Home Chemistry of tellurium containing macrocycles
Article
Licensed
Unlicensed Requires Authentication

Chemistry of tellurium containing macrocycles

  • Monika Kamboj ORCID logo EMAIL logo
Published/Copyright: May 17, 2022
Become an author with De Gruyter Brill

Abstract

The chemistry of Tellurium containing macrocycles has received great attraction and developed rapidly. Recently inorganic chemists are fascinated by ligands containing macrocycles having tellurium as soft donor and N and O as hard donor atoms. The tellurium atom is more electropositive than carbon due to its large size that resulted in polarisation of Te–C bond. So, tellurium containing macrocycles are explored due to their high reactivity and toxicity. Well-designed macrocycles containing different metals is an interesting field of chemistry as macrocycle with mixed donor atoms can bind two different metal atoms with different nature within the same cavity and thereby ion selectivity increases. Chemistry of macrocycles with tellurium as soft donor atoms also gives rise to very interesting coordination behaviour as addition of Tellurium in macrocycle adds an additional probe (125Te NMR help to monitor their structures in solutions). The chemistry of hard and soft donors in macrocyclic framework makes interesting coordination chemistry and need to be explore. The discussion includes different types of tellurium macrocycles and their chemistry.


Corresponding authors: Monika Kamboj, Department of Applied Chemistry, Amity School of Applied Sciences, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, UP, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jain, VK, Kedarnath, G. Applications of metal selenium/tellurium compounds in materials science. Phys Sci Rev 2018;2017:1–38.10.1515/psr-2017-0127Search in Google Scholar

2. Jones, PG, Ramírez de Arellano, MC. Synthesis of aryl selenides using arylmercurials. Cyclopalladation of Se(R)Ph [R = C6H3(N=NC6H4Me-4′)-2,Me-5]. Crystal structures of Se2R2 and [Pd{C6H3[N=NC6H3(SePh)-2′,Me-4′]-2,Me-5}Cl]. J Chem Soc Dalton Trans 1996;2713–17.10.1039/DT9960002713Search in Google Scholar

3. Kienitz, CO, Thone, C, Jones, PG. Coordination chemistry of 2,2’-dipyridyl diselenide: X-ray crystal structures of PySeSePy, [Zn(PySeSePy)Cl(2)], [(PySeSePy)Hg(C(6)F(5))(2)], [Mo(SePy)(2)(CO)(3)], [W(SePy)(2)(CO)(3)], and [Fe(SePy)(2)(CO)(2)] (PySeSePy = C(5)H(4)NSeSeC(5)H(4)N; SePy = [C(5)H(4)N(2-Se)-N,Se]). Inorg Chem 1996;35:3990–7. https://doi.org/10.1021/ic951454d.Search in Google Scholar PubMed

4. Nishibayashi, Y, Segawa, K, Singh, JD, Fukuzawa, SI, Ohe, K, Uemura, S. Novel chiral ligands, diferrocenyl dichalcogenides and their derivatives, for the Rh(I)- and Ir(I)-catalyzed asymmetric hydrosilylation. Organometallics 1996;15:370–9. https://doi.org/10.1021/om950533u.Search in Google Scholar

5. Nishibayashi, Y, Singh, JD, Arikawa, Y, Uemura, S, Hidai, M. Rhodium(I)-, iridium(I)-, and ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using diferrocenyl dichalcogenides as chiral ligands. J Organomet Chem 1997;531:13–8. https://doi.org/10.1016/s0022-328x(96)06681-8.Search in Google Scholar

6. Chang, Y, Emge, TJ, Brennan, JG. Pyridineselenolate complexes of tin and lead: Sn(2-SeNC5H4)2, Sn(2-SeNC5H4)4, Pb(2-SeNC5H4)2, and Pb(3-Me3Si-2-SeNC5H3)2. Volatile CVD precursors to group IV−Group VI semiconductors. Inorg Chem 1996;35:342–6.10.1021/ic9507326Search in Google Scholar PubMed

7. Steigerwalk, ML, Sprinkle, CR. Application of phosphine tellurides to the preparation of Group II-VI (2-16) semiconductor materials. Organometallics 1988;7:245–6.10.1021/om00091a042Search in Google Scholar

8. Hirpo, W, Dhingra, S, Sutorik, AC, Kanatzidis, MG. Synthesis of mixed copper-indium chalcogenolates. Single-source precursors for the photovoltaic materials CuInQ2 (Q = S, Se). J Am Chem Soc 1993;115:1597–9. https://doi.org/10.1021/ja00057a067.Search in Google Scholar

