Abstract
This article outlines the general structures and photochromism characteristic of fulgide dyes and their most important related analogues. It provides an overview of synthetic routes to such derivatives in addition to exemplifying how typical structural variations influence photochromic behavior. A brief survey then follows, giving a flavor of the applications that have been – and continue to be – sought for them in the capacity of functional dyes.
References
1. Stobbe H. Die farbigen Anhydride der Butadiën-β,γ-dicarbonsäuren; ihr Verhalten gegen Licht und Warme (II. Abhandlung über Butadiënverbindungen.). Ber Deutschen Chemischen Ges. 1904;37:2236–40.10.1002/cber.190403702159Suche in Google Scholar
2. Stobbe H. Die Farbe der »Fulgensäuren« und »Fulgide« (7. Abhandlung über Butandiënverbindungen.). Ber Deutschen Chemischen Ges. 1905;38:3673–82.10.1002/cber.190503803214Suche in Google Scholar
3. Yokoyama Y, Kurita Y. Photochromism of fulgides and related compounds. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 1994;246:87–94.10.1080/10587259408037793Suche in Google Scholar
4. Heller HG. Electronic materials: from silicon to organics. Miller LS, Mullin JB, editors. New York: Springer, 1991 Chapter 31 (“Photochromics for the future”):471–83.10.1007/978-1-4615-3818-9_31Suche in Google Scholar
5. Fan MG, Yu L, Zhao W. In: Crano JC, Guglielmetti RJ, editors. Organic photochromic and thermochromic compounds volume 1: main photochromic families. New York: Plenum, 1999 Chapter 4 (“Fulgide family compounds: synthesis, photochromism and applications”):141–206.10.1007/0-306-46911-1_5Suche in Google Scholar
6. Yokoyama Y. Fulgides for memories and switches. Chem Rev. 100:1717–39.10.1021/cr980070cSuche in Google Scholar
7. Whittal J. In: Dürr H, Bouas-Laurent H editors. Photochromism molecules and systems . Amsterdam: Elsevier, 2003 Chapter 9 (“4n+2 Systems: Fulgides”):467–92.10.1016/B978-044451322-9/50013-0Suche in Google Scholar
8. Mustroph H. Polymethine dyes. Phys Sci Rev. 2020;5. DOI:doi.org/10.1515/psr-2019-0084.Suche in Google Scholar
9. Uhlmann E, Gauglitz G. New aspects in the photokinetics of Aberchrome 540. J Photochem Photobiol A: Chem. 1996;98:45–9.10.1016/1010-6030(96)04323-7Suche in Google Scholar
10. Renth F, Siewertsen R, Temps F. Enhanced photoswitching and ultrafast dynamics in structurally modified photochromic fulgides. Int Rev Phys Chem. 2013;32:1–38.10.1080/0144235X.2012.729331Suche in Google Scholar
11. Kaftory M. Photochromic and thermochromic compounds. I. Structures of (E) and (Z) isomers of 2-isopropylidene-3-[1-(2-methyl-5-phenyl-3-thienyl)ethylidene]succinic anhydride, C20H18O3S, and the photoproduct 7,7a-dihydro-4,7,7,7a-tetramethyl-2-phenylbenzo[b]thiophene-5,6-dicarboxylic anhydride (P), C20H18O3S. Acta Cryst. 1984;C40:1015–19.10.1107/S0108270184006624Suche in Google Scholar
12. Hettiarachchi CV, Weerasekara RK, Uekusa H. Crystalline state photochromism of 3-furylfulgides: impact of size and bond flexibility of the nonaromatic alkylidene group. Acta Cryst. 2015;B71:535–42.10.1107/S2052520615015267Suche in Google Scholar PubMed
13. Harada J, Nakajima R, Ogawa K. X-ray diffraction analysis of photochromic reaction of fulgides: crystalline state reaction induced by two-photon excitation. J Am Chem Soc. 2008;130:7085–91.10.1021/ja800353uSuche in Google Scholar PubMed
