Abstract
N,N-dihexyloctanamide (DHOA) is being considered as a promising extractant in the aqueous reprocessing of spent nuclear fuels. In view of rise in temperature of the solvent during reprocessing of fast reactor fuel, the present study aimed at evaluating the physical properties such as density, viscosity, and interfacial tension and Pu(IV) extraction behavior in 1.1 M DHOA/n-dodecane as a function of temperature and duration of heating. The influence of nitric acid in altering the physical properties with respect to temperature was evaluated. Physical properties and extraction behavior of the solvent changed to a remarkable extent with temperature. Quantitative amount of Pu(IV) could be back-extracted from loaded, solvent in three contacts at 313 K. FT-IR studies were carried out to evaluate the thermal stability of the solvent. Thus, the performance of the solvent, 1.1 M DHOA/n-dodecane is satisfactory at higher temperatures also.
Acknowledgment
Authors would like to thank Dr. K.A. Venkatesan of chemistry group, IGCAR for helping in carrying out Pu(IV) extraction studies and for having fruitful discussions.
References
1. Schulz, W. W., Burger, L. L., Navratil, J. D., Bender, K. P. (Ed.): PUREX process flow sheets. In: J. L. Swanson (Ed.), Science and Technology of Tributyl Phosphate, Volume III, CRC Press, Boca Raton, Florida (1984).Suche in Google Scholar
2. Gasparini, G. M., Grossi, G.: Application of N, N-dialkyl aliphatic amides in the separation of some actinides. Sep. Sci. Technol. 15, 825 (1980).10.1080/01496398008076273Suche in Google Scholar
3. Musikas, C.: Potentiality of nonorganophosphorus extractant in chemical separations of actinides. Sep. Sci. Technol. 23, 1211 (1988).10.1080/01496398808075626Suche in Google Scholar
4. Thiollet, G., Musikas, G.: Synthesis and uses of the amides extractants. Solvent Extr. Ion Exc. 7, 813 (1989).10.1080/07360298908962339Suche in Google Scholar
5. Gasparini, G. M., Grossi, G.: Review article long chain disubstituted aliphatic amides as extracting agents in industrial applications of solvent extraction. Solvent Extr. Ion Exc. 4, 1233 (1986).10.1080/07366298608917921Suche in Google Scholar
6. Manchanda, V. K., Pathak, P. N.: Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep. Purif. Technol 35, 85 (2004).10.1016/j.seppur.2003.09.005Suche in Google Scholar
7. Pathak, P. N.: N,N-dialkyl amides as extractants for spent fuel reprocessing: an overview. J. Radioanal. Nucl. Chem. 300, 7 (2014).10.1007/s10967-014-2961-0Suche in Google Scholar
8. Vidyalakshmi, V., Subramanian, M. S., Rajeswari, S., Srinivasan, T. G., Vasudeva Rao, P. R.: Interfacial tension studies of N,N-dialkyl amides. Solvent Extr. Ion Exc. 21, 399 (2003).10.1081/SEI-120020218Suche in Google Scholar
9. Pathak, P. N., Kumbhare, L. B., Manchanda, V. K.: Effect of structure of N,N dialkyl amides on the extraction of U(VI) and Th(IV): a thermodynamic study. Radiochim. Acta 89, 447 (2001).10.1524/ract.2001.89.7.447Suche in Google Scholar
10. Pathak, P. N., Prabhu, D. R., Rizvi, G. H., Ruikar, P. B., Kumbhare, L. B., Mohapatra, P. K., Manchanda, V. K.: Structural effects in N,N-dialkyl amides on their extraction behavior toward uranium and thorium. Radiochim. Acta 91, 379 (2003).10.1081/SEI-100001377Suche in Google Scholar
11. Pathak, P. N., Prabhu, D. R., Kanekar, A. S., Manchanda, V. K.: Distribution studies on Th(IV), U(VI) and Pu(IV) using tri-n-butylphosphate and N,N-dialkyl amides. Radiochim. Acta 94, 193 (2006).10.1524/ract.2006.94.4.193Suche in Google Scholar
12. Suresh, A., Sreenivasulu, B., Jayalakshmi, S., Subramaniam, S., Sabharwal, K. N., Sivaraman, N., Nagarajan, K., Srinivasan, T. G., Vasudeva Rao, P. R.: Mixer-settler runs for the evaluation of tri-iso-amyl phosphate (TiAP) as an alternate extractant to tri-n-butyl phosphate (TBP) for reprocessing applications. Radiochim. Acta 103, 101 (2015).10.1515/ract-2014-2278Suche in Google Scholar
13. Singh, M. L., Tripathi, S. C., Lokhande, M., Gandhi, P. M., Gaikar. V. G.: Density, viscosity, and interfacial tension of binary mixture of tri-iso-amyl phosphate (TiAP) and n-dodecane: effect of compositions and gamma absorbed doses. J. Chem. Eng. Data 59, 1130 (2014).10.1021/je400493xSuche in Google Scholar
