Home The topology of crystalline matter
Article
Licensed
Unlicensed Requires Authentication

The topology of crystalline matter

  • Frank Hoffmann ORCID logo EMAIL logo
Published/Copyright: June 29, 2022
Become an author with De Gruyter Brill

Abstract

In this chapter an overview is given in which way framework-like crystalline compounds can be regarded as nets, how a net is derived out of a particular crystal structure, what nets actually are, how they can be appropriately described, what the characteristics of nets are, and how this topological approach helps to categorize framework compounds. Finally the term reticular chemistry is explained and a number of examples are given how the topology-guided approach opens up new possibilities to intentionally develop new framework structures on a rational basis.


Corresponding author: Frank Hoffmann, Institute of Inorganic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Heiney, PA, Fischer, JE, McGhie, AR, Romanow, WJ, Denenstein, AM, McCauley, JPJr, et al.. Orientational ordering transition in solid C60. Phys Rev Lett 1991;66:2911–4. https://doi.org/10.1103/physrevlett.66.2911.Search in Google Scholar

2. O’Keeffe, M, Andersson, S. Rod packings and crystal chemistry. Acta Crystallogr A 1977;33:914–23. https://doi.org/10.1107/s0567739477002228.Search in Google Scholar

3. Pauling, L. The principles determining the structure of complex ionic crystals. J Am Chem Soc 1929;51:1010–26. https://doi.org/10.1021/ja01379a006.Search in Google Scholar

4. Müller, U. Symmetry relationships between crystal structures: applications of crystallographic group theory in crystal chemistry. Oxford: Oxford University Press; 2013.10.1093/acprof:oso/9780199669950.001.0001Search in Google Scholar

5. Mitchell, RH, Welch, MD, Chakhmouradian, AR. Nomenclature of the perovskite supergroup: a hierarchical system of classification based on crystal structure and composition. Mineral Mag 2017;81:411–61. https://doi.org/10.1180/minmag.2016.080.156.Search in Google Scholar

6. Bärnighausen, H. Group–subgroup relations between space groups: a useful tool in crystal chemistry. MATCH Commun Math Comput Chem 1980;9:139–75.Search in Google Scholar

7. Megaw, HD. Crystal structures: a working approach. Philadelphia: W.B. Saunders Co.; 1973.Search in Google Scholar

8. Walsh, A, Watson, GW. The origin of the stereochemically active Pb(II) lone pair: DFT calculations on PbO and PbS. J Solid State Chem 2005;178:1422–8. https://doi.org/10.1016/j.jssc.2005.01.030.Search in Google Scholar

9. Wells, AF. The geometrical basis of crystal chemistry. Part 1. Acta Crystallogr 1954;7:535–44. https://doi.org/10.1107/s0365110x5400182x.Search in Google Scholar

10. Wells, AF. The geometrical basis of crystal chemistry. Part 2. Acta Crystallogr 1954;7:545–54. https://doi.org/10.1107/s0365110x54001831.Search in Google Scholar

11. Wells, AF. Three-dimensional nets and polyhedra. New York: John Wiley & Sons, Inc.; 1977.Search in Google Scholar

12. Wells, AF. Structural inorganic chemistry, 5th ed. Washington: Oxford University Press; 1984.Search in Google Scholar

13. Hoffmann, F, Fröba, M. Network topology. In: Kaskel, S, editor. The chemistry of metal-organic frameworks. Weinheim: Wiley-VCH; 2016:5–40 pp.10.1002/9783527693078.ch2Search in Google Scholar

14(a). Delgado-Friedrichs, O, O’Keeffe, M. Identification of and symmetry computation for crystal nets. Acta Crystallogr A 2003;59:351–60. https://doi.org/10.1107/s0108767303012017.Search in Google Scholar PubMed

(b) http://gavrog.org [Accessed 20 Mar 2020].Search in Google Scholar

15(a). Blatov, VA, Shevchenko, AP, Proserpio, DM. Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 2014;14:3576–86. https://doi.org/10.1021/cg500498k.Search in Google Scholar

(b) ToposPro. http://topospro.com [Accessed 20 Mar 2020].Search in Google Scholar

16(a). O’Keeffe, M, Peskov, MA, Ramsden, SJ, Yaghi, OM. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 2008;41:1782–9. https://doi.org/10.1021/ar800124u.Search in Google Scholar PubMed

