Encapsulated polymeric beads impregnating unexplored amide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA) – preparation, sorption and kinetic studies for tri-, tetra- and hexavalent radionuclides
-
S. Pahan
, P.S. Dhami
, J.N. Sharma
Abstract
Removal of actinides (trivalent, tetravalent and hexavalent) from nitric acid medium was studied using solid-liquid extraction technique employing polymeric encapsulated beads (PEBs) using an indigenously synthesized, unexplored novel monoamide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA). The PEBs were synthesized by phase inversion technique. The structure and morphology of the synthesized PEBs were evaluated by employing various characterization techniques like FT-IR, TGA and SEM. The well characterized PEBs were studied for its Am(III), Pu(IV) and U(VI) sorption behavior from nitric acid medium. Kinetics studies showed that the sorption is fast with equilibrium being reached within 60 min of equilibration. The sorption mechanism follows pseudo-second-order mechanism with intraparticle diffusion playing an important role. Langmuir isotherm model was found to best describe the sorption isotherm. The maximum Am(III) sorption capacity of the PEBs was found to be 8.45 mg/g (experimental) and 8.43 mg/g (Langmuir). Back extraction was possible using 0.5 M HNO3. Stability of the PEBs was found to be quite good with no significant structural deformation or leaching out of the extractant in 4.0 M HNO3 solution for at least up to 8 days.
References
1. Mathur, J. N., Murali, M. S., Nash, K. L.: Actinide partitioning – a review. Solv. Extr. Ion Exch. 19, 357 (2001).10.1081/SEI-100103276Search in Google Scholar
2. Schulz, W. W., Horwitz, E. P.: The TRUEX process and the management of liquid TRU waste. Sep. Sci. Technol. 23(12 and 13), 1191 (1988).10.1080/01496398808075625Search in Google Scholar
3. Apostolidis, C., Meester, R. D., Koch, L., Molinet, R., Liang, J., Zhu, Y.: New Separation Chemistry Techniques for Radioactive Waste and Other Specific Applications (1991), Elsevier Applied Science, London and New York.Search in Google Scholar
4. Morita, Y., Glatz, J. P., Kubota, M., Koch, L., Pagliosa, G., Roemer, K., Nicholl, A.: Extraction of neptunium with di-isodecyl phosphoric acid from nitric acid solution containing hydrogen peroxide. Solv. Extr. Ion Exch. 14, 385 (1996).10.1080/07366298808917934Search in Google Scholar
5. Serrano-Purroy, D., Christiansen, B., Glatz, J.-P., Malmbeck, R., Modolo, G.: Towards a DIAMEX process using high active concentrate – production of genuine solutions. Radiochim. Acta. 93, 357 (2005).10.1524/ract.93.6.357.65645Search in Google Scholar
6. Mahajan, G. R., Prabhu, D. R., Manchanda, V. K. Badheka, L. P.: Substituted malonamides as extractants for partitioning of actinides from nuclear waste solutions. Waste Manage. 18, 125 (1998).10.1016/S0956-053X(98)00015-4Search in Google Scholar
7. Sasaki, Y., Sugo, Y., Suzuki, S., Tachimori, S.: The novel extractants diglycolamides for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solv. Extr. Ion Exch. 19, 91 (2001).10.1081/SEI-100001376Search in Google Scholar
8. Ansari, S. A., Pathak, P. N., Manchanda, V. K., Husain, M., Prasad, A. K., Parmar, V. S.: N,N,N′,N′-Tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solv. Extr. Ion Exch. 23, 463 (2005).10.1081/SEI-200066296Search in Google Scholar
9. Manohar, S., Sharma, J. N., Shah, B. V., Wattal, P. K.: Process development for bulk separation of trivalent actinides and lanthanides from radioactive high-level liquid waste. Nucl. Sci. Eng. 156, 96 (2007).10.13182/NSE07-A2688Search in Google Scholar
10. Kannan, S., Vats, B. G., Pius, I. C., Noronha, D. M., Dhami, P. S., Naik, P. W., Kumar, M.: Extraction and structural studies of an unexplored monoamide, N, N’-dioctyl, α-hydroxy acetamide with lanthanide (III) and actinide(III) ions. Dalton Trans. 43, 5252 (2014).10.1039/c3dt53529kSearch in Google Scholar PubMed
11. Sinharoy, P., Nair, D. P., Sharma, J. N., Banerjee, K. N.: Effect of degradation products of TEHDGA on actinide partitioning process. Sep. Purif. Technol. 161, 32 (2016).10.1016/j.seppur.2015.12.052Search in Google Scholar
12. Chmielewski, A. G., Urbanski, T. S., Migdal, W.: Separation technologies for metals recovery from industrial wastes. Hydrometallurgy 45, 333 (1997).10.1016/S0304-386X(96)00090-4Search in Google Scholar
13. Law, J. D., Brewer, K. N., Herbst, R. S., Todd, T. A., Wood, D. J.: Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste. Waste Manage. 19, 27 (1999).10.1016/S0956-053X(98)00120-2Search in Google Scholar
14. de Gyves, J., de San Miguel, E. R.: Metal ion separations by supported liquid membranes. Ind. Eng. Chem. Res. 38, 2182 (1999).10.1021/ie980374pSearch in Google Scholar
15. Beauvais, R. A., Alexandratos, S. D.: Polymer-supported reagents for the selective complexation of metal ions: an overview. React. Funct. Polym. 36, 113 (1998).10.1016/S1381-5148(98)00016-9Search in Google Scholar