14. Venkatesan, K. A., Robertselvan, B., Antony, M. P., Srinivasan, T. G., Vasudeva Rao, P. R.: Physiochemical and plutonium retention properties of hydrolytic and radiolytically degraded tri-n-amylphosphate. Solvent Extr. Ion Exc. 24, 747 (2006).10.1080/07366290600846083Suche in Google Scholar
15. Pathak, P. N., Kanekar, A. S., Prabhu, D. R., Manchanda, V. K.: Comparison of hydrometallurgical parameters of N,N-dialkylamides and of tri-n-butylphosphate. Solvent Extr. Ion Exc. 27, 683 (2009).10.1080/07366290903113934Suche in Google Scholar
16. Parikh, K. J., Pathak, P. N., Misra, S. K., Tripathi, S. C., Dakshinamoorthy, A., Manchanda, V. K.: Radiolytic degradation studies on N,N-dihexyloctanamide (DHOA) under PUREX process conditions. Solvent Extr. Ion Exc. 27, 244 (2009).10.1080/07366290802672303Suche in Google Scholar
17. Mishra, S., Joshi, S., Mallika, C., Pandey, N. K., Kamachi Mudali, U., Natarajan, R.: 66th Annual Session of IIChE (CHEMCON 2013), ICT, Mumbai, Dec (2013).Suche in Google Scholar
18. Pal, K. K., Mishra, S., Joshi, S., Mallika, C., Pandey, N. K., Kamachi Mudali, U.: Evolution in physiochemical properties of alternate PUREX solvent on hydrolytic and chemical treatment. Sep. Sci. Technol. (2017). DOI: 10.1080/01496395.2017.1374410.10.1080/01496395.2017.1374410Suche in Google Scholar
19. Mishra, S., Mallika, C., Pandey, N. K., Kamachi Mudali, U., Natarajan, R.: Effect of radiolysis in altering the physiochemical and metal retention properties of solvent-diluent-acid systems. Sep. Sci. Technol 50, 1671 (2015).10.1080/01496395.2014.988359Suche in Google Scholar
20. Kumari, N., Prabhu, D. R., Kanekar, A. S., Pathak. P. N.: Validation of solvent extraction scheme for the reprocessing of advanced heavy water reactor spent fuel using N,N-dihexyl octanamide as extractant. Ind. Eng. Chem. Res 51, 14535 (2012).10.1021/ie301744dSuche in Google Scholar
21. Gupta, K. K., Manchanda, V. K., Subramanian, M. S., Singh, R. K.: Thermodynamics of extraction of uranium(VI) and plutonium(IV) with some long-chain aliphatic amides. Radiochim. Acta 85, 103 (1999).10.1524/ract.1999.85.34.103Suche in Google Scholar
22. Pathak, P. N., Prabhu, D. R., Kanekar, A. S., Manchanda, V. K.: Recent R&D studies related to coprocessing of spent nuclear fuel using N,N-dihexyloctanamide. Sep. Sci. Technol. 44, 3650 (2009).10.1080/01496390903183147Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Redox behavior and solubility of plutonium under alkaline, reducing conditions
- Effects of temperature on the extraction of U(VI) and Pu(IV) by tris(2-methylbutyl) phosphate from nitric acid media
- Interaction of salicylic acid with zirconium diphosphate and its reactivity toward uranium (VI)
- Complexation of a macrocyclic ligand, 2,6-di (N-methyl)formamide-calix[4]pyridine, with Eu(III) and extraction of Eu(III) and Am(III)
- Feasibility studies of using N,N-dihexyloctanamide (DHOA) for fast reactor fuel reprocessing applications
- Encapsulated polymeric beads impregnating unexplored amide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA) – preparation, sorption and kinetic studies for tri-, tetra- and hexavalent radionuclides
- Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging
- Investigation of chemical composition and moisture content for different materials on the attenuation of γ rays
Artikel in diesem Heft
- Frontmatter
- Redox behavior and solubility of plutonium under alkaline, reducing conditions
- Effects of temperature on the extraction of U(VI) and Pu(IV) by tris(2-methylbutyl) phosphate from nitric acid media
- Interaction of salicylic acid with zirconium diphosphate and its reactivity toward uranium (VI)
- Complexation of a macrocyclic ligand, 2,6-di (N-methyl)formamide-calix[4]pyridine, with Eu(III) and extraction of Eu(III) and Am(III)
- Feasibility studies of using N,N-dihexyloctanamide (DHOA) for fast reactor fuel reprocessing applications
- Encapsulated polymeric beads impregnating unexplored amide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA) – preparation, sorption and kinetic studies for tri-, tetra- and hexavalent radionuclides
- Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging
- Investigation of chemical composition and moisture content for different materials on the attenuation of γ rays