14. Asiri AM, Heller HG, Hursthouse MB, Karalulov A. Tribochromic compounds, exemplified by 3-dicyclopropylmethylene-5-dicyanomethylene-4-diphenylmethylenetetrahydrofuran-2-one. Chem Commun. 2000;799–800.10.1039/b001567iSuche in Google Scholar
15. Asiri AMA, Heller HG, Hughes DS, Hursthouse MB, Kendrick J, Leusen FJJ, et al. A mechanophysical phase transition provides a dramatic example of colour polymorphism: the tribochromism of a substituted tri(methylene) tetrahydrofuran-2-one. Chem Cent J. 2014;8:70.10.1186/s13065-014-0070-3Suche in Google Scholar PubMed PubMed Central
16. Asiri AMA, Cleeves A, Heller HG. Studies on piezochromic photochromic (E)-5-dicyanomethylene-3-[1-(2,5-dimethyl-3-furyl)ethylidene]-4-diphenylmethylenetetrahydrofuran-2-one and related photochromic compounds. J Chem Soc Perkin Trans.I 2000;1:2741–4.10.1039/b002414gSuche in Google Scholar
17. Towns A. Photochromic Dyes. Phys. Sci. Rev. DOI: 10.1515/psr-2020-0191.10.1515/psr-2020-0191Suche in Google Scholar
18. Stobbe H. II. Condensation des Acetophenons mit Bernsteinsäureester. Justus Liebigs Ann Chem. 1899;308:114–55.10.1002/jlac.18993080107Suche in Google Scholar
19. Extrasynthese, (E)-Aberchrome 540 / 8200. www.extrasynthese.com/organics/12-e-aberchrome-540.html.Suche in Google Scholar
20. TCI America. Aberchrome 670 94856-25-4. www.tcichemicals.com/US/en/p/A2869.Suche in Google Scholar
21. International Union of Pure and Applied Chemistry Organic Chemistry Division Commission on Photochemistry. Chemical actinometry (IUPAC Technical Report). Pure Appl Chem. 2004;76:2105–46.10.1351/pac200476122105Suche in Google Scholar
22. Goldschmidt S, Riedle R, Reichardt A. Über die Bisdiphenylenfulgide und die Spaltung der Bisdiphenylenefulgensäure in optisch active Komponenten. Justus Liebigs Ann Chem. 1957;604:121–32.10.1002/jlac.19576040117Suche in Google Scholar
23. Hart RJ, Heller HG, Salisbury K. The photochemical rearrangements of some photochromic fulgimides. Chem Commun. 1968;1627–8.10.1039/c19680001627Suche in Google Scholar
24. Heller HG, Koh K, Elliot C, Whittall J. Fulgides and fulgimides for practical applications. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 1994;246:79–86.10.1080/10587259408037792Suche in Google Scholar
25. Xiao J-P, Han Y, Chen Y, Li W, Fan M-G. Studies on synthesis and photochromism of a novel class of fulgimide: (Z)-4-Oxazolylfulgimide. Chin J Chem. 2004;22:100–2.10.1002/cjoc.20040220121Suche in Google Scholar
26. Badland M, Cleeves A, Heller HG, Hughes DS, Hursthouse MB. Photochromic heteroaromatic thiofulgides and dimethoxybutanoic acid lactones. Chem Commun. 2000;1567–8.10.1039/b002033hSuche in Google Scholar
27. Heller HG, Koh K, Kose M, Rowles N. The design and development of new thermally stable infra-red active photochromic compounds. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 1997;297:73–80.10.1080/10587259708036105Suche in Google Scholar
28. Kose M, Orhan E, Büyükgüngör O. Synthesis of novel photochromic methyl cyanoacetate-condensed fulgide derivatives. J Photochem Photobiol A: Chem. 2007;188:358–63.10.1016/j.jphotochem.2006.12.036Suche in Google Scholar
29. Heller HG, Hughes DS, Hursthouse MB, Rowles NG. Thermally stable fatigue resistant near infrared active photochromic compounds, exemplified by 6-amino-7-cyano-3-(dicyclopropylmethylene)-4-(2,5-dimethyl-3-furyl)-benzofuran-2(3H)-one. Chem Commun. 2000;1397–8.10.1039/b003496gSuche in Google Scholar