16. Svec, F., Fréchet, J. M. J.: New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273, 205 (1996).10.1126/science.273.5272.205Search in Google Scholar PubMed
17. Singh, K. K., Shah, C., Dwivedi, C., Kumar, M., Bajaj, P. N.: Study of uranium adsorption using amidoximated polyacrylonitrile-encapsulated macroporous beads. J. Appl. Polym. Sci. 127(1), 410 (2013).10.1002/app.37684Search in Google Scholar
18. Pathak, S. K., Tripathi, S. C., Singh, K. K., Mahtele, A. K., Kumar, M., Gandhi, P. M., Bajaj, P. N.: Removal of americium from aqueous nitrate solutions by sorption onto PC88A – impregnated macroporous polymeric beads. J. Hazard. Mater. 278, 464 (2014).10.1016/j.jhazmat.2014.06.022Search in Google Scholar PubMed
19. Singh, K. K., Ruhela, R., Das, A., Singh, A. K., Kumar, M., Hubli, R. C., Bajaj, P. N.: Separation and recovery of palladium from spent automobile catalyst dissolver solution using dithio diglycolamide encapsulated polymeric beads. J. Environ. Chem. Eng. 3, 95 (2015).10.1016/j.jece.2014.11.002Search in Google Scholar
20. Panja, S., Ruhela, R., Misra, S. K., Sharma, J. N., Tripathi, S. C., Dakshinamoorthy, A.: Facilitated transport of Am(III) through a flat-sheet supported liquid membrane (FSSLM) containing tetra(2-ethyl hexyl) diglycolamide (TEHDGA) as carrier. J. Membr. Sci. 325, 158 (2008).10.1016/j.memsci.2008.07.019Search in Google Scholar
21. Panja, S., Mohapatra, P. K., Kandwal, P., Tripathi, S. C., Manchanda, V. K.: Pertraction of plutonium in the +4 oxidation state through a supported liquid membrane containing TODGA as the carrier. Desalination 262, 57 (2010).10.1016/j.desal.2010.05.041Search in Google Scholar
22. Panja, S., Mohapatra, P. K., Tripathi, S. C., Manchanda, V. K.: Studies on uranium(VI) pertraction across a N,N,N′,N′-tetraoctyldiglycolamide (TODGA) supported liquid membrane. J. Membr. Sci. 337, 274 (2009).10.1016/j.memsci.2009.04.005Search in Google Scholar
23. Nie, R., Chang, X., He, Q., Hu, Z., Li, Z.: Preparation of p-tert[(dimethylamino) methyl]-calix[4] arene functionalized aminopropylpolysiloxane resin for selective solid-phase extraction and preconcentration of metal ions. J. Hazard. Mater. 169, 203 (2009).10.1016/j.jhazmat.2009.03.084Search in Google Scholar PubMed
24. Pathak, S. K., Tripathi, S. C., Singh, K. K., Mahtele, A. K., Dwivedi, C., Juby, K. A., Kumar, M., Gandhi, P. M., Bajaj, P. N.: PC-88A-impregnated macroporous polymeric beads: preparation, characterization and application for extraction of Pu (IV) from nitric acid medium. Radiochim. Acta. 101, 761 (2013).10.1524/ract.2013.2076Search in Google Scholar
25. Weber, W. J., Morris, J. C.: Intraparticle diffusion during the sorption of surfactants onto activated carbon. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 53 (1963).10.1061/JSEDAI.0000467Search in Google Scholar
26. Singh, K. K., Panja, S., Ruhela, R., Kumar, M., Tripathi, S. C., Singh, A. K., Chakravartty, J. K., Bajaj, P. N.: Studies on BenzoDODA encapsulated polymeric beads for separation of plutonium from acidic solution. Sep. Purif. Technol. 154, 186 (2015).10.1016/j.seppur.2015.08.018Search in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2017-2814).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Redox behavior and solubility of plutonium under alkaline, reducing conditions
- Effects of temperature on the extraction of U(VI) and Pu(IV) by tris(2-methylbutyl) phosphate from nitric acid media
- Interaction of salicylic acid with zirconium diphosphate and its reactivity toward uranium (VI)
- Complexation of a macrocyclic ligand, 2,6-di (N-methyl)formamide-calix[4]pyridine, with Eu(III) and extraction of Eu(III) and Am(III)
- Feasibility studies of using N,N-dihexyloctanamide (DHOA) for fast reactor fuel reprocessing applications
- Encapsulated polymeric beads impregnating unexplored amide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA) – preparation, sorption and kinetic studies for tri-, tetra- and hexavalent radionuclides
- Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging
- Investigation of chemical composition and moisture content for different materials on the attenuation of γ rays
Articles in the same Issue
- Frontmatter
- Redox behavior and solubility of plutonium under alkaline, reducing conditions
- Effects of temperature on the extraction of U(VI) and Pu(IV) by tris(2-methylbutyl) phosphate from nitric acid media
- Interaction of salicylic acid with zirconium diphosphate and its reactivity toward uranium (VI)
- Complexation of a macrocyclic ligand, 2,6-di (N-methyl)formamide-calix[4]pyridine, with Eu(III) and extraction of Eu(III) and Am(III)
- Feasibility studies of using N,N-dihexyloctanamide (DHOA) for fast reactor fuel reprocessing applications
- Encapsulated polymeric beads impregnating unexplored amide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA) – preparation, sorption and kinetic studies for tri-, tetra- and hexavalent radionuclides
- Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging
- Investigation of chemical composition and moisture content for different materials on the attenuation of γ rays