9. Gange, RR, Allison, JL, Gall, RS, Koval, CA. Models for copper-containing proteins: structure and properties of novel five-coordinate copper(I) complexes. J Am Chem Soc 1977;99:7170–8. https://doi.org/10.1021/ja00464a012.Search in Google Scholar PubMed

10. Martin, JWL, Johnston, JH, Curtis, NF. Complexes of 2,4,4-trimethyl-1,5,9-triazacyclododec-1-ene with cobalt(II), nickel(II), and copper(II); X-ray structure determination of di-isothiocyanato(2,4,4-trimethyl-1,5,9-triazacyclododec-1-ene)nickel(II). J Chem Soc Dalton Trans 1978;68:76. https://doi.org/10.1039/dt9780000068.Search in Google Scholar

11. Hughes, MN. The inorganic chemistry of biological processes, 2nd ed. New York: Wiley; 1981.Search in Google Scholar

12. Casella, L, Gullotti, M, Gioia, LD, Monzani, E, Chillemi, F. Synthesis, ligand binding and biomimetic oxidations of deuterohaemin modified with an undecapeptide residue. J Chem Soc Dalton Trans 1991;2945–53. https://doi.org/10.1039/dt9910002945.Search in Google Scholar

13. James, SR, Margerum, DW. Stability and kinetics of a macrocyclic tetrapeptide complex, tetradeprotonated(cyclo-(.beta.-alanylglycyl-.beta.-alanylglycyl))cuprate(II). Inorg Chem 1980;19:2784–90.10.1021/ic50211a058Search in Google Scholar

14. Panda, A, Menon, SC, Singh, HB, Butcher, RJ. Synthesis of some macrocycles/bicycles from bis(o-formylphenyl) selenide: X-ray crystal structure of bis(o-formylphenyl) selenide and the first 28-membered selenium containing macrocyclic ligand. J Organomet Chem 2001;623:87–94. https://doi.org/10.1016/s0022-328x(00)00830-5.Search in Google Scholar

15. Pietraszkiewicz, M. Synthetic methods in supramolecular chemistry. J Coord Chem 1992;27:151–99. https://doi.org/10.1080/00958979209407951.Search in Google Scholar

16. Fenton, DE, Mathews, RW, McPartlin, M, Murphy, BP, Scowen, IJ, Tasker, PA. Macrocyclic helicates: complexes of a 34-membered Schiff-base ligand. J Chem Soc Chem Commun 1994;1391–2. https://doi.org/10.1039/c39940001391.Search in Google Scholar

17. Brunner, H, Schiessling, H. Dialdehyde + diamine—polymer or macrocycle? Angew Chem, Int Ed Engl 1994;33:125–6. https://doi.org/10.1002/anie.199401251.Search in Google Scholar

18. Nanda, KK, Venkatsubramanian, K, Majumdar, D, Nag, K. Synthesis of a novel octaamino tetraphenol macrocyclic ligand and structure of a tetranuclear nickel(II) complex. Inorg Chem 1994;33:1581–2. https://doi.org/10.1021/ic00086a002.Search in Google Scholar

19. Panda, A, Menon, SC, Singh, HB, Morley, CP, Bachman, R, Cocker, TM, et al.. Synthesis, characterization and coordination chemistry of some selenium -containing macrocyclic Schiff bases. Eur J Inorg Chem 2005;2005:1114–26.10.1002/ejic.200400757Search in Google Scholar

20. Alexander, V. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem Rev 1995;95:273–342. https://doi.org/10.1021/cr00034a002.Search in Google Scholar

21. Beer, PD, Graydon, AR. New anion receptors based on cobalticinium-aza crown ether derivatives. J Organomet Chem 1994;466:241–7. https://doi.org/10.1016/0022-328x(94)88051-4.Search in Google Scholar

22. Van Veggel, FCJM, Verboom, W, Reinhoudt, DN. Metallomacrocycles: supramolecular chemistry with hard and soft metal cations in action. Chem Rev 1994;94:279–99. https://doi.org/10.1021/cr00026a001.Search in Google Scholar

23. Alka, A, Shetti, VS, Ravikanth, M. Telluraporphyrinoids: an interesting class of coremodified porphyrinoids. Dalton Trans 2019;48:4444–59. https://doi.org/10.1039/c9dt00079h.Search in Google Scholar PubMed

24. Panda, A. Developments in tellurium containing macrocycles. Coord Chem Rev 2009;253:1947–65. https://doi.org/10.1016/j.ccr.2009.03.025.Search in Google Scholar

25. Nogueira, CW, Zeni, G, Rocha, JBT. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 2004;104:6255–86. https://doi.org/10.1021/cr0406559.Search in Google Scholar PubMed

26. Ulman, A, Manassen, J, Frolow, F, Rabinovich, D. Synthesis of new tetraphenylporphyrin molecules containing heteroatoms other than nitrogen. III Tetraphenyl-21-tellura-23-thiaporphyrin: an internally-bridged porphyrin. Tetrahedron Lett 1978;19:1885–6. https://doi.org/10.1016/s0040-4039(01)94699-4.Search in Google Scholar

27. Abe, M, Hilmey, DG, Stilts, CE, Sukumaran, DK, Detty, MR. 21-Telluraporphyrins. 1. Impact of 21,23-heteroatom interactions on electrochemical redox potentials, 125Te NMR spectra, and absorption spectra. Organometallics 2002;21:2986–92. https://doi.org/10.1021/om0202219.Search in Google Scholar

28. Abe, M, You, Y, Detty, MR. 21-Telluraporphyrins. 2. Catalysts for bromination reactions with hydrogen peroxide and sodium bromide. Organometallics 2002;21:4546–51. https://doi.org/10.1021/om020511p.Search in Google Scholar

29. Ulman, A, Manassen, J, Frolow, F, Rabinovich, D. Synthesis and properties of tetraphenylporphyrin molecules containing heteroatoms other than nitrogen. 5. High resolution nuclear magnetic resonance studies of inner and outer aromaticity. J Am Chem Soc 1979;101:7055–9. https://doi.org/10.1021/ja00517a046.Search in Google Scholar

30. Latos-Graz˙ynski, L, Pacholska, E, Chmielewski, PJ, Olmstead, MM, Balch, A. Alteration of the reactivity of a tellurophene within a core‐modified porphyrin environment: synthesis and oxidation of 21‐telluraporphyrin. Angew Chem Int Ed Engl 1995;34:2252–4.10.1002/anie.199522521Search in Google Scholar

31. Pacholska, E, Latos-Grazynski, L, Ciunik, Z. A direct link between annulene and porphyrin chemistry—21-vacataporphyrin. Chem Eur J 2002;8:5403–5. https://doi.org/10.1002/1521-3765(20021202)8:23<5403::aid-chem5403>3.0.co;2-c.10.1002/1521-3765(20021202)8:23<5403::AID-CHEM5403>3.0.CO;2-CSearch in Google Scholar

32. Pacholska-Dudziak, E, Szterenberg, L, Latos-Grażyński, L. A flexible porphyrin–annulene hybrid: a nonporphyrin conformation formeso-tetraaryldivacataporphyrin. Chem Eur J 2011;17:3500–11. https://doi.org/10.1002/chem.201002765.Search in Google Scholar PubMed

33. Pacholska-Dudziak, E, Vetter, G, Góratowska, A, Białońska, A, Latos-Grazynsk, L. Chemistry inside a porphyrin skeleton: Platinacyclopentadiene from tellurophene. Chem Eur J 2020;26:16011–8. https://doi.org/10.1002/chem.202002677.Search in Google Scholar PubMed

34. Abe, M, Detty, MR, Gerlits, OO, Sukumaran, DK. 21-Telluraporphyrins. 3. Synthesis, structure, and spectral properties of a 21,21-dihalo-21-telluraporphyrin. Organometallics 2004;23:4513–8. https://doi.org/10.1021/om049640r.Search in Google Scholar

35. Pacholska-Dudziak, E, Szczepaniak, M, Książek, A, Latos-Grażyński, L. A porphyrin skeleton containing a palladacyclopentadiene. Angew Chem Int Ed 2013;52:8898–903. https://doi.org/10.1002/anie.201304493.Search in Google Scholar PubMed

36. Von Zelewsky, A. Stereochemistry of Coordination Compounds. Chichester: John Wiley; 1996.Search in Google Scholar

37. Panda, A, Menon, SC, Singh, HB, Butcher, RJ. Synthesis of some macrocycles/bicycles from bis(o-formylphenyl) selenide: X-ray crystal structure of bis(o-formylphenyl) selenide and the first 28-membered selenium containing macrocyclic ligand. J Organomet Chem 2001;623:87–94. https://doi.org/10.1016/s0022-328x(00)00830-5.Search in Google Scholar