(b) http://rcsr.net/nets [Accessed 20 Mar 2020].Search in Google Scholar

17. Yaghi, OM, Kalmutzki, MJ, Diercks, CS. Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks. Weinheim: Wiley-VCH; 2019.10.1002/9783527821099Search in Google Scholar

18. Moghadam, PZ, Li, A, Wiggin, SB, Tao, A, Maloney, AGP, Wood, PA, et al.. Development of a Cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future. Chem Mater 2017;29:2618–25. https://doi.org/10.1021/acs.chemmater.7b00441.Search in Google Scholar

19. Li, H, Eddaoudi, M, O’Keeffe, M, Yaghi, OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402:276–9. https://doi.org/10.1038/46248.Search in Google Scholar

20. Hoffmann, F. Faszination Kristalle und Symmetrie. Wiesbaden: Springer Spektrum; 2016.10.1007/978-3-658-09581-9Search in Google Scholar

21. O’Keeffe, M, Yaghi, OM. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev 2012;112:675–702. https://doi.org/10.1021/cr200205j.Search in Google Scholar PubMed

22. Li, M, Li, D, O’Keeffe, M, Yaghi, OM. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 2014;114:1343–70. https://doi.org/10.1021/cr400392k.Search in Google Scholar PubMed

23. Alexandrov, EV, Blatov, VA, Kochetkov, AV, Proserpio, DM. Underlying nets in three-periodic coordination polymers: topology, taxonomy and prediction from a computer-aided analysis of the Cambridge structural database. CrystEngComm 2011;13:3947–58. https://doi.org/10.1039/c0ce00636j.Search in Google Scholar

24. Bonneau, C, O’Keeffe, M, Proserpio, DM, Blatov, VA, Batten, SR, Bourne, SA, et al.. Deconstruction of crystalline networks into underlying nets: relevance for terminology guidelines and crystallographic databases. Cryst Growth Des 2018;18:3411–8. https://doi.org/10.1021/acs.cgd.8b00126.Search in Google Scholar

25. Barthel, S, Alexandrov, EV, Proserpio, DM, Smit, B. Distinguishing metal-organic frameworks. Cryst Growth Des 2018;18:1738–47. https://doi.org/10.1021/acs.cgd.7b01663.Search in Google Scholar PubMed PubMed Central

26. Blatov, VA. A method for topological analysis of rod packings. Struct Chem 2016;27:1605–11. https://doi.org/10.1007/s11224-016-0774-1.Search in Google Scholar

27. Xie, LS, Alexandrov, EV, Skorupskii, G, Proserpio, DM, Dincă, M. Diverse π–π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks. Chem Sci 2019;10:8558–65. https://doi.org/10.1039/c9sc03348c.Search in Google Scholar PubMed PubMed Central

28. Schoedel, A, Li, M, Li, D, O’Keeffe, M, Yaghi, OM. Structures of metal-organic frameworks with rod secondary building units. Chem Rev 2016;116:12466–535. https://doi.org/10.1021/acs.chemrev.6b00346.Search in Google Scholar PubMed

29. Alexandrov, EV, Shevchenko, AP, Blatov, VA. Topological databases: why do we need them for design of coordination polymers? Cryst Growth Des 2019;19:2604–14. https://doi.org/10.1021/acs.cgd.8b01721.Search in Google Scholar

30. Online-database of Zeolite structures, IZA, http://www.iza-structure.org/databases/ [Accessed 20 Mar 2020].Search in Google Scholar

31. Delgado-Friedrichs, O, Foster, MD, O’Keeffe, M, Proserpio, DM, Treacy, MMJ, Yaghi, OM. What do we know about three-periodic nets? J Solid State Chem 2005;178:2533–54. https://doi.org/10.1016/j.jssc.2005.06.037.Search in Google Scholar

32. Bonneau, C, Delgado-Friedrichs, O, O’Keeffe, M, Yaghi, OM. Three-periodic nets and tilings: minimal nets. Acta Crystallogr A 2004;60:517–20. https://doi.org/10.1107/s0108767304015442.Search in Google Scholar

33. Delgado-Friedrichs, O, O’Keeffe, M. Crystal nets as graphs: terminology and definitions. J Solid State Chem 2005;178:2480–5. https://doi.org/10.1016/j.jssc.2005.06.011.Search in Google Scholar

34. Blatov, VA, Delgado-Friedrichs, O, O’Keeffe, M, Proserpio, DM. Three-periodic nets and tilings: natural tilings for nets. Acta Crystallogr A 2007;63:418–25. https://doi.org/10.1107/s0108767307038287.Search in Google Scholar

35. Delgado-Friedrichs, O, O’Keeffe, M, Yaghi, OM. Taxonomy of periodic nets and the design of materials. Phys Chem Chem Phys 2007;9:1035–43. https://doi.org/10.1039/b615006c.Search in Google Scholar PubMed

36. Blatov, VA, O’Keeffe, M, Proserpio, DM. Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm 2010;12:44–8. https://doi.org/10.1039/b910671e.Search in Google Scholar

37. Eddaoudi, M, Kim, J, Rosi, N, Vodak, D, Wachter, J, O’Keeffe, M, et al.. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002;295:469–72. https://doi.org/10.1126/science.1067208.Search in Google Scholar PubMed

38. Serre, C, Millange, F, Surblé, S, Férey, G. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew Chem Int Ed Engl 2004;43:6285–9. https://doi.org/10.1002/anie.200454250.Search in Google Scholar PubMed

39. Ma, S, Simmons, JM, Yuan, D, Li, J-R, Weng, W, Liu, D-J, et al.. A nanotubular metal-organic framework with permanent porosity: structure analysis and gas sorption studies. Chem Commun 2009:4049–51. https://doi.org/10.1039/b906605e.Search in Google Scholar PubMed

40. Sudik, AC, Côté, AP, Yaghi, OM. Metal-organic frameworks based on trigonal prismatic building blocks and the new “acs” topology. Inorg Chem 2005;44:2998–3000. https://doi.org/10.1021/ic050064g.Search in Google Scholar PubMed

41. Alezi, D, Peedikakkal, AMP, Weseliński, ŁJ, Guillerm, V, Belmabkhout, Y, Cairns, AJ, et al.. Quest for highly connected metal-organic framework platforms: rare-earth polynuclear clusters versatility meets net topology needs. J Am Chem Soc 2015;137:5421–30. https://doi.org/10.1021/jacs.5b00450.Search in Google Scholar PubMed

42. Chen, Z, Weseliński, ŁJ, Adil, K, Belmabkhout, Y, Shkurenko, A, Jiang, H, et al.. Applying the power of reticular chemistry to finding the missing alb-mof platform based on the (6,12)-coordinated edge-transitive net. J Am Chem Soc 2017;139:3265–74. https://doi.org/10.1021/jacs.7b00219.Search in Google Scholar PubMed

43. Liu, T-F, Feng, D, Chen, Y-P, Zou, L, Bosch, M, Yuan, S, et al.. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. J Am Chem Soc 2015;137:413–9. https://doi.org/10.1021/ja5111317.Search in Google Scholar PubMed

44. Muldoon, PF, Liu, C, Miller, CC, Koby, SB, Gamble Jarvi, A, Luo, T-Y, et al.. Programmable topology in new families of heterobimetallic metal-organic frameworks. J Am Chem Soc 2018;140:6194–8. https://doi.org/10.1021/jacs.8b02192.Search in Google Scholar PubMed

45. Zhang, X, Frey, BL, Chen, Y-S, Zhang, J. Topology-guided stepwise insertion of three secondary linkers in zirconium metal-organic frameworks. J Am Chem Soc 2018;140:7710–5. https://doi.org/10.1021/jacs.8b04277.Search in Google Scholar PubMed

46. Bon, V, Senkovska, I, Baburin, IA, Kaskel, S. Zr- and Hf-based metal-organic frameworks: tracking down the polymorphism. Cryst Growth Des 2013;13:1231–7. https://doi.org/10.1021/cg301691d.Search in Google Scholar

47. Drache, F, Bon, V, Senkovska, I, Getzschmann, J, Kaskel, S. The modulator driven polymorphism of Zr(IV) based metal-organic frameworks. Philos Trans A Math Phys Eng Sci 2017;375:20160027. https://doi.org/10.1098/rsta.2016.0027.Search in Google Scholar

48. Li, P, Vermeulen, NA, Malliakas, CD, Gómez-Gualdrón, DA, Howarth, AJ, Mehdi, BL, et al.. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 2017;356:624–7. https://doi.org/10.1126/science.aam7851.Search in Google Scholar

49. Inge, AK, Köppen, M, Su, J, Feyand, M, Xu, H, Zou, X, et al.. Unprecedented topological complexity in a metal-organic framework constructed from simple building units. J Am Chem Soc 2016;138:1970–6. https://doi.org/10.1021/jacs.5b12484.Search in Google Scholar

50. Batten, SR, Robson, R. Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed 1998;37:1460–94. https://doi.org/10.1002/(sici)1521-3773(19980619)37:11<1460::aid-anie1460>3.0.co;2-z.10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-ZSearch in Google Scholar

51. Blatov, VA, Carlucci, L, Ciani, G, Proserpio, DM. Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database. CrystEngComm 2004;6:377–95. https://doi.org/10.1039/b409722j.Search in Google Scholar

52. Carlucci, L, Ciani, G, Proserpio, DM, Mitina, TG, Blatov, VA. Entangled two-dimensional coordination networks: a general survey. Chem Rev 2014;114:7557–80. https://doi.org/10.1021/cr500150m.Search in Google Scholar

53. Rowsell, JLC, Yaghi, OM. Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed Engl 2005;44:4670–9. https://doi.org/10.1002/anie.200462786.Search in Google Scholar

54. Wu, H, Yang, J, Su, Z-M, Batten, SR, Ma, J-F. An exceptional 54-fold interpenetrated coordination polymer with 10(3)-srs network topology. J Am Chem Soc 2011;133:11406–9. https://doi.org/10.1021/ja202303b.Search in Google Scholar

55. Bonneau, C, O’Keeffe, M. High-symmetry embeddings of interpenetrating periodic nets. Essential rings and patterns of catenation. Acta Crystallogr A 2015;71:82–91. https://doi.org/10.1107/s2053273314019950.Search in Google Scholar

56. Kuang, X, Wu, X, Yu, R, Donahue, JP, Huang, J, Lu, C-Z. Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages. Nat Chem 2010;2:461–5. https://doi.org/10.1038/nchem.618.Search in Google Scholar PubMed

57. Proserpio, DM. Topological crystal chemistry: polycatenation weaves a 3D web. Nat Chem 2010;2:435–6. https://doi.org/10.1038/nchem.674.Search in Google Scholar PubMed

58. Liu, Y, O’Keeffe, M, Treacy, MMJ, Yaghi, OM. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chem Soc Rev 2018;47:4642–64. https://doi.org/10.1039/c7cs00695k.Search in Google Scholar PubMed

59. Carlucci, L, Ciani, G, Proserpio, DM. Networks, topologies, and entanglements. In: Brago, D, Grepioni, F, editors. Making crystals by design. Weinheim: Wiley-VCH; 2007:58–85 pp.10.1002/9783527610112.ch3Search in Google Scholar

60. Alexandrov, EV, Blatov, VA, Proserpio, DM. A topological method for the classification of entanglements in crystal networks. Acta Crystallogr A 2012;68:484–93. https://doi.org/10.1107/s0108767312019034.Search in Google Scholar

61. Chui, SS, Lo, SM, Charmant, JP, Orpen, AG, Williams, ID. A chemically functionalizable nanoporous material. Science 1999;283:1148–50. https://doi.org/10.1126/science.283.5405.1148.Search in Google Scholar PubMed

62(a). Sun, D, Ma, S, Ke, Y, Collins, DJ, Zhou, H-C. An interweaving MOF with high hydrogen uptake. J Am Chem Soc 2006;128:3896–7. https://doi.org/10.1021/ja058777l.Search in Google Scholar PubMed

(b) Ma, S, Sun, D, Ambrogio, M, Fillinger, JA, Parkin, S, Zhou, H-C. Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 2007;129:1858–9. https://doi.org/10.1021/ja067435s.Search in Google Scholar PubMed

63. Furukawa, H, Go, YB, Ko, N, Park, YK, Uribe-Romo, FJ, Kim, J, et al.. Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem 2011;50:9147–52. https://doi.org/10.1021/ic201376t.Search in Google Scholar PubMed

64. Chen, B, Eddaoudi, M, Hyde, ST, O’Keeffe, M, Yaghi, OM. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 2001;291:1021–3. https://doi.org/10.1126/science.1056598.Search in Google Scholar PubMed

65. Zhu, N, Lennox, MJ, Düren, T, Schmitt, W. Polymorphism of metal–organic frameworks: direct comparison of structures and theoretical N2-uptake of topological pto- and tbo-isomers. Chem Commun 2014;50:4207–10. https://doi.org/10.1039/c3cc49829h.Search in Google Scholar PubMed

66. Amirjalayer, S, Tafipolsky, M, Schmid, R. Exploring network topologies of copper paddle wheel-based metal-organic frameworks with a first-principles derived force field. J Phys Chem C 2011;115:15133–9. https://doi.org/10.1021/jp200123g.Search in Google Scholar

67. Müller, P, Grünker, R, Bon, V, Pfeffermann, M, Senkovska, I, Weiss, MS, et al.. Topological control of 3,4-connected frameworks based on the Cu2-paddle-wheel node: tbo or pto, and why? CrystEngComm 2016;18:8164–71.10.1039/C6CE01513ASearch in Google Scholar

68. Wang, X-S, Ma, S, Forster, PM, Yuan, D, Eckert, J, López, JJ, et al.. Enhancing H2 uptake by “close-packing” alignment of open copper sites in metal–organic frameworks. Angew Chem Int Ed 2008;47:7263–6. https://doi.org/10.1002/anie.200802087.Search in Google Scholar PubMed

Published Online: 2022-06-29

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Reviews
  3. Synthesis and application of organotellurium compounds
  4. Tellurium-based chemical sensors
  5. Synthesis of antiviral drugs by using carbon–carbon and carbon–heteroatom bond formation under greener conditions
  6. Green protocols for Tsuji–Trost allylation: an overview
  7. Chemistry of tellurium containing macrocycles
  8. Tellurium-induced cyclization of olefinic compounds
  9. Latest developments on the synthesis of bioactive organotellurium scaffolds
  10. Tellurium-based solar cells
  11. Semiconductor characteristics of tellurium and its implementations
  12. Tellurium based materials for nonlinear optical applications
  13. Pharmaceutical cocrystal consisting of ascorbic acid with p-aminobenzoic acid and paracetamol
  14. Carbocatalysis: a metal free green avenue towards carbon–carbon/heteroatom bond construction
  15. Physico-chemical and nutraceutical properties of Cola lepidota seed oil
  16. Cyclohexane oxidation using advanced oxidation processes with metals and metal oxides as catalysts: a review
  17. Optimization of electrolysis and carbon capture processes for sustainable production of chemicals through Power-to-X
  18. Tellurium-induced functional group activation
  19. Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)asmino-4-(2,4-dichlorophenyl)thiazol-5-yl-diazenyl)phenyl as potential SARS-CoV-2 agent
  20. Process intensification and digital twin – the potential for the energy transition in process industries
  21. Photovoltaic properties of novel reactive azobenzoquinolines: experimental and theoretical investigations
  22. Accessing the environmental impact of tellurium metal
  23. Membrane-based processes in essential oils production
  24. Development of future-proof supply concepts for sector-coupled district heating systems based on scenario-analysis
  25. Educators’ reflections on the teaching and learning of the periodic table of elements at the upper secondary level: a case study
  26. Optimization of hydrogen supply from renewable electricity including cavern storage
  27. A short review on cancer therapeutics
  28. The role of bioprocess systems engineering in extracting chemicals and energy from microalgae
  29. The topology of crystalline matter
  30. Characterization of lignocellulosic S. persica fibre and its composites: a review
  31. Constructing a framework for selecting natural fibres as reinforcements composites based on grey relational analysis
  32. Polybutylene succinate (PBS)/natural fiber green composites: melt blending processes and tensile properties
  33. The properties of 3D printed poly (lactic acid) (PLA)/poly (butylene-adipate-terephthalate) (PBAT) blend and oil palm empty fruit bunch (EFB) reinforced PLA/PBAT composites used in fused deposition modelling (FDM) 3D printing
  34. Thermal properties of wood flour reinforced polyamide 6 biocomposites by twin screw extrusion
  35. Manufacturing defects and interfacial adhesion of Arenga Pinnata and kenaf fibre reinforced fibreglass/kevlar hybrid composite in boat construction application
  36. Wettability of keruing (Dipterocarpus spp.) wood after weathering under tropical climate
  37. Simultaneous remediation of polycyclic aromatic hydrocarbon and heavy metals in wastewater with zerovalent iron-titanium oxide nanoparticles (ZVI-TiO2)
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0073/html
Scroll to top button