30. Margerum JD, Miller LJ. In: Brown GH, editor. Photochromism. New York: John Wiley & Sons, 1971 Chapter 6 (“Photochromic Processes by Tautomerism”):557–632.Suche in Google Scholar
31. Matsushima R, Sakaguchi H. Comparison of the photochromic properties of fulgides and fulgimides. J Photochem Photobiol A: Chem. 1997;108:239–45.10.1016/S1010-6030(97)00095-6Suche in Google Scholar
32. Yokoyama Y, Inoue T, Yokoyama M, Goto T, Iwai T, Kera N, et al. Effects of steric bulkiness of substituents on quantum yields of photochromic reactions of furylfulgides. Bull Chem Soc Jpn. 1994;67:3297–303.10.1246/bcsj.67.3297Suche in Google Scholar
33. Yokoyama Y, Goto T, Inoue T, Yokoyama M, Kurita Y. Fulgides as efficient photochromic compounds. Role of the substituent on furylalkylidene moiety of furylfulgides in the photoreaction. Chem Lett. 1988;17:1049–52.10.1246/cl.1988.1049Suche in Google Scholar
34. Kiji J, Okano T, Kitamura H, Yokoyama Y, Kubota S, Kurita Y. Synthesis and photochromic properties of fulgides with a t-butyl substituent on the furyl- or thienylmethylidene moiety. Bull Chem Soc Jpn. 1995;68:616–9.10.1246/bcsj.68.616Suche in Google Scholar
35. Yokoyama Y, Iwai T, Kera N, Hitomi I, Kurita Y. Steric effect of alkylidene groups of furylfulgides on the photochromic behavior. Chem Lett. 1990;263–4.10.1246/cl.1990.263Suche in Google Scholar
36. Santiago A, Becker RS. Photochromic fulgides. Spectroscopy and mechanism of photoreactions. J Am Chem Soc. 1968;90:3654–8.10.1021/ja01016a009Suche in Google Scholar
37. Darcy PJ, Heller HG, Strydom PJ, Whittall J. Photochromic heterocyclic fulgides. Part 2. Electrocyclic reactions of (E)-α-2,5-Dimethyl-3-furylethylidene(alkyl-substituted methylene)-succinic anhydrides. J Chem Soc Perkin Trans I. 1981;202–5.10.1039/P19810000202Suche in Google Scholar
38. Glaze AP, Heller HG, Whittall J. Photochromic heterocyclic fulgides. Part 7. (E)-Adamantylidene-[1-(2,5-dimethyl-3-furyl)ethylidene]succinic anhydride and derivatives: model photochromic compounds for optical recording media. J Chem Soc Perkin Trans 2. 1992;2:591–4.10.1039/p29920000591Suche in Google Scholar
39. Stobbe H, Eckert R. Eine Parallele farbiger Furyl- und Phenyl-Fulgide. (11. Abhandlung über Butadiënverbindungen). Chem Ber. 1905;38:4075–81.10.1002/cber.19050380479Suche in Google Scholar
40. Heller HG, Oliver S. Photochromic Heterocyclic Fulgides. Part 1. Rearrangement reactions of (E)-α-3-Furylethylidene(isopropylidene)succinic anhydride. J Chem Soc Perkin Trans I. 1981;197–201.10.1039/P19810000197Suche in Google Scholar
41. Yokoyama Y, Takahashi K. Trifluoromethyl-substituted photochromic Indolylfulgide. A remarkably durable fulgide towards photochemical and thermal treatments. Chem Lett. 1996;1037–8.10.1246/cl.1996.1037Suche in Google Scholar
42. Reinfelds M, Hermanns V, Halbritter T, Wachtveitl J, Braun M, Slanina T, et al. Broadly absorbing fulgide derivative as a universal chemical actinometer for the UV to NIR region. ChemPhotoChem. 2019;3:441–9.10.1002/cptc.201900010Suche in Google Scholar
43. Heller HG, Oliver SN, Whittal J, Johncock W, Darcy PJ, Trundle C. (The Plessey Co plc). Photochromic compounds and their use in photoreactive lenses. UK Patent GB2146327B. 1986.Suche in Google Scholar
44. Yokoyama Y, Nakata H, Sugama K, Yokoyama Y. Photochromism and kinetics of heliochromic Benzothienylfulgides. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 2000;344:253–8.10.1080/10587250008023845Suche in Google Scholar
