit, as well as in a stainless steel bomb reactor connected to a fluorination line. Subsequent to the NF3 treatment, samples were imaged by scanning electron microscopy in order to document changes in grain size and morphology. Energy dispersive spectroscopy was performed to determine changes in major element abundances. Results demonstrate that rates of reaction are dependent on grain size, temperature, pressure, and time of fluorination. All mineral samples experienced mass loss during fluorination. Specifically, amorphous SiO2 (~90% mass loss) experienced the most while calcite experienced the least (~18%). Major element analysis reveals that mass loss is attributable to the volatilization of silica (SiO2) in Si-bearing phases, or sample decomposition in calcite due to fluorination. Results for fluorinated samples of Trinitite demonstrate that mass loss occurs at different rates for each sample, but each sample experienced an expected large decrease in Si content (resulting from volatilization of SiF4). Hence, the concentration of metals in the residual material increased due to the volatilization of Si. These results validate that this thermal-fluorination technique allows the separation of silica from minerals (i.e. naturally occurring crystalline materials) and glasses (i.e. amorphous materials), leaving behind non-volatile fluorinated species and refractory phases. The results from our investigation clearly indicate that the NF3 treatment of nuclear materials is a technique that provides effective separation of bomb components from complex matrices (e.g. post-detonation samples), which will aid with rapid and accurate source attribution.
Acknowledgements
This work is funded by DOE/NNSA Grant PDP11-40/DE-NA0001112. We thank Dr. I. Steele and PNNL staff, S. M. Goodwin, B. J. Garcia, and A. D. Eckberg, for their guidance with electron microprobe analysis. We also thank J. Szymanowski for her guidance and training on PXRD analyses. Finally, we thank M. Schweiger and the staff at PNNL’s Advanced Process Engineering Laboratory (APEL) for providing glass samples and sample preparation support.
References
1. Belloni, F., Himbert, J., Marzocchi, O., Romanello, V.: Investigating incorporation and distribution of radionuclides in trinitite. J. Environ. Radioactiv. 102, 852 (2011).10.1016/j.jenvrad.2011.05.003Search in Google Scholar PubMed
2. Bellucci, J. J., Wallace, C., Koeman, E. C., Simonetti, A., Burns, P. C., Kieser, J., Port, E., Walczak, T.: Distribution and behavior of some radionuclides in the trinity nuclear Test. J. Radioanal. Nucl. Chem. 295, 2049 (2013).10.1007/s10967-012-2201-4Search in Google Scholar
3. Bellucci, J. J., Simonetti, A., Wallace, C., Koeman, E. C., Burns, P. C.: Isotopic Fingerprinting of the World’s First Nuclear Device Using Post-Detonation Materials. Anal. Chem. 85, 4195 (2013).10.1021/ac400577pSearch in Google Scholar PubMed
4. Fahey, A. J., Zeissler, C. J., Newbury, D. E., Davis, J., Lindstrom, R. M. Postdetonation nuclear debris for attribution. Proc. Natl. Acad. Sci. 107, 20207 (2010).10.1073/pnas.1010631107Search in Google Scholar PubMed PubMed Central
5. Parekh, P. P., Semkow, T. M., Torres, M. A., Haines, D. K., Cooper, J. M., Rosenberg, P. M., Kitto, M. E. (2006) Radioactivity in Trinitite six decades later. J. Environ. Radioactiv. 85, 103 (2010).10.1016/j.jenvrad.2005.01.017Search in Google Scholar PubMed
6. Semkow, T. M., Parekh, P. P, Douglas, K. H.: Modeling the effects of the trinity test. In: T. M. Semkow, S. Pommé, S. M. Jerome (Eds.), Applied Modeling and Computations in Nuclear Science (2006), American Chemical Society, Washington, DC, vol. 943, p. 142.10.1021/bk-2007-0945.ch011Search in Google Scholar
7. Eby, N., Hermes, R., Charnley, N., Smoliga, J. A.: Trinitite – the atomic rock. Geol. Today 26, 180 (2010).10.1111/j.1365-2451.2010.00767.xSearch in Google Scholar
8. Ross, C. S.: Optical properties of glass from Alamogordo, New Mexico. Am. Mineral. 33, 360 (1948).Search in Google Scholar
9. Wallace, C., Bellucci, J. J., Simonetti, A., Hainley, T., Koeman, E. C., Burns, P. C.: A multi-analytical approach for determination of radionuclide distribution in Trinitite. J. Radioanal. Nucl. Chem. 298, 993 (2013).10.1007/s10967-013-2497-8Search in Google Scholar
10. Bellucci, J. J., Simonetti, A., Wallace, C., Koeman, E. C., Burns, P. C.: The Pb isotopic composition of Trinitite melt glass: evidence for the presence of Canadian industrial Pb in the first atomic weapon test. Anal. Chem. 85, 7588 (2013).10.1021/ac4016648Search in Google Scholar PubMed
11. Bellucci J. J., Simonetti A., Koeman E. C., Wallace C., Burns P. C.: A detailed geochemical investigation of post nuclear detonation Trinitite glass at high spatial resolution: delineating anthropogenic vs. natural components. Chem. Geol. 365, 69 (2014).10.1016/j.chemgeo.2013.12.001Search in Google Scholar
12. Dustin, M. K., Koeman, E. C., Simonetti, A., Torrano, Z., Burns, P. C.: Comparative investigation between in-situ laser ablation- vs. bulk sample (Solution Mode)-ICP-MS Analysis of Trinitite post-detonation materials. Appl. Spectrosc. 70, 1446 (2016).10.1177/0003702816662597Search in Google Scholar PubMed
13. Schmets, J. J.: Reprocessing of spent nuclear fuels by fluoride volatility processes. At. Energy Rev. 8, 3 (1970).Search in Google Scholar
14. Galkin, N. P., Ponomarev, L. A., Shishkov, Yu. D.: Investigation of processes of separation of uranium and plutonium hexafluorides. Radiokhimiya, 22, 754 (1980).Search in Google Scholar
15. Scheele R., McNamara, B. K., Casela, A. M., Kozelisky, A.: On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels. J. Nucl. Mater. 424, 224 (2012).10.1016/j.jnucmat.2012.03.004Search in Google Scholar
16. McNamara, B., Scheele, R., Kozelisky, A., Edwards, M.: Thermal reactions of uranium metal, UO2, U3O8, UF4, and UO2F2 with NF3 to produce UF6. J. Nucl. Mater. 394, 166 (2009).10.1016/j.jnucmat.2009.09.004Search in Google Scholar
17. McNamara, B. K., Buck, E. C., Soderquist, C. Z., Smith, F. N., Mausolf, E. J., Scheele R. D.: Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride. J. Fluorine Chem. 162, 1 (2014).10.1016/j.jfluchem.2014.02.010Search in Google Scholar
18. Neuerburg, G. J.: A method of mineral separation using hydrofluoric acid. Am. Mineral. 46, 1498 (1961).Search in Google Scholar
19. Golja, B., Barkanic, J., Hoff, A., Stach, J.: Plasma etching characteristics of Si and SiO2 in NF3/Ar and NF3/He Plasmas. The Electrochem. Soc. Extended Abstracts (Washington, DC, October 9–14, 1983), pp. 207–208 (1983).Search in Google Scholar
20. Barkanic, J. A., Reynolds, D. M., Jaccodine, R. J., Stenger, H. G., Parks, J., Vedage, V.: Plasma etching using NF3: A review. J. Solid. State. Sci. Technol. 32, 109 (1989).Search in Google Scholar
21. Kastenmeier, B. E. E., Oehrlein, G. S., Langan, J. G., Entley, W. R.: Gas utilization in remote plasma cleaning and stripping applications. J. Vac. Sci. Technol. 18, 2102 (2000).10.1116/1.1287442Search in Google Scholar
22. Anderson, R. E., Vander Wall, E. M., Schaplowsky, R. K.: USAF propellant handbooks, vol. 3, Part A. Nitrogen Trifluoride, Systems Design Criteria, ADB028448, AeroJet Liquid Rocket Co, Sacramento, California (1978).Search in Google Scholar
23. Borthwick, J., Harmon, R. S.: A note regarding CIF3 as an alternative to BrF5 for oxygen isotope analysis. Geochim. Cosmochim. Acta. 46, 1665 (1982).10.1016/0016-7037(82)90321-0Search in Google Scholar
24. Jenner, G. A., Longerich, H. P., Jackson, S. E., Freyer, B. J.: ICP-MS – A powerful tool for high-precision trace-element analysis in Earth sciences: evidence from analysis of selected U.S.G.S reference samples. Chem. Geol. 83, 133 (1990).10.1016/0009-2541(90)90145-WSearch in Google Scholar
25. Chen, W., Simonetti, A.: In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: insights into a complex crystallization history. Chem. Geol. 353, 151 (2013).10.1016/j.chemgeo.2012.04.022Search in Google Scholar
26. Donohue, P. H., Simonetti, A., Koeman, E. C., Mana, S., Burns, P. C.: Nuclear forensic applications involving high spatial resolution analysis of Trinitite cross-sections. J. Radioanal. Nucl. Chem. 306, 457 (2015).10.1007/s10967-015-4097-2Search in Google Scholar
27. Bellucci, J. J., Simonetti, A.: Nuclear forensics: searching for nuclear device debris in trinitite-hosted inclusions. J. Radioanal. Nucl. Chem. 293, 313 (2012).10.1007/s10967-012-1654-9Search in Google Scholar
28. Koeman, E. C., Simonetti, A., Burns, P. C.: Sourcing of copper and lead within red inclusions from Trinitite post-detonation material. Anal. Chem. 87, 5380 (2015).10.1021/acs.analchem.5b00696Search in Google Scholar PubMed
29. Scheele R. D., McNamara, B. K., Casela, A. M., Kozelisky, A. E., Neiner, D.: Thermal NF3 fluorination/oxidation of colbalt, yttrium, zirconium, and selected lanthanide oxides. J. Fluorine Chem. 146, 86 (2013).10.1016/j.jfluchem.2012.12.013Search in Google Scholar
30. McDonough W. F., Sun S.-s.: The composition of the earth. Chem. Geol. 120, 223 (1995).10.1016/S0074-6142(01)80077-2Search in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/ract-2016-2641) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Neutron capture cross section measurements and theoretical calculation for the 186W(n,γ)187W reaction
- Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells
- Radiolytic syntheses of hollow UO2 nanospheres in Triton X-100-based lyotropic liquid crystals
- Hafnium(IV) complexation with oxalate at variable temperatures
- Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution
- Optimized production, quality control, biological evaluation and PET/CT imaging of 68Ga-PSMA-617 in breast adenocarcinoma model
- Pilot-scale study of the radiation-induced silica removal from underground brackish water in Saudi Arabia
- Developing methodologies for source attribution: glass phase separation in Trinitite using NF3
Articles in the same Issue
- Frontmatter
- Neutron capture cross section measurements and theoretical calculation for the 186W(n,γ)187W reaction
- Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells
- Radiolytic syntheses of hollow UO2 nanospheres in Triton X-100-based lyotropic liquid crystals
- Hafnium(IV) complexation with oxalate at variable temperatures
- Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution
- Optimized production, quality control, biological evaluation and PET/CT imaging of 68Ga-PSMA-617 in breast adenocarcinoma model
- Pilot-scale study of the radiation-induced silica removal from underground brackish water in Saudi Arabia
- Developing methodologies for source attribution: glass phase separation in Trinitite using NF3