38. Fujihara, H, Ninoi, T, Akaishi, R, Erata, T, Furukawa, N. First example of tetraalkyl substituted ditelluride dication salt from 1,5-ditelluracyclooctane. Tetrahedron Lett 1991;32:4537–40. https://doi.org/10.1016/0040-4039(91)80033-3.Search in Google Scholar

39. Takaguchi, Y, Horn, E, Furukawa, N. Preparation and X-ray structure analysis of 1,1,5,5,9,9-Hexachloro-1,5,9-tritelluracyclododecane (Cl6([12]aneTe3)) and its redox behavior. Organometallics 1996;15:5112–5. https://doi.org/10.1021/om960486l.Search in Google Scholar

40. AL-Salim, N, Hamor, TA, McWhinnie, WR. Lewis acid and Lewis base behaviour of a tellurium(II) compound: a mercury(II) complex of a bis-telluride ligand with a 13-member macrocyclic chelate ring. J Chem Soc Chem Commun 1986;453–5. https://doi.org/10.1039/c39860000453.Search in Google Scholar

41. Liaw, WF, Lai, CH, Chiou, SJ, Horng, YC, Chou, CC, Liaw, MC, et al.. Synthesis and characterization of polymeric Ag(I)-telluroether and Cu(I)-diorganyl ditelluride complexes – crystal-structures of (Ag(MeTe(CH2)3TeMe)2]n[(BF4]n, ((μ2-MeTeTeMe)Cu(μ2-Cl)]n, and (Ag2(NCCH3)4(-(μ2-(p-C6H4F)TeTe(p-C6H4F))2[BF4]2. Inorg Chem 1995;34:3755–9. https://doi.org/10.1021/ic00118a024.Search in Google Scholar

42. Bali, S, Singh, AK, Sharma, P, Drake, JE, Hursthouse, MB, Light, ME. First example of bimetallic complex of platinum(II) with a hybrid organotellurium ligand [(4-MeOC6H4Te)CH2CH2OCH2CH2CH2 (2-C5H4N)] (L1) containing 20-membered metallomacrocycle ring: synthesis and crystal structure. Inorg Chem Commun 2003;6:1378–81. https://doi.org/10.1016/j.inoche.2003.08.020.Search in Google Scholar

43. Bali, S, Singh, AK, Drake, JE, Light, ME. Multidentate hybrid organotellurium ligands 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl)propoxy]ethane (L1) 2-methyl-6-{3-[2-({2-[3-(6-methyl-2-pyridyl)propoxy]- ethyl}telluranyl)ethoxy]propyl}pyridine (L2) and their metal complexes: formation of 20-membered metallomacrocycle by L1. Polyhedron 2006;25:1033–42. https://doi.org/10.1016/j.poly.2005.12.010.Search in Google Scholar

44. Guerriero, P, Vigato, PA, Fenton, DE, Hellier, PC. Synthesis and application of macrocyclic and macrocyclic schiff bases. Acta Chem Scand 1992;46:1025–46. https://doi.org/10.3891/acta.chem.scand.46-1025.Search in Google Scholar

45. Nanda, KK, Venkatsubramanian, K, Majumdar, D, Nag, K. Synthesis of a novel octaamino tetraphenol macrocyclic ligand and structure of a tetranuclear nickel(II) complex. Inorg Chem 1994;33:1581–2. https://doi.org/10.1021/ic00086a002.Search in Google Scholar

46. Rissanen, K, Breitcnbach, J, Huuskonen, J. An unusual copper(I) complex of a new macrocyclic ligand. J Chem Soc Chem Commun 1994;1265–6. https://doi.org/10.1039/c39940001265.Search in Google Scholar

47. Menon, SC, Singh, HB, Patel, RP, Kulshreshtha, SK. Synthesis, structure and reactions of the first tellurium-containing macrocyclic Schiff base. J Chem Soc Dalton Trans 1996;1203–7. https://doi.org/10.1039/dt9960001203.Search in Google Scholar

48. Kaur, R, Menon, SC, Singh, HB. New aspects of intramolecular coordination in organochalcogen (Se/Te) chemistry. Proc Indian Acad Sci 1996;108:159–64. https://doi.org/10.1007/bf02870021.Search in Google Scholar

49. Menon, SC, Panda, A, Singh, HB, Butcher, RJ. Synthesis and single crystal X-ray structure of the first cationic Pd(ii) complex of a tellurium-containing polyaza macrocycle: contrasting reactions of Pd(ii) and Pt(ii) with a 22-membered macrocyclic Schiff base. Chem Commun 2000;143–4. https://doi.org/10.1039/a908683h.Search in Google Scholar

50. Menon, SC, Panda, A, Singh, HB, Patel, RP, Kulshreshtha, SK, Darby, WL, et al.. Tellurium azamacrocycles: synthesis, characterization and coordination studies. J Organomet Chem 2004;689:1452–63. https://doi.org/10.1016/j.jorganchem.2003.12.042.Search in Google Scholar

51. Tripathi, SK, Khandelwal, BL, Gupta, SK. A new family of chalcogen bearing macrocycles: synthesis and characterization of N4O2E2 (E = Se,Te) type compounds. Phosphorus, Sulfur Silicon Relat Elem 2002;177:2285–93. https://doi.org/10.1080/10426500214112.Search in Google Scholar

52. Das, S, Singh, HB, Butcher, RJ. Synthesis and characterization of 22-, 28- and 32-membered mercuraazamacrocycles: isolation of ring-Chain tautomer and Se/Te-containing macrocycles. Eur J Inorg Chem 2018;25:4702–10. https://doi.org/10.1002/ejic.201800562.Search in Google Scholar

53. Srivastava, S, Kalam, A. Synthesis and characterization of manganese (II), cobalt (II), nickel (II), copper (II), zinc (II) complexes of a tellurium containing tetraazamacrocycle: a photoelectron spectroscopic study. J Indian Chem Soc 2006;83:563–7.Search in Google Scholar

54. Kumari, S, Verma, KK, Garg, S. Synthesis, spectral and antimicrobial studies of some d10 metal-ions ditellura tetraazamacrocyclic complexes. Chem Sci Trans 2017;6:77–86.10.7598/cst2017.1322Search in Google Scholar

55. Kumari, S, Verma, KK, Garg, S. Investigations on some divalent transition metal complexes of 10-membered tellurium containing N2S2 donor macrocycles. Int J Chem Sci 2017;15:207.Search in Google Scholar

56. Ho, PC, Szydlowski, P, Sinclair, J, Elder, PJW, Kubel, J, Gendy, C, et al.. Supramolecular macrocycles reversibly assembled by TeyO chalcogen bonding. Nat Commun 2016;7:11299. https://doi.org/10.1038/ncomms11299.Search in Google Scholar

57. Hesford, MJ, Levason, W, Matthews, ML, Reid, G. Synthesis and complexation of the mixed tellurium–oxygen macrocycles1-tellura-4,7-dioxacyclononane, [9]aneO2Te, and 1,10-ditellura-4,7,13,16-tetraoxacyclooctadecane, [18]aneO4Te2 and their selenium analogues. Dalton Trans 2003:2852–8. https://doi.org/10.1039/b303365c.Search in Google Scholar

58. Kobayashi, K, Iizawa, H, Yamaguchi, K, Horn, E, Furukawa, N. Macrocyclic multi-telluranes with hypervalent Te–O apical linkages. Chem Commun 2001:1428–9. https://doi.org/10.1039/b103676a.Search in Google Scholar

59. Kobayashi, K, Deguchi, N, Takahashi, O, Tanaka, K, Horn, E, Kikuchi, O, et al.. Nucleophilic addition of telluroxides to a cationic ditelluroxane: oligotelluroxanes. Angew Chem Int Ed 1999;38:1638–40. https://doi.org/10.1002/(sici)1521-3773(19990601)38:11<1638::aid-anie1638>3.0.co;2-p.10.1002/(SICI)1521-3773(19990601)38:11<1638::AID-ANIE1638>3.0.CO;2-PSearch in Google Scholar

60. Ho, PC, Lomax, J, Tomassetti, V, Britten, JF, Vargas-Baca, I. Competing effects of chlorination on the strength of Te⋅⋅⋅O chalcogen bonds select the structure of mixed supramolecular macrocyclic aggregates of iso-tellurazole N-oxides. Chem Eur J 2021;27:10849–53. https://doi.org/10.1002/chem.202101425.Search in Google Scholar

61. Evano, G, Barde, E. Four-membered rings with one selenium or tellurium atom. In: Comprehensive heterocyclic chemistry IV, 4th ed.; 2022, vol 2. pp. 327–34.10.1016/B978-0-12-409547-2.14766-3Search in Google Scholar

62. Levason, W, Orchard, SD, Reid, G. Synthesis and properties of the first series of mixed thioether/telluroether macrocycles. Chem Commun 2001:427–8. https://doi.org/10.1039/b008370o.Search in Google Scholar

63. Hesford, MJ, Levason, W, Matthews, ML, Orchard, SD, Reid, G. Synthesis, characterisation and coordinating properties of the small ring S2Te-donor macrocycles [9]aneS2Te, [11]aneS2Te and [12]aneS2Te. Dalton Trans 2003:2434–42. https://doi.org/10.1039/b302985a.Search in Google Scholar

64. Barton, AJ, Genge, ARJ, Hill, NJ, Levason, W, Orchard, SD, Patel, B, et al.. Recent developments in thio-, seleno-, and telluro-ether ligand chemistry. Heteroat Chem 2002;13:550–60. https://doi.org/10.1002/hc.10100.Search in Google Scholar

Published Online: 2022-05-17

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Reviews
  3. Synthesis and application of organotellurium compounds
  4. Tellurium-based chemical sensors
  5. Synthesis of antiviral drugs by using carbon–carbon and carbon–heteroatom bond formation under greener conditions
  6. Green protocols for Tsuji–Trost allylation: an overview
  7. Chemistry of tellurium containing macrocycles
  8. Tellurium-induced cyclization of olefinic compounds
  9. Latest developments on the synthesis of bioactive organotellurium scaffolds
  10. Tellurium-based solar cells
  11. Semiconductor characteristics of tellurium and its implementations
  12. Tellurium based materials for nonlinear optical applications
  13. Pharmaceutical cocrystal consisting of ascorbic acid with p-aminobenzoic acid and paracetamol
  14. Carbocatalysis: a metal free green avenue towards carbon–carbon/heteroatom bond construction
  15. Physico-chemical and nutraceutical properties of Cola lepidota seed oil
  16. Cyclohexane oxidation using advanced oxidation processes with metals and metal oxides as catalysts: a review
  17. Optimization of electrolysis and carbon capture processes for sustainable production of chemicals through Power-to-X
  18. Tellurium-induced functional group activation
  19. Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)asmino-4-(2,4-dichlorophenyl)thiazol-5-yl-diazenyl)phenyl as potential SARS-CoV-2 agent
  20. Process intensification and digital twin – the potential for the energy transition in process industries
  21. Photovoltaic properties of novel reactive azobenzoquinolines: experimental and theoretical investigations
  22. Accessing the environmental impact of tellurium metal
  23. Membrane-based processes in essential oils production
  24. Development of future-proof supply concepts for sector-coupled district heating systems based on scenario-analysis
  25. Educators’ reflections on the teaching and learning of the periodic table of elements at the upper secondary level: a case study
  26. Optimization of hydrogen supply from renewable electricity including cavern storage
  27. A short review on cancer therapeutics
  28. The role of bioprocess systems engineering in extracting chemicals and energy from microalgae
  29. The topology of crystalline matter
  30. Characterization of lignocellulosic S. persica fibre and its composites: a review
  31. Constructing a framework for selecting natural fibres as reinforcements composites based on grey relational analysis
  32. Polybutylene succinate (PBS)/natural fiber green composites: melt blending processes and tensile properties
  33. The properties of 3D printed poly (lactic acid) (PLA)/poly (butylene-adipate-terephthalate) (PBAT) blend and oil palm empty fruit bunch (EFB) reinforced PLA/PBAT composites used in fused deposition modelling (FDM) 3D printing
  34. Thermal properties of wood flour reinforced polyamide 6 biocomposites by twin screw extrusion
  35. Manufacturing defects and interfacial adhesion of Arenga Pinnata and kenaf fibre reinforced fibreglass/kevlar hybrid composite in boat construction application
  36. Wettability of keruing (Dipterocarpus spp.) wood after weathering under tropical climate
  37. Simultaneous remediation of polycyclic aromatic hydrocarbon and heavy metals in wastewater with zerovalent iron-titanium oxide nanoparticles (ZVI-TiO2)
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2021-0106/pdf
Scroll to top button