45. Heller HG. Encyclopedia of materials: science and technology, 2nd ed. Elsevier, 2001 (“Photochromic Materials (Organic)”):6904–9.10.1016/B0-08-043152-6/01224-9Suche in Google Scholar
46. Heller HG, Oliver SN, Whittal J, Tomlinson I. (The Plessey Co plc). Photochromic spiropyran compounds. UK Patent GB2190379B. 1990.Suche in Google Scholar
47. Sothman B. Making the mold and breaking the mold (The rise and fall and rise of SOLA Optical). http://www.solahistory.com/ Suche in Google Scholar
48. Kobayakawa T. Photochromism of spiro-oxazines. In: Third International Symposium on Photochromism, Fukuoka, 1999.Suche in Google Scholar
49. Towns A. Spirooxazine dyes. Phys Sci Rev. 2020;5. DOI:doi.org/10.1515/psr-2020-0013.Suche in Google Scholar
50. Imura T, Kida Y, Tanaka T. (Tokuyama Soda KK). Fulgimide compounds and production thereof. Japanese Patent JPS6438063(A). 1989.Suche in Google Scholar
51. Imura S, Tanizawa T, Kobayakawa T. (Tokuyama Corp.). Cyclopropyl-substituted spiro-photochromic compounds. European Patent Application EP0629626A2. 1994.Suche in Google Scholar
52. Kawabata Y, Momoda J, Nagoh H. (Tokuyama Corp.). Photochromic composition. European Patent Application EP0965628A1. 2000.Suche in Google Scholar
53. Mann C, Melzig M, Weigand U. (Optische Werke G. Rodenstock). World Patent Application WO 02/22594. 2002.Suche in Google Scholar
54. Towns A. Naphthopyran dyes. Phys Sci Rev. 2020;5. DOI:doi/10.1515/psr-2019-0085.Suche in Google Scholar
55. Kohno Y, Tamura Y, Matsushima R. Simple full-color rewritable film with photochromic fulgide derivatives. J Photochem Photobiol A: Chem. 2009;201:98–101.10.1016/j.jphotochem.2008.10.006Suche in Google Scholar
56. Yao B, Wang Y, Menke N, Lei M, Zheng Y, Ren L, et al. Optical properties and applications of photochromic fulgides. Mol Cryst Liq Cryst. 2005;430:211–9.10.1080/15421400590946415Suche in Google Scholar
57. Zong Z, Menke N, Yao B, Wang Y, Chen Y. Polarization multiplexing, angle multiplexing and circumrotation multiplexing holographic recording experiments with 3-indolylbenzylfulgimide/PMMA film. Appl Mech Mater. 2012;130-134:2035–41.10.4028/www.scientific.net/AMM.130-134.2035Suche in Google Scholar
58. Chao L, Menke N, Yao B, Lei M, Wang Y, Sun X, et al. Optical storage properties of different fulgides. Adv Mater Res. 2013;660:24–9.10.4028/www.scientific.net/AMR.660.24Suche in Google Scholar
59. Menke N, Yao B, Wang Y, Dong W, Lei M, Chen Y, et al. Spectral relationship of photoinduced refractive index and absorption changes in fulgide films. J Mod Opt. 2008;55:1003–11.10.1080/09500340701552289Suche in Google Scholar
60. Rybalkin VP, Pluzhnikov SY, Popova LL, Revinskii YV, Tikhomirova KS, Komissarova OA, et al. A novel approach to fluorescent photochromic fulgides. Mendeleev Commun. 2016;26:21–3.10.1016/j.mencom.2016.01.009Suche in Google Scholar
61. Jiao Y, Yang R, Luo Y, Liu L, Xu B, Tian W. Fulgide derivative based solid-state reversible fluorescent switch for advanced optical memory. CCS Chem. 2021;3. DOI:doi.org/10.31635/ccschem.021.202000673.Suche in Google Scholar
62. Weerasekara RK, Uekusa H, Hettiarachchi CV. Multicolor photochromism of fulgide mixed crystals with enhanced fatigue resistance. Cryst Growth Des. 2017;17:3040–7.10.1021/acs.cgd.6b